Commit ddddcf2e71e55796313d61661eb9666e9d52a5df

Steffen Jaeckel 2017-05-09T14:01:11

move all documentation to doc/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
diff --git a/bn.tex b/bn.tex
deleted file mode 100644
index 5804318..0000000
--- a/bn.tex
+++ /dev/null
@@ -1,1913 +0,0 @@
-\documentclass[synpaper]{book}
-\usepackage{hyperref}
-\usepackage{makeidx}
-\usepackage{amssymb}
-\usepackage{color}
-\usepackage{alltt}
-\usepackage{graphicx}
-\usepackage{layout}
-\def\union{\cup}
-\def\intersect{\cap}
-\def\getsrandom{\stackrel{\rm R}{\gets}}
-\def\cross{\times}
-\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
-\def\catn{$\|$}
-\def\divides{\hspace{0.3em} | \hspace{0.3em}}
-\def\nequiv{\not\equiv}
-\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
-\def\lcm{{\rm lcm}}
-\def\gcd{{\rm gcd}}
-\def\log{{\rm log}}
-\def\ord{{\rm ord}}
-\def\abs{{\mathit abs}}
-\def\rep{{\mathit rep}}
-\def\mod{{\mathit\ mod\ }}
-\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
-\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
-\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
-\def\Or{{\rm\ or\ }}
-\def\And{{\rm\ and\ }}
-\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
-\def\implies{\Rightarrow}
-\def\undefined{{\rm ``undefined"}}
-\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
-\let\oldphi\phi
-\def\phi{\varphi}
-\def\Pr{{\rm Pr}}
-\newcommand{\str}[1]{{\mathbf{#1}}}
-\def\F{{\mathbb F}}
-\def\N{{\mathbb N}}
-\def\Z{{\mathbb Z}}
-\def\R{{\mathbb R}}
-\def\C{{\mathbb C}}
-\def\Q{{\mathbb Q}}
-\definecolor{DGray}{gray}{0.5}
-\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
-\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
-\def\gap{\vspace{0.5ex}}
-\makeindex
-\begin{document}
-\frontmatter
-\pagestyle{empty}
-\title{LibTomMath User Manual \\ v1.0}
-\author{Tom St Denis \\ tstdenis82@gmail.com}
-\maketitle
-This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been
-formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
-
-\vspace{10cm}
-
-\begin{flushright}Open Source.  Open Academia.  Open Minds.
-
-\mbox{ }
-
-Tom St Denis,
-
-Ontario, Canada
-\end{flushright}
-
-\tableofcontents
-\listoffigures
-\mainmatter
-\pagestyle{headings}
-\chapter{Introduction}
-\section{What is LibTomMath?}
-LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
-large integer numbers.  It was written in portable ISO C source code so that it will build on any platform with a conforming
-C compiler.
-
-In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
-to implement ``bignum'' math.  However, the resulting code has proven to be very useful.  It has been used by numerous
-universities, commercial and open source software developers.  It has been used on a variety of platforms ranging from
-Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.
-
-\section{License}
-As of the v0.25 the library source code has been placed in the public domain with every new release.  As of the v0.28
-release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
-release as well.  This textbook is meant to compliment the project by providing a more solid walkthrough of the development
-algorithms used in the library.
-
-Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.  They are not required to use LibTomMath.} are in the
-public domain everyone is entitled to do with them as they see fit.
-
-\section{Building LibTomMath}
-
-LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC.  However, the library will
-also build in MSVC, Borland C out of the box.  For any other ISO C compiler a makefile will have to be made by the end
-developer.
-
-\subsection{Static Libraries}
-To build as a static library for GCC issue the following
-\begin{alltt}
-make
-\end{alltt}
-
-command.  This will build the library and archive the object files in ``libtommath.a''.  Now you link against
-that and include ``tommath.h'' within your programs.  Alternatively to build with MSVC issue the following
-\begin{alltt}
-nmake -f makefile.msvc
-\end{alltt}
-
-This will build the library and archive the object files in ``tommath.lib''.  This has been tested with MSVC
-version 6.00 with service pack 5.
-
-\subsection{Shared Libraries}
-To build as a shared library for GCC issue the following
-\begin{alltt}
-make -f makefile.shared
-\end{alltt}
-This requires the ``libtool'' package (common on most Linux/BSD systems).  It will build LibTomMath as both shared
-and static then install (by default) into /usr/lib as well as install the header files in /usr/include.  The shared
-library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''.  Generally
-you use libtool to link your application against the shared object.
-
-There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile.  It requires
-Cygwin to work with since it requires the auto-export/import functionality.  The resulting DLL and import library
-``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
-
-\subsection{Testing}
-To build the library and the test harness type
-
-\begin{alltt}
-make test
-\end{alltt}
-
-This will build the library, ``test'' and ``mtest/mtest''.  The ``test'' program will accept test vectors and verify the
-results.  ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
-is included in the package}.  Simply pipe mtest into test using
-
-\begin{alltt}
-mtest/mtest | test
-\end{alltt}
-
-If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into
-mtest.  For example, if your PRNG program is called ``myprng'' simply invoke
-
-\begin{alltt}
-myprng | mtest/mtest | test
-\end{alltt}
-
-This will output a row of numbers that are increasing.  Each column is a different test (such as addition, multiplication, etc)
-that is being performed.  The numbers represent how many times the test was invoked.  If an error is detected the program
-will exit with a dump of the relevent numbers it was working with.
-
-\section{Build Configuration}
-LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.
