replace mp_bool by stdbool * This gives the advantage that static analysis **understands** bool, but complains about using an enum type instead of bool. * If stdbool.h is not desired, true/false/bool can be replaced using sed as in the no-stdint-h branch. * We already include stdint.h and stdbool.h is not more harmful than this header
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
diff --git a/demo/test.c b/demo/test.c
index 3cd3e3b..0d9b073 100644
--- a/demo/test.c
+++ b/demo/test.c
@@ -823,7 +823,7 @@ static int test_mp_is_square(void)
int i, n;
mp_int a, b;
- mp_bool res;
+ bool res;
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
return EXIT_FAILURE;
@@ -945,7 +945,7 @@ static int test_mp_prime_is_prime(void)
{
int ix;
mp_err err;
- mp_bool cnt, fu;
+ bool cnt, fu;
mp_int a, b;
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
@@ -1061,7 +1061,7 @@ static int test_mp_prime_next_prime(void)
/* edge cases */
mp_set(&a, 0u);
- if ((err = mp_prime_next_prime(&a, 5, MP_NO)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, false)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_d(&a, 2u) != MP_EQ) {
@@ -1072,7 +1072,7 @@ static int test_mp_prime_next_prime(void)
}
mp_set(&a, 0u);
- if ((err = mp_prime_next_prime(&a, 5, MP_YES)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, true)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_d(&a, 3u) != MP_EQ) {
@@ -1083,7 +1083,7 @@ static int test_mp_prime_next_prime(void)
}
mp_set(&a, 2u);
- if ((err = mp_prime_next_prime(&a, 5, MP_NO)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, false)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_d(&a, 3u) != MP_EQ) {
@@ -1094,7 +1094,7 @@ static int test_mp_prime_next_prime(void)
}
mp_set(&a, 2u);
- if ((err = mp_prime_next_prime(&a, 5, MP_YES)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, true)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_d(&a, 3u) != MP_EQ) {
@@ -1104,7 +1104,7 @@ static int test_mp_prime_next_prime(void)
goto LBL_ERR;
}
mp_set(&a, 8);
- if ((err = mp_prime_next_prime(&a, 5, MP_YES)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, true)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_d(&a, 11u) != MP_EQ) {
@@ -1130,7 +1130,7 @@ static int test_mp_prime_next_prime(void)
if ((err = mp_add(&b, &c, &b)) != MP_OKAY) {
goto LBL_ERR;
}
- if ((err = mp_prime_next_prime(&a, 5, MP_NO)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, false)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp(&a, &b) != MP_EQ) {
@@ -1160,7 +1160,7 @@ static int test_mp_prime_next_prime(void)
if ((err = mp_add(&b, &c, &b)) != MP_OKAY) {
goto LBL_ERR;
}
- if ((err = mp_prime_next_prime(&a, 5, MP_YES)) != MP_OKAY) {
+ if ((err = mp_prime_next_prime(&a, 5, true)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp(&a, &b) != MP_EQ) {
@@ -1284,7 +1284,7 @@ static int test_mp_read_radix(void)
char *s = fgets(buf, sizeof(buf), stdin);
if (s != buf) break;
mp_read_radix(&a, buf, 10);
- mp_prime_next_prime(&a, 5, MP_YES);
+ mp_prime_next_prime(&a, 5, true);
mp_to_radix(&a, buf, sizeof(buf), NULL, 10);
printf("%s, %lu\n", buf, (unsigned long)a.dp[0] & 3uL);
}
diff --git a/etc/2kprime.c b/etc/2kprime.c
index 6069e57..3a3e283 100644
--- a/etc/2kprime.c
+++ b/etc/2kprime.c
@@ -8,7 +8,7 @@ int main(void)
{
char buf[2000];
size_t x;
- mp_bool y;
+ bool y;
mp_int q, p;
FILE *out;
clock_t t1;
diff --git a/etc/drprime.c b/etc/drprime.c