-Each phase changes how the library is built and they are applied one after another respectively.
-
-To make the system more powerful you can tweak the build process.  Classes are defined in the file
-``tommath\_superclass.h''.  By default, the symbol ``LTM\_ALL'' shall be defined which simply
-instructs the system to build all of the functions.  This is how LibTomMath used to be packaged.  This will give you
-access to every function LibTomMath offers.
-
-However, there are cases where such a build is not optional.  For instance, you want to perform RSA operations.  You
-don't need the vast majority of the library to perform these operations.  Aside from LTM\_ALL there is
-another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt.  Additional
-classes can be defined base on the need of the user.
-
-\subsection{Build Depends}
-In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
-which further define symbols.  All of the symbols (technically they're macros $\ldots$) represent a given C source
-file.  For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''.  When a define has been enabled the
-function in the respective file will be compiled and linked into the library.  Accordingly when the define
-is absent the file will not be compiled and not contribute any size to the library.
-
-You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).
-This is to help resolve as many dependencies as possible.  In the last pass the symbol LTM\_LAST will be defined.
-This is useful for ``trims''.
-
-\subsection{Build Tweaks}
-A tweak is an algorithm ``alternative''.  For example, to provide tradeoffs (usually between size and space).
-They can be enabled at any pass of the configuration phase.
-
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Define} & \textbf{Purpose} \\
-\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
-                          & functional mp\_div() function \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-\subsection{Build Trims}
-A trim is a manner of removing functionality from a function that is not required.  For instance, to perform
-RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.
-Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
-only if LTM\_LAST has been defined.
-
-\subsubsection{Moduli Related}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Restriction} & \textbf{Undefine} \\
-\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
-                                           & BN\_MP\_REDUCE\_C \\
-                                           & BN\_MP\_REDUCE\_SETUP\_C \\
-                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-                                           & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-\hline Exponentiation with random odd moduli & (The above plus the following) \\
-                                           & BN\_MP\_REDUCE\_2K\_C \\
-                                           & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
-                                           & BN\_MP\_REDUCE\_IS\_2K\_C \\
-                                           & BN\_MP\_DR\_IS\_MODULUS\_C \\
-                                           & BN\_MP\_DR\_REDUCE\_C \\
-                                           & BN\_MP\_DR\_SETUP\_C \\
-\hline Modular inverse odd moduli only     & BN\_MP\_INVMOD\_SLOW\_C \\
-\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-\subsubsection{Operand Size Related}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Restriction} & \textbf{Undefine} \\
-\hline Moduli $\le 2560$ bits              & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
-                                           & BN\_S\_MP\_MUL\_DIGS\_C \\
-                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-                                           & BN\_S\_MP\_SQR\_C \\
-\hline Polynomial Schmolynomial            & BN\_MP\_KARATSUBA\_MUL\_C \\
-                                           & BN\_MP\_KARATSUBA\_SQR\_C \\
-                                           & BN\_MP\_TOOM\_MUL\_C \\
-                                           & BN\_MP\_TOOM\_SQR\_C \\
-
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-
-\section{Purpose of LibTomMath}
-Unlike  GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with
-bleeding edge performance in mind.  First and foremost LibTomMath was written to be entirely open.  Not only is the
-source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
-source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
-arithmetic techniques.
-
-LibTomMath was written to be an instructive collection of source code.  This is why there are many comments, only one
-function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
-increase.
-
-Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
-the library (beat that!).
-
-So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
-are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
-
-\newpage\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|c|c|l|}
-\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
-\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 71.97$ \\
-\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
-\hline Speed && X & LibTomMath is slower.  \\
-\hline Totally free & X & & GPL has unfavourable restrictions.\\
-\hline Large function base & X & & GnuPG is barebones. \\
-\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
-\hline Portable & X & & GnuPG requires configuration to build. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{LibTomMath Valuation}
-\end{figure}
-
-It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application.
-However, LibTomMath was written with cryptography in mind.  It provides essentially all of the functions a cryptosystem
-would require when working with large integers.
-
-So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
-own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is
-not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular
-exponentiations.  It depends largely on the processor, compiler and the moduli being used.
-
-Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.  However,
-on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
-that is very flexible, complete and performs well in resource contrained environments.  Fast RSA for example can
-be performed with as little as 8KB of ram for data (again depending on build options).
-
-\chapter{Getting Started with LibTomMath}
-\section{Building Programs}
-In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically
-libtommath.a).  There is no library initialization required and the entire library is thread safe.
-
-\section{Return Codes}
-There are three possible return codes a function may return.
-
-\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
-\begin{figure}[here!]
-\begin{center}
-\begin{small}
-\begin{tabular}{|l|l|}
-\hline \textbf{Code} & \textbf{Meaning} \\
-\hline MP\_OKAY & The function succeeded. \\
-\hline MP\_VAL  & The function input was invalid. \\
-\hline MP\_MEM  & Heap memory exhausted. \\
-\hline &\\
-\hline MP\_YES  & Response is yes. \\
-\hline MP\_NO   & Response is no. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Return Codes}
-\end{figure}
-
-The last two codes listed are not actually ``return'ed'' by a function.  They are placed in an integer (the caller must
-provide the address of an integer it can store to) which the caller can access.  To convert one of the three return codes
-to a string use the following function.
-
-\index{mp\_error\_to\_string}
-\begin{alltt}
-char *mp_error_to_string(int code);
-\end{alltt}
-
-This will return a pointer to a string which describes the given error code.  It will not work for the return codes
-MP\_YES and MP\_NO.
-
-\section{Data Types}
-The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath.  This data type is used to
-organize all of the data required to manipulate the integer it represents.  Within LibTomMath it has been prototyped
-as the following.
-
-\index{mp\_int}
-\begin{alltt}
-typedef struct  \{
-    int used, alloc, sign;
-    mp_digit *dp;
-\} mp_int;
-\end{alltt}
-
-Where ``mp\_digit'' is a data type that represents individual digits of the integer.  By default, an mp\_digit is the
-ISO C ``unsigned long'' data type and each digit is $28-$bits long.  The mp\_digit type can be configured to suit other
-platforms by defining the appropriate macros.
-
-All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure.  You must allocate memory to
-hold the structure itself by yourself (whether off stack or heap it doesn't matter).  The very first thing that must be
-done to use an mp\_int is that it must be initialized.
-
-\section{Function Organization}
-
-The arithmetic functions of the library are all organized to have the same style prototype.  That is source operands
-are passed on the left and the destination is on the right.  For instance,
-
-\begin{alltt}
-mp_add(&a, &b, &c);       /* c = a + b */
-mp_mul(&a, &a, &c);       /* c = a * a */
-mp_div(&a, &b, &c, &d);   /* c = [a/b], d = a mod b */
-\end{alltt}
-
-Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
-For instance,
-
-\begin{alltt}
-mp_add(&a, &b, &b);       /* b = a + b */
-mp_div(&a, &b, &a, &c);   /* a = [a/b], c = a mod b */
-\end{alltt}
-
-This allows operands to be re-used which can make programming simpler.
-
-\section{Initialization}
-\subsection{Single Initialization}
-A single mp\_int can be initialized with the ``mp\_init'' function.
-
-\index{mp\_init}
-\begin{alltt}
-int mp_init (mp_int * a);
-\end{alltt}
-
-This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
-represents the default integer which is zero.  If the functions returns MP\_OKAY then the mp\_int is ready to be used
-by the other LibTomMath functions.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use the number */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Single Free}
-When you are finished with an mp\_int it is ideal to return the heap it used back to the system.  The following function
-provides this functionality.
-
-\index{mp\_clear}
-\begin{alltt}
-void mp_clear (mp_int * a);
-\end{alltt}
-
-The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses.  It sets the
-pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations.
-Is is legal to call mp\_clear() twice on the same mp\_int in a row.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use the number */
-
-   /* We're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Multiple Initializations}
-Certain algorithms require more than one large integer.  In these instances it is ideal to initialize all of the mp\_int
-variables in an ``all or nothing'' fashion.  That is, they are either all initialized successfully or they are all
-not initialized.
-
-The  mp\_init\_multi() function provides this functionality.
-
-\index{mp\_init\_multi} \index{mp\_clear\_multi}
-\begin{alltt}
-int mp_init_multi(mp_int *mp, ...);
-\end{alltt}
-
-It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures.  It will attempt to initialize them all
-at once.  If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
-are available for use.  A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd
-from the heap at the same time.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int num1, num2, num3;
-   int result;
-
-   if ((result = mp_init_multi(&num1,
-                               &num2,
-                               &num3, NULL)) != MP\_OKAY) \{
-      printf("Error initializing the numbers.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use the numbers */
-
-   /* We're done with them. */
-   mp_clear_multi(&num1, &num2, &num3, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Other Initializers}
-To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.
-
-\index{mp\_init\_copy}
-\begin{alltt}
-int mp_init_copy (mp_int * a, mp_int * b);
-\end{alltt}
-
-This function will initialize $a$ and make it a copy of $b$ if all goes well.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int num1, num2;
-   int result;
-
-   /* initialize and do work on num1 ... */
-
-   /* We want a copy of num1 in num2 now */
-   if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
-     printf("Error initializing the copy.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now num2 is ready and contains a copy of num1 */
-
-   /* We're done with them. */
-   mp_clear_multi(&num1, &num2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
-default number of digits.  By default, all initializers allocate \textbf{MP\_PREC} digits.  This function lets
-you override this behaviour.
-
-\index{mp\_init\_size}
-\begin{alltt}
-int mp_init_size (mp_int * a, int size);
-\end{alltt}
-
-The $size$ parameter must be greater than zero.  If the function succeeds the mp\_int $a$ will be initialized
-to have $size$ digits (which are all initially zero).
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   /* we need a 60-digit number */
-   if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use the number */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\section{Maintenance Functions}
-
-\subsection{Reducing Memory Usage}
-When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
-digits can be removed to return memory to the heap with the mp\_shrink() function.
-
-\index{mp\_shrink}
-\begin{alltt}
-int mp_shrink (mp_int * a);
-\end{alltt}
-
-This will remove excess digits of the mp\_int $a$.  If the operation fails the mp\_int should be intact without the
-excess digits being removed.  Note that you can use a shrunk mp\_int in further computations, however, such operations
-will require heap operations which can be slow.  It is not ideal to shrink mp\_int variables that you will further
-modify in the system (unless you are seriously low on memory).
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use the number [e.g. pre-computation]  */
-
-   /* We're done with it for now. */
-   if ((result = mp_shrink(&number)) != MP_OKAY) \{
-      printf("Error shrinking the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use it .... */
-
-
-   /* we're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Adding additional digits}
-
-Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
-the integer the mp\_int is meant to equal.   The \textit{used} parameter dictates how many digits are significant, that is,
-contribute to the value of the mp\_int.  The \textit{alloc} parameter dictates how many digits are currently available in
-the array.  If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
-your desired size.