index 6edb965..31dff4e 100644
--- a/etc/drprime.c
+++ b/etc/drprime.c
@@ -5,7 +5,7 @@ static int sizes[] = { 1+256/MP_DIGIT_BIT, 1+512/MP_DIGIT_BIT, 1+768/MP_DIGIT_BI
int main(void)
{
- mp_bool res;
+ bool res;
int x, y;
char buf[4096];
FILE *out;
@@ -30,7 +30,7 @@ top:
a.used = sizes[x];
/* now loop */
- res = MP_NO;
+ res = false;
for (;;) {
a.dp[0] += 4uL;
if (a.dp[0] >= MP_MASK) break;
diff --git a/etc/mersenne.c b/etc/mersenne.c
index e2159d1..54b2360 100644
--- a/etc/mersenne.c
+++ b/etc/mersenne.c
@@ -5,13 +5,13 @@
#include <time.h>
#include <tommath.h>
-static mp_err is_mersenne(long s, mp_bool *pp)
+static mp_err is_mersenne(long s, bool *pp)
{
mp_int n, u;
mp_err res;
int k;
- *pp = MP_NO;
+ *pp = false;
if ((res = mp_init(&n)) != MP_OKAY) {
return res;
@@ -103,7 +103,7 @@ static int isprime(long k)
int main(void)
{
- mp_bool pp;
+ bool pp;
long k;
clock_t tt;
diff --git a/mp_dr_is_modulus.c b/mp_dr_is_modulus.c
index eed5e5f..72b3c96 100644
--- a/mp_dr_is_modulus.c
+++ b/mp_dr_is_modulus.c
@@ -4,13 +4,13 @@
/* SPDX-License-Identifier: Unlicense */
/* determines if a number is a valid DR modulus */
-mp_bool mp_dr_is_modulus(const mp_int *a)
+bool mp_dr_is_modulus(const mp_int *a)
{
int ix;
/* must be at least two digits */
if (a->used < 2) {
- return MP_NO;
+ return false;
}
/* must be of the form b**k - a [a <= b] so all
@@ -18,10 +18,10 @@ mp_bool mp_dr_is_modulus(const mp_int *a)
*/
for (ix = 1; ix < a->used; ix++) {
if (a->dp[ix] != MP_MASK) {
- return MP_NO;
+ return false;
}
}
- return MP_YES;
+ return true;
}
#endif
diff --git a/mp_is_square.c b/mp_is_square.c
index 0f9cd1f..f92ecbf 100644
--- a/mp_is_square.c
+++ b/mp_is_square.c
@@ -26,7 +26,7 @@ static const char rem_105[105] = {
};
/* Store non-zero to ret if arg is square, and zero if not */
-mp_err mp_is_square(const mp_int *arg, mp_bool *ret)
+mp_err mp_is_square(const mp_int *arg, bool *ret)
{
mp_err err;
mp_digit c;
@@ -34,7 +34,7 @@ mp_err mp_is_square(const mp_int *arg, mp_bool *ret)
unsigned long r;
/* Default to Non-square :) */
- *ret = MP_NO;
+ *ret = false;
if (arg->sign == MP_NEG) {
return MP_VAL;
diff --git a/mp_prime_fermat.c b/mp_prime_fermat.c
index c6bc720..50d2e5e 100644
--- a/mp_prime_fermat.c
+++ b/mp_prime_fermat.c
@@ -11,13 +11,13 @@
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
-mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result)
+mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, bool *result)
{
mp_int t;
mp_err err;
/* default to composite */
- *result = MP_NO;
+ *result = false;
/* ensure b > 1 */
if (mp_cmp_d(b, 1uL) != MP_GT) {
@@ -36,7 +36,7 @@ mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result)
/* is it equal to b? */
if (mp_cmp(&t, b) == MP_EQ) {
- *result = MP_YES;
+ *result = true;
}
err = MP_OKAY;
diff --git a/mp_prime_frobenius_underwood.c b/mp_prime_frobenius_underwood.c
index 0eaa36d..543b8b4 100644
--- a/mp_prime_frobenius_underwood.c
+++ b/mp_prime_frobenius_underwood.c
@@ -20,14 +20,14 @@
*/
#define LTM_FROBENIUS_UNDERWOOD_A 32764
-mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result)
+mp_err mp_prime_frobenius_underwood(const mp_int *N, bool *result)
{
mp_int T1z, T2z, Np1z, sz, tz;
int a, ap2, length, i, j;
mp_err err;
- *result = MP_NO;
+ *result = false;
if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
return err;
@@ -113,7 +113,7 @@ mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result)