-
-\index{mp\_grow}
-\begin{alltt}
-int mp_grow (mp_int * a, int size);
-\end{alltt}
-
-This will grow the array of digits of $a$ to $size$.  If the \textit{alloc} parameter is already bigger than
-$size$ the function will not do anything.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* use the number */
-
-   /* We need to add 20 digits to the number  */
-   if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
-      printf("Error growing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-
-   /* use the number */
-
-   /* we're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\chapter{Basic Operations}
-\section{Small Constants}
-Setting mp\_ints to small constants is a relatively common operation.  To accomodate these instances there are two
-small constant assignment functions.  The first function is used to set a single digit constant while the second sets
-an ISO C style ``unsigned long'' constant.  The reason for both functions is efficiency.  Setting a single digit is quick but the
-domain of a digit can change (it's always at least $0 \ldots 127$).
-
-\subsection{Single Digit}
-
-Setting a single digit can be accomplished with the following function.
-
-\index{mp\_set}
-\begin{alltt}
-void mp_set (mp_int * a, mp_digit b);
-\end{alltt}
-
-This will zero the contents of $a$ and make it represent an integer equal to the value of $b$.  Note that this
-function has a return type of \textbf{void}.  It cannot cause an error so it is safe to assume the function
-succeeded.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the number to 5 */
-   mp_set(&number, 5);
-
-   /* we're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Long Constants}
-
-To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
-can be used.
-
-\index{mp\_set\_int}
-\begin{alltt}
-int mp_set_int (mp_int * a, unsigned long b);
-\end{alltt}
-
-This will assign the value of the 32-bit variable $b$ to the mp\_int $a$.  Unlike mp\_set() this function will always
-accept a 32-bit input regardless of the size of a single digit.  However, since the value may span several digits
-this function can fail if it runs out of heap memory.
-
-To get the ``unsigned long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_int}
-\begin{alltt}
-unsigned long mp_get_int (mp_int * a);
-\end{alltt}
-
-This will return the 32 least significant bits of the mp\_int $a$.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the number to 654321 (note this is bigger than 127) */
-   if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
-      printf("Error setting the value of the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   printf("number == \%lu", mp_get_int(&number));
-
-   /* we're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-This should output the following if the program succeeds.
-
-\begin{alltt}
-number == 654321
-\end{alltt}
-
-\subsection{Long Constants - platform dependant}
-
-\index{mp\_set\_long}
-\begin{alltt}
-int mp_set_long (mp_int * a, unsigned long b);
-\end{alltt}
-
-This will assign the value of the platform-dependant sized variable $b$ to the mp\_int $a$.
-
-To get the ``unsigned long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_long}
-\begin{alltt}
-unsigned long mp_get_long (mp_int * a);
-\end{alltt}
-
-This will return the least significant bits of the mp\_int $a$ that fit into an ``unsigned long''.
-
-\subsection{Long Long Constants}
-
-\index{mp\_set\_long\_long}
-\begin{alltt}
-int mp_set_long_long (mp_int * a, unsigned long long b);
-\end{alltt}
-
-This will assign the value of the 64-bit variable $b$ to the mp\_int $a$.
-
-To get the ``unsigned long long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_long\_long}
-\begin{alltt}
-unsigned long long mp_get_long_long (mp_int * a);
-\end{alltt}
-
-This will return the 64 least significant bits of the mp\_int $a$.
-
-\subsection{Initialize and Setting Constants}
-To both initialize and set small constants the following two functions are available.
-\index{mp\_init\_set} \index{mp\_init\_set\_int}
-\begin{alltt}
-int mp_init_set (mp_int * a, mp_digit b);
-int mp_init_set_int (mp_int * a, unsigned long b);
-\end{alltt}
-
-Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int    result;
-
-   /* initialize and set a single digit */
-   if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
-      printf("Error setting number1: \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* initialize and set a long */
-   if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
-      printf("Error setting number2: \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* display */
-   printf("Number1, Number2 == \%lu, \%lu",
-          mp_get_int(&number1), mp_get_int(&number2));
-
-   /* clear */
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-If this program succeeds it shall output.
-\begin{alltt}
-Number1, Number2 == 100, 1023
-\end{alltt}
-
-\section{Comparisons}
-
-Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  There are three possible return codes
-for any comparison.
-
-\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|c|c|}
-\hline \textbf{Result Code} & \textbf{Meaning} \\
-\hline MP\_GT & $a > b$ \\
-\hline MP\_EQ & $a = b$ \\
-\hline MP\_LT & $a < b$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Comparison Codes for $a, b$}
-\label{fig:CMP}
-\end{figure}
-
-In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared.  In this case $a$ is said to be ``to the left'' of
-$b$.
-
-\subsection{Unsigned comparison}
-
-An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the
-mp\_int structures.  This is analogous to an absolute comparison.  The function mp\_cmp\_mag() will compare two
-mp\_int variables based on their digits only.
-
-\index{mp\_cmp\_mag}
-\begin{alltt}
-int mp_cmp_mag(mp_int * a, mp_int * b);
-\end{alltt}
-This will compare $a$ to $b$ placing $a$ to the left of $b$.  This function cannot fail and will return one of the
-three compare codes listed in figure \ref{fig:CMP}.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int result;
-
-   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
-      printf("Error initializing the numbers.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the number1 to 5 */
-   mp_set(&number1, 5);
-
-   /* set the number2 to -6 */
-   mp_set(&number2, 6);
-   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
-      printf("Error negating number2.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   switch(mp_cmp_mag(&number1, &number2)) \{
-       case MP_GT:  printf("|number1| > |number2|"); break;
-       case MP_EQ:  printf("|number1| = |number2|"); break;
-       case MP_LT:  printf("|number1| < |number2|"); break;
-   \}
-
-   /* we're done with it. */
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
-successfully it should print the following.
-
-\begin{alltt}
-|number1| < |number2|
-\end{alltt}
-
-This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
-
-\subsection{Signed comparison}
-
-To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
-
-\index{mp\_cmp}
-\begin{alltt}
-int mp_cmp(mp_int * a, mp_int * b);
-\end{alltt}
-
-This will compare $a$ to the left of $b$.  It will first compare the signs of the two mp\_int variables.  If they
-differ it will return immediately based on their signs.  If the signs are equal then it will compare the digits
-individually.  This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int result;
-
-   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
-      printf("Error initializing the numbers.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the number1 to 5 */
-   mp_set(&number1, 5);
-
-   /* set the number2 to -6 */
-   mp_set(&number2, 6);
-   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
-      printf("Error negating number2.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   switch(mp_cmp(&number1, &number2)) \{
-       case MP_GT:  printf("number1 > number2"); break;
-       case MP_EQ:  printf("number1 = number2"); break;
-       case MP_LT:  printf("number1 < number2"); break;
-   \}
-
-   /* we're done with it. */
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
-successfully it should print the following.
-
-\begin{alltt}
-number1 > number2
-\end{alltt}
-
-\subsection{Single Digit}
-
-To compare a single digit against an mp\_int the following function has been provided.
-
-\index{mp\_cmp\_d}
-\begin{alltt}
-int mp_cmp_d(mp_int * a, mp_digit b);
-\end{alltt}
-
-This will compare $a$ to the left of $b$ using a signed comparison.  Note that it will always treat $b$ as
-positive.  This function is rather handy when you have to compare against small values such as $1$ (which often
-comes up in cryptography).  The function cannot fail and will return one of the tree compare condition codes
-listed in figure \ref{fig:CMP}.
-
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the number to 5 */
-   mp_set(&number, 5);
-
-   switch(mp_cmp_d(&number, 7)) \{
-       case MP_GT:  printf("number > 7"); break;
-       case MP_EQ:  printf("number = 7"); break;
-       case MP_LT:  printf("number < 7"); break;
-   \}
-
-   /* we're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program functions properly it will print out the following.
-
-\begin{alltt}
-number < 7
-\end{alltt}
-
-\section{Logical Operations}
-
-Logical operations are operations that can be performed either with simple shifts or boolean operators such as
-AND, XOR and OR directly.  These operations are very quick.
-
-\subsection{Multiplication by two}
-
-Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
-right depending on the operation.
-
-When multiplying or dividing by two a special case routine can be used which are as follows.
-\index{mp\_mul\_2} \index{mp\_div\_2}
-\begin{alltt}
-int mp_mul_2(mp_int * a, mp_int * b);
-int mp_div_2(mp_int * a, mp_int * b);
-\end{alltt}
-
-The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$.  These functions are fast
-since the shift counts and maskes are hardcoded into the routines.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
-   mp_int number;
-   int result;
-
-   if ((result = mp_init(&number)) != MP_OKAY) \{
-      printf("Error initializing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the number to 5 */
-   mp_set(&number, 5);
-
-   /* multiply by two */
-   if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
-      printf("Error multiplying the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   switch(mp_cmp_d(&number, 7)) \{
-       case MP_GT:  printf("2*number > 7"); break;
-       case MP_EQ:  printf("2*number = 7"); break;
-       case MP_LT:  printf("2*number < 7"); break;
-   \}
-
-   /* now divide by two */
-   if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
-      printf("Error dividing the number.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-   switch(mp_cmp_d(&number, 7)) \{
-       case MP_GT:  printf("2*number/2 > 7"); break;
-       case MP_EQ:  printf("2*number/2 = 7"); break;
-       case MP_LT:  printf("2*number/2 < 7"); break;
-   \}
-
-   /* we're done with it. */
-   mp_clear(&number);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program is successful it will print out the following text.
-
-\begin{alltt}
-2*number > 7
-2*number/2 < 7
-\end{alltt}
-
-Since $10 > 7$ and $5 < 7$.
-
-To multiply by a power of two the following function can be used.
-
-\index{mp\_mul\_2d}
-\begin{alltt}
-int mp_mul_2d(mp_int * a, int b, mp_int * c);
-\end{alltt}
-
-This will multiply $a$ by $2^b$ and store the result in ``c''.  If the value of $b$ is less than or equal to
-zero the function will copy $a$ to ``c'' without performing any further actions.  The multiplication itself
-is implemented as a right-shift operation of $a$ by $b$ bits.
-
-To divide by a power of two use the following.
-
-\index{mp\_div\_2d}
-\begin{alltt}
-int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
-\end{alltt}
-Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'.  If $b \le 0$ then the
-function simply copies $a$ over to ``c'' and zeroes $d$.  The variable $d$ may be passed as a \textbf{NULL}
-value to signal that the remainder is not desired.  The division itself is implemented as a left-shift
-operation of $a$ by $b$ bits.
-
-\subsection{Polynomial Basis Operations}
-
-Strictly speaking the organization of the integers within the mp\_int structures is what is known as a
-``polynomial basis''.  This simply means a field element is stored by divisions of a radix.  For example, if
-$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be
-the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.