mp_set_u32(&T1z, (uint32_t)((2 * a) + 5));
if ((err = mp_mod(&T1z, N, &T1z)) != MP_OKAY) goto LBL_FU_ERR;
if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
- *result = MP_YES;
+ *result = true;
}
LBL_FU_ERR:
diff --git a/mp_prime_is_prime.c b/mp_prime_is_prime.c
index 42d417e..d0eca2c 100644
--- a/mp_prime_is_prime.c
+++ b/mp_prime_is_prime.c
@@ -14,26 +14,26 @@ static unsigned int s_floor_ilog2(int value)
}
-mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result)
+mp_err mp_prime_is_prime(const mp_int *a, int t, bool *result)
{
mp_int b;
int ix, p_max = 0, size_a, len;
- mp_bool res;
+ bool res;
mp_err err;
unsigned int fips_rand, mask;
/* default to no */
- *result = MP_NO;
+ *result = false;
/* Some shortcuts */
/* N > 3 */
if (a->used == 1) {
if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
- *result = MP_NO;
+ *result = false;
return MP_OKAY;
}
if (a->dp[0] == 2u) {
- *result = MP_YES;
+ *result = true;
return MP_OKAY;
}
}
@@ -53,7 +53,7 @@ mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result)
/* is the input equal to one of the primes in the table? */
for (ix = 0; ix < MP_PRIME_TAB_SIZE; ix++) {
if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) {
- *result = MP_YES;
+ *result = true;
return MP_OKAY;
}
}
@@ -267,7 +267,7 @@ mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result)
}
/* passed the test */
- *result = MP_YES;
+ *result = true;
LBL_B:
mp_clear(&b);
return err;
diff --git a/mp_prime_miller_rabin.c b/mp_prime_miller_rabin.c
index f6d698b..a3af8bc 100644
--- a/mp_prime_miller_rabin.c
+++ b/mp_prime_miller_rabin.c
@@ -10,14 +10,14 @@
* Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
-mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result)
+mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, bool *result)
{
mp_int n1, y, r;
mp_err err;
int s, j;
/* default */
- *result = MP_NO;
+ *result = false;
/* ensure b > 1 */
if (mp_cmp_d(b, 1uL) != MP_GT) {
@@ -79,7 +79,7 @@ mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result)
}
/* probably prime now */
- *result = MP_YES;
+ *result = true;
LBL_Y:
mp_clear(&y);
LBL_R:
diff --git a/mp_prime_next_prime.c b/mp_prime_next_prime.c
index 2165e3c..40c94a4 100644
--- a/mp_prime_next_prime.c
+++ b/mp_prime_next_prime.c
@@ -6,14 +6,14 @@
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
- * bbs_style = MP_YES means the prime must be congruent to 3 mod 4
+ * bbs_style = true means the prime must be congruent to 3 mod 4
*/
-mp_err mp_prime_next_prime(mp_int *a, int t, mp_bool bbs_style)
+mp_err mp_prime_next_prime(mp_int *a, int t, bool bbs_style)
{
int x, y;
mp_ord cmp;
mp_err err;
- mp_bool res = MP_NO;
+ bool res = false;
mp_digit res_tab[MP_PRIME_TAB_SIZE], step, kstep;
mp_int b;
diff --git a/mp_prime_rand.c b/mp_prime_rand.c
index cc19fa2..ff6df9c 100644
--- a/mp_prime_rand.c
+++ b/mp_prime_rand.c
@@ -22,7 +22,7 @@ mp_err mp_prime_rand(mp_int *a, int t, int size, int flags)
{
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
int bsize, maskOR_msb_offset;
- mp_bool res;
+ bool res;
mp_err err;
/* sanity check the input */
diff --git a/mp_prime_strong_lucas_selfridge.c b/mp_prime_strong_lucas_selfridge.c
index a047651..df5de96 100644
--- a/mp_prime_strong_lucas_selfridge.c
+++ b/mp_prime_strong_lucas_selfridge.c
@@ -33,7 +33,7 @@ static mp_err s_mp_mul_si(const mp_int *a, int32_t d, mp_int *c)
}
/*
Strong Lucas-Selfridge test.
- returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
+ returns true if it is a strong L-S prime, false if it is composite
Code ported from Thomas Ray Nicely's implementation of the BPSW test
at http://www.trnicely.net/misc/bpsw.html
@@ -48,15 +48,15 @@ static mp_err s_mp_mul_si(const mp_int *a, int32_t d, mp_int *c)
(If that name sounds familiar, he is the guy who found the fdiv bug in the
Pentium (P5x, I think) Intel processor)
*/
-mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result)
+mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, bool *result)
{
/* CZ TODO: choose better variable names! */
mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
mp_err err;
- mp_bool oddness;
+ bool oddness;
- *result = MP_NO;
+ *result = false;
/*
Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
@@ -240,7 +240,7 @@ mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result)
/* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
strong Lucas pseudoprime. */
if (mp_iszero(&Uz) || mp_iszero(&Vz)) {
- *result = MP_YES;
+ *result = true;
goto LBL_LS_ERR;
}
@@ -263,7 +263,7 @@ mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result)
if ((err = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) goto LBL_LS_ERR;
if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY) goto LBL_LS_ERR;
if (mp_iszero(&Vz)) {
- *result = MP_YES;
+ *result = true;
goto LBL_LS_ERR;
}
/* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
diff --git a/mp_reduce_is_2k.c b/mp_reduce_is_2k.c
index ec12338..618ab54 100644
--- a/mp_reduce_is_2k.c
+++ b/mp_reduce_is_2k.c
@@ -4,15 +4,15 @@
/* SPDX-License-Identifier: Unlicense */
/* determines if mp_reduce_2k can be used */
-mp_bool mp_reduce_is_2k(const mp_int *a)
+bool mp_reduce_is_2k(const mp_int *a)
{
int ix, iy, iw;
mp_digit iz;
if (a->used == 0) {
- return MP_NO;
+ return false;
} else if (a->used == 1) {
- return MP_YES;
+ return true;
} else if (a->used > 1) {
iy = mp_count_bits(a);
iz = 1;
@@ -21,7 +21,7 @@ mp_bool mp_reduce_is_2k(const mp_int *a)
/* Test every bit from the second digit up, must be 1 */
for (ix = MP_DIGIT_BIT; ix < iy; ix++) {
if ((a->dp[iw] & iz) == 0u) {
- return MP_NO;
+ return false;
}
iz <<= 1;
if (iz > MP_DIGIT_MAX) {
@@ -29,9 +29,9 @@ mp_bool mp_reduce_is_2k(const mp_int *a)
iz = 1;
}
}
- return MP_YES;
+ return true;
} else {
- return MP_YES;
+ return true;
}
}
diff --git a/mp_reduce_is_2k_l.c b/mp_reduce_is_2k_l.c
index cd6fc62..30fc10d 100644
--- a/mp_reduce_is_2k_l.c
+++ b/mp_reduce_is_2k_l.c
@@ -4,14 +4,14 @@
/* SPDX-License-Identifier: Unlicense */
/* determines if reduce_2k_l can be used */
-mp_bool mp_reduce_is_2k_l(const mp_int *a)
+bool mp_reduce_is_2k_l(const mp_int *a)
{
int ix, iy;
if (a->used == 0) {
- return MP_NO;
+ return false;
} else if (a->used == 1) {
- return MP_YES;
+ return true;
} else if (a->used > 1) {
/* if more than half of the digits are -1 we're sold */
for (iy = ix = 0; ix < a->used; ix++) {
@@ -21,7 +21,7 @@ mp_bool mp_reduce_is_2k_l(const mp_int *a)
}
return (iy >= (a->used/2));
} else {
- return MP_NO;
+ return false;
}
}
diff --git a/s_mp_get_bit.c b/s_mp_get_bit.c