-
-To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place.  The
-following function provides this operation.
-
-\index{mp\_lshd}
-\begin{alltt}
-int mp_lshd (mp_int * a, int b);
-\end{alltt}
-
-This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
-in the least significant digits.  Similarly to divide by a power of $x$ the following function is provided.
-
-\index{mp\_rshd}
-\begin{alltt}
-void mp_rshd (mp_int * a, int b)
-\end{alltt}
-This will divide $a$ in place by $x^b$ and discard the remainder.  This function cannot fail as it performs the operations
-in place and no new digits are required to complete it.
-
-\subsection{AND, OR and XOR Operations}
-
-While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances.  The
-three functions are prototyped as follows.
-
-\index{mp\_or} \index{mp\_and} \index{mp\_xor}
-\begin{alltt}
-int mp_or  (mp_int * a, mp_int * b, mp_int * c);
-int mp_and (mp_int * a, mp_int * b, mp_int * c);
-int mp_xor (mp_int * a, mp_int * b, mp_int * c);
-\end{alltt}
-
-Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.
-
-\section{Addition and Subtraction}
-
-To compute an addition or subtraction the following two functions can be used.
-
-\index{mp\_add} \index{mp\_sub}
-\begin{alltt}
-int mp_add (mp_int * a, mp_int * b, mp_int * c);
-int mp_sub (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-
-Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction.  The operations are fully sign
-aware.
-
-\section{Sign Manipulation}
-\subsection{Negation}
-\label{sec:NEG}
-Simple integer negation can be performed with the following.
-
-\index{mp\_neg}
-\begin{alltt}
-int mp_neg (mp_int * a, mp_int * b);
-\end{alltt}
-
-Which assigns $-a$ to $b$.
-
-\subsection{Absolute}
-Simple integer absolutes can be performed with the following.
-
-\index{mp\_neg}
-\begin{alltt}
-int mp_abs (mp_int * a, mp_int * b);
-\end{alltt}
-
-Which assigns $\vert a \vert$ to $b$.
-
-\section{Integer Division and Remainder}
-To perform a complete and general integer division with remainder use the following function.
-
-\index{mp\_div}
-\begin{alltt}
-int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
-\end{alltt}
-
-This divides $a$ by $b$ and stores the quotient in $c$ and $d$.  The signed quotient is computed such that
-$bc + d = a$.  Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required.  If
-$b$ is zero the function returns \textbf{MP\_VAL}.
-
-
-\chapter{Multiplication and Squaring}
-\section{Multiplication}
-A full signed integer multiplication can be performed with the following.
-\index{mp\_mul}
-\begin{alltt}
-int mp_mul (mp_int * a, mp_int * b, mp_int * c);
-\end{alltt}
-Which assigns the full signed product $ab$ to $c$.  This function actually breaks into one of four cases which are
-specific multiplication routines optimized for given parameters.  First there are the Toom-Cook multiplications which
-should only be used with very large inputs.  This is followed by the Karatsuba multiplications which are for moderate
-sized inputs.  Then followed by the Comba and baseline multipliers.
-
-Fortunately for the developer you don't really need to know this unless you really want to fine tune the system.  mp\_mul()
-will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int number1, number2;
-   int result;
-
-   /* Initialize the numbers */
-   if ((result = mp_init_multi(&number1,
-                               &number2, NULL)) != MP_OKAY) \{
-      printf("Error initializing the numbers.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* set the terms */
-   if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
-      printf("Error setting number1.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
-      printf("Error setting number2.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* multiply them */
-   if ((result = mp_mul(&number1, &number2,
-                        &number1)) != MP_OKAY) \{
-      printf("Error multiplying terms.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* display */
-   printf("number1 * number2 == \%lu", mp_get_int(&number1));
-
-   /* free terms and return */
-   mp_clear_multi(&number1, &number2, NULL);
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-If this program succeeds it shall output the following.
-
-\begin{alltt}
-number1 * number2 == 262911
-\end{alltt}
-
-\section{Squaring}
-Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
-mp\_mul().
-
-\index{mp\_sqr}
-\begin{alltt}
-int mp_sqr (mp_int * a, mp_int * b);
-\end{alltt}
-
-Will square $a$ and store it in $b$.  Like the case of multiplication there are four different squaring
-algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms because
-of the speed difference.
-
-\section{Tuning Polynomial Basis Routines}
-
-Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
-the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require
-considerably less work.  For example, a 10000-digit multiplication would take roughly 724,000 single precision
-multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
-of 138).
-
-So why not always use Karatsuba or Toom-Cook?   The simple answer is that they have so much overhead that they're not
-actually faster than Comba until you hit distinct  ``cutoff'' points.  For Karatsuba with the default configuration,
-GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4).  That is, at
-110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
-
-Toom-Cook has incredible overhead and is probably only useful for very large inputs.  So far no known cutoff points
-exist and for the most part I just set the cutoff points very high to make sure they're not called.
-
-A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points.  This
-can be built with GCC as follows
-
-\begin{alltt}
-make XXX
-\end{alltt}
-Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|l|l|}
-\hline \textbf{Value of XXX} & \textbf{Meaning} \\
-\hline tune & Builds portable tuning application \\
-\hline tune86 & Builds x86 (pentium and up) program for COFF \\
-\hline tune86c & Builds x86 program for Cygwin \\
-\hline tune86l & Builds x86 program for Linux (ELF format) \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Build Names for Tuning Programs}
-\label{fig:tuning}
-\end{figure}
-
-When the program is running it will output a series of measurements for different cutoff points.  It will first find
-good Karatsuba squaring and multiplication points.  Then it proceeds to find Toom-Cook points.  Note that the Toom-Cook
-tuning takes a very long time as the cutoff points are likely to be very high.
-
-\chapter{Modular Reduction}
-
-Modular reduction is process of taking the remainder of one quantity divided by another.  Expressed
-as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
-
-\begin{equation}
-a \equiv b \mbox{ (mod }c\mbox{)}
-\label{eqn:mod}
-\end{equation}
-
-Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
-fast reduction algorithms can be written for the limited range.
-
-Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
-algorithm mp\_exptmod when an appropriate modulus is detected.
-
-\section{Straight Division}
-In order to effect an arbitrary modular reduction the following algorithm is provided.
-
-\index{mp\_mod}
-\begin{alltt}
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-\end{alltt}
-
-This reduces $a$ modulo $b$ and stores the result in $c$.  The sign of $c$ shall agree with the sign
-of $b$.  This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
-
-\section{Barrett Reduction}
-
-Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
-a decent speedup over straight division.  First a $\mu$ value must be precomputed with the following function.
-
-\index{mp\_reduce\_setup}
-\begin{alltt}
-int mp_reduce_setup(mp_int *a, mp_int *b);
-\end{alltt}
-
-Given a modulus in $b$ this produces the required $\mu$ value in $a$.  For any given modulus this only has to
-be computed once.  Modular reduction can now be performed with the following.
-
-\index{mp\_reduce}
-\begin{alltt}
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-\end{alltt}
-
-This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$.  $a$ must be in the range
-$0 \le a < b^2$.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int   a, b, c, mu;
-   int      result;
-
-   /* initialize a,b to desired values, mp_init mu,
-    * c and set c to 1...we want to compute a^3 mod b
-    */
-
-   /* get mu value */
-   if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
-      printf("Error getting mu.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* square a to get c = a^2 */
-   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
-      printf("Error squaring.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' modulo b */
-   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* multiply a to get c = a^3 */
-   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' modulo b  */
-   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* c now equals a^3 mod b */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
-
-\section{Montgomery Reduction}
-
-Montgomery is a specialized reduction algorithm for any odd moduli.  Like Barrett reduction a pre--computation
-step is required.  This is accomplished with the following.
-
-\index{mp\_montgomery\_setup}
-\begin{alltt}
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-\end{alltt}
-
-For the given odd moduli $a$ the precomputation value is placed in $mp$.  The reduction is computed with the
-following.
-
-\index{mp\_montgomery\_reduce}
-\begin{alltt}
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-\end{alltt}
-This reduces $a$ in place modulo $m$ with the pre--computed value $mp$.   $a$ must be in the range
-$0 \le a < b^2$.
-
-Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit.  With the default
-setup for instance, the limit is $127$ digits ($3556$--bits).   Note that this function is not limited to
-$127$ digits just that it falls back to a baseline algorithm after that point.
-
-An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
-where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
-
-To quickly calculate $R$ the following function was provided.
-
-\index{mp\_montgomery\_calc\_normalization}
-\begin{alltt}
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
-\end{alltt}
-Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
-
-The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system.  For
-example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
-multiplying it by $R$.  Consider the following code snippet.
-
-\begin{alltt}
-int main(void)
-\{
-   mp_int   a, b, c, R;
-   mp_digit mp;
-   int      result;
-
-   /* initialize a,b to desired values,
-    * mp_init R, c and set c to 1....
-    */
-
-   /* get normalization */
-   if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
-      printf("Error getting norm.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* get mp value */
-   if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
-      printf("Error setting up montgomery.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* normalize `a' so now a is equal to aR */
-   if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
-      printf("Error computing aR.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* square a to get c = a^2R^2 */
-   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
-      printf("Error squaring.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
-   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* multiply a to get c = a^3R^2 */
-   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
-   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
-   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
-      printf("Error reducing.  \%s",
-             mp_error_to_string(result));
-      return EXIT_FAILURE;
-   \}
-
-   /* c now equals a^3 mod b */
-
-   return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-This particular example does not look too efficient but it demonstrates the point of the algorithm.  By
-normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$.  This allows
-a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
-
-For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
-
-\section{Restricted Dimminished Radix}
-
-``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
-digit shifting and small multiplications.  In this case the ``restricted'' variant refers to moduli of the
-form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
-
-As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
-
-\index{mp\_dr\_setup}
-\begin{alltt}
-void mp_dr_setup(mp_int *a, mp_digit *d);
-\end{alltt}
-
-This computes the value required for the modulus $a$ and stores it in $d$.  This function cannot fail
-and does not return any error codes.  After the pre--computation a reduction can be performed with the
-following.
-
-\index{mp\_dr\_reduce}
-\begin{alltt}
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
-\end{alltt}
-
-This reduces $a$ in place modulo $b$ with the pre--computed value $mp$.  $b$ must be of a restricted
-dimminished radix form and $a$ must be in the range $0 \le a < b^2$.  Dimminished radix reductions are
-much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
-
-Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
-BBS cryptographic purposes.  This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
-primes are acceptable.
-
-Note that unlike Montgomery reduction there is no normalization process.  The result of this function is
-equal to the correct residue.
-
-\section{Unrestricted Dimminshed Radix}
-
-Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
-form $2^k - p$ for $0 < p < \beta$.  In this sense the unrestricted reductions are more flexible as they
-can be applied to a wider range of numbers.