index 5114e9e..f077f61 100644
--- a/s_mp_get_bit.c
+++ b/s_mp_get_bit.c
@@ -4,14 +4,14 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
-/* Get bit at position b and return MP_YES if the bit is 1, MP_NO if it is 0 */
-mp_bool s_mp_get_bit(const mp_int *a, unsigned int b)
+/* Get bit at position b and return true if the bit is 1, false if it is 0 */
+bool s_mp_get_bit(const mp_int *a, unsigned int b)
{
mp_digit bit;
int limb = (int)(b / MP_DIGIT_BIT);
if (limb >= a->used) {
- return MP_NO;
+ return false;
}
bit = (mp_digit)1 << (b % MP_DIGIT_BIT);
diff --git a/s_mp_prime_is_divisible.c b/s_mp_prime_is_divisible.c
index d8bdedc..0cca5a6 100644
--- a/s_mp_prime_is_divisible.c
+++ b/s_mp_prime_is_divisible.c
@@ -8,14 +8,14 @@
*
* sets result to 0 if not, 1 if yes
*/
-mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result)
+mp_err s_mp_prime_is_divisible(const mp_int *a, bool *result)
{
int ix;
mp_err err;
mp_digit res;
/* default to not */
- *result = MP_NO;
+ *result = false;
for (ix = 0; ix < MP_PRIME_TAB_SIZE; ix++) {
/* what is a mod LBL_prime_tab[ix] */
@@ -25,7 +25,7 @@ mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result)
/* is the residue zero? */
if (res == 0u) {
- *result = MP_YES;
+ *result = true;
return MP_OKAY;
}
}
diff --git a/tommath.h b/tommath.h
index 9a31bd3..a55c57f 100644
--- a/tommath.h
+++ b/tommath.h
@@ -6,6 +6,7 @@
#include <stdint.h>
#include <stddef.h>
+#include <stdbool.h>
#ifndef MP_NO_FILE
# include <stdio.h>
@@ -94,11 +95,6 @@ typedef enum {
} mp_ord;
typedef enum {
- MP_NO = 0,
- MP_YES = 1
-} mp_bool;
-
-typedef enum {
MP_OKAY = 0, /* no error */
MP_ERR = -1, /* unknown error */
MP_MEM = -2, /* out of mem */
@@ -119,7 +115,6 @@ typedef enum {
} mp_endian;
/* tunable cutoffs */
-
#ifndef MP_FIXED_CUTOFFS
extern int
MP_KARATSUBA_MUL_CUTOFF,
@@ -441,7 +436,7 @@ mp_err mp_sqrt(const mp_int *arg, mp_int *ret) MP_WUR;
mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) MP_WUR;
/* is number a square? */
-mp_err mp_is_square(const mp_int *arg, mp_bool *ret) MP_WUR;
+mp_err mp_is_square(const mp_int *arg, bool *ret) MP_WUR;
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c) MP_WUR;
@@ -468,7 +463,7 @@ mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) MP_WUR;
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR;
/* returns 1 if a is a valid DR modulus */
-mp_bool mp_dr_is_modulus(const mp_int *a) MP_WUR;
+bool mp_dr_is_modulus(const mp_int *a) MP_WUR;
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);
@@ -477,7 +472,7 @@ void mp_dr_setup(const mp_int *a, mp_digit *d);
mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) MP_WUR;
/* returns true if a can be reduced with mp_reduce_2k */
-mp_bool mp_reduce_is_2k(const mp_int *a) MP_WUR;
+bool mp_reduce_is_2k(const mp_int *a) MP_WUR;
/* determines k value for 2k reduction */
mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d) MP_WUR;
@@ -486,7 +481,7 @@ mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d) MP_WUR;
mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) MP_WUR;
/* returns true if a can be reduced with mp_reduce_2k_l */
-mp_bool mp_reduce_is_2k_l(const mp_int *a) MP_WUR;
+bool mp_reduce_is_2k_l(const mp_int *a) MP_WUR;
/* determines k value for 2k reduction */
mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d) MP_WUR;
@@ -502,12 +497,12 @@ mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result) MP_WUR;
+mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, bool *result) MP_WUR;
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, mp_bool *result) MP_WUR;
+mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, bool *result) MP_WUR;
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
@@ -517,12 +512,12 @@ int mp_prime_rabin_miller_trials(int size) MP_WUR;
/* performs one strong Lucas-Selfridge test of "a".
* Sets result to 0 if composite or 1 if probable prime
*/
-mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result) MP_WUR;
+mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, bool *result) MP_WUR;
/* performs one Frobenius test of "a" as described by Paul Underwood.
* Sets result to 0 if composite or 1 if probable prime
*/
-mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result) MP_WUR;
+mp_err mp_prime_frobenius_underwood(const mp_int *N, bool *result) MP_WUR;
/* performs t random rounds of Miller-Rabin on "a" additional to
* bases 2 and 3. Also performs an initial sieve of trial
@@ -538,14 +533,14 @@ mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result) MP_WUR;
*
* Sets result to 1 if probably prime, 0 otherwise
*/
-mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result) MP_WUR;
+mp_err mp_prime_is_prime(const mp_int *a, int t, bool *result) MP_WUR;
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
- * bbs_style = MP_YES means the prime must be congruent to 3 mod 4
+ * bbs_style = true means the prime must be congruent to 3 mod 4
*/
-mp_err mp_prime_next_prime(mp_int *a, int t, mp_bool bbs_style) MP_WUR;
+mp_err mp_prime_next_prime(mp_int *a, int t, bool bbs_style) MP_WUR;
/* makes a truly random prime of a given size (bits),
*
diff --git a/tommath_private.h b/tommath_private.h
index 8b30c67..2dbdca8 100644
--- a/tommath_private.h
+++ b/tommath_private.h
@@ -182,7 +182,7 @@ MP_STATIC_ASSERT(prec_geq_min_prec, MP_PREC >= MP_MIN_PREC)
extern MP_PRIVATE mp_err(*s_mp_rand_source)(void *out, size_t size);
/* lowlevel functions, do not call! */
-MP_PRIVATE mp_bool s_mp_get_bit(const mp_int *a, unsigned int b);
+MP_PRIVATE bool s_mp_get_bit(const mp_int *a, unsigned int b);
MP_PRIVATE mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
@@ -202,7 +202,7 @@ MP_PRIVATE mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_dig
MP_PRIVATE mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
MP_PRIVATE mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
MP_PRIVATE mp_err s_mp_rand_platform(void *p, size_t n) MP_WUR;
-MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, mp_bool *result);
+MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, bool *result);
MP_PRIVATE mp_digit s_mp_log_d(mp_digit base, mp_digit n);
MP_PRIVATE mp_err s_mp_log(const mp_int *a, uint32_t base, uint32_t *c);
MP_PRIVATE uint32_t s_mp_log_pow2(const mp_int *a, uint32_t base);