-
-\index{mp\_reduce\_2k\_setup}
-\begin{alltt}
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
-\end{alltt}
-
-This will compute the required $d$ value for the given moduli $a$.
-
-\index{mp\_reduce\_2k}
-\begin{alltt}
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
-\end{alltt}
-
-This will reduce $a$ in place modulo $n$ with the pre--computed value $d$.  From my experience this routine is
-slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
-
-\chapter{Exponentiation}
-\section{Single Digit Exponentiation}
-\index{mp\_expt\_d\_ex}
-\begin{alltt}
-int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
-\end{alltt}
-This function computes $c = a^b$.
-
-With parameter \textit{fast} set to $0$ the old version of the algorithm is used,
-when \textit{fast} is $1$, a faster but not statically timed version of the algorithm is used.
-
-The old version uses a simple binary left-to-right algorithm.
-It is faster than repeated multiplications by $a$ for all values of $b$ greater than three.
-
-The new version uses a binary right-to-left algorithm.
-
-The difference between the old and the new version is that the old version always
-executes $DIGIT\_BIT$ iterations. The new algorithm executes only $n$ iterations
-where $n$ is equal to the position of the highest bit that is set in $b$.
-
-\index{mp\_expt\_d}
-\begin{alltt}
-int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
-\end{alltt}
-mp\_expt\_d(a, b, c) is a wrapper function to mp\_expt\_d\_ex(a, b, c, 0).
-
-\section{Modular Exponentiation}
-\index{mp\_exptmod}
-\begin{alltt}
-int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-\end{alltt}
-This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm.  This function
-will automatically detect the fastest modular reduction technique to use during the operation.  For negative values of
-$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
-$gcd(G, P) = 1$.
-
-This function is actually a shell around the two internal exponentiation functions.  This routine will automatically
-detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used.  Generally
-moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations.  Followed by Montgomery
-and the other two algorithms.
-
-\section{Root Finding}
-\index{mp\_n\_root}
-\begin{alltt}
-int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
-\end{alltt}
-This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$.  The implementation of this function is not
-ideal for values of $b$ greater than three.  It will work but become very slow.  So unless you are working with very small
-numbers (less than 1000 bits) I'd avoid $b > 3$ situations.  Will return a positive root only for even roots and return
-a root with the sign of the input for odd roots.  For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
-will return $-2$.
-
-This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly.  Since
-the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
-values of $b$.  If particularly large roots are required then a factor method could be used instead.  For example,
-$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply
-$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
-
-\chapter{Prime Numbers}
-\section{Trial Division}
-\index{mp\_prime\_is\_divisible}
-\begin{alltt}
-int mp_prime_is_divisible (mp_int * a, int *result)
-\end{alltt}
-This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the
-outcome in ``result''.  That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is.  Note that
-if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
-the default is to set it to zero first.}.
-
-\section{Fermat Test}
-\index{mp\_prime\_fermat}
-\begin{alltt}
-int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
-\end{alltt}
-Performs a Fermat primality test to the base $b$.  That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
-equal to $b$ or not.  If the values are equal then $a$ is probably prime and $result$ is set to one.  Otherwise $result$
-is set to zero.
-
-\section{Miller-Rabin Test}
-\index{mp\_prime\_miller\_rabin}
-\begin{alltt}
-int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
-\end{alltt}
-Performs a Miller-Rabin test to the base $b$ of $a$.  This test is much stronger than the Fermat test and is very hard to
-fool (besides with Carmichael numbers).  If $a$ passes the test (therefore is probably prime) $result$ is set to one.
-Otherwise $result$ is set to zero.
-
-Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of
-Miller-Rabin are a subset of the failures of the Fermat test.
-
-\subsection{Required Number of Tests}
-Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
-or so unique bases.  However, it has been proven that the probability of failure goes down as the size of the input goes up.
-This is why a simple function has been provided to help out.
-
-\index{mp\_prime\_rabin\_miller\_trials}
-\begin{alltt}
-int mp_prime_rabin_miller_trials(int size)
-\end{alltt}
-This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
-in bits.  This comes in handy specially since larger numbers are slower to test.  For example, a 512-bit number would
-require ten tests whereas a 1024-bit number would only require four tests.
-
-You should always still perform a trial division before a Miller-Rabin test though.
-
-\section{Primality Testing}
-\index{mp\_prime\_is\_prime}
-\begin{alltt}
-int mp_prime_is_prime (mp_int * a, int t, int *result)
-\end{alltt}
-This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.
-If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.  Note that $t$ is bounded by
-$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
-
-\section{Next Prime}
-\index{mp\_prime\_next\_prime}
-\begin{alltt}
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
-\end{alltt}
-This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests.  Set $bbs\_style$ to one if you
-want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
-
-\section{Random Primes}
-\index{mp\_prime\_random}
-\begin{alltt}
-int mp_prime_random(mp_int *a, int t, int size, int bbs,
-                    ltm_prime_callback cb, void *dat)
-\end{alltt}
-This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
-$t$ rounds of tests.  The ``ltm\_prime\_callback'' is a typedef for
-
-\begin{alltt}
-typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
-\end{alltt}
-
-Which is a function that must read $len$ bytes (and return the amount stored) into $dst$.  The $dat$ variable is simply
-copied from the original input.  It can be used to pass RNG context data to the callback.  The function
-mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
-is no skew on the least significant bits.
-
-\textit{Note:}  As of v0.30 of the LibTomMath library this function has been deprecated.  It is still available
-but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
-
-\subsection{Extended Generation}
-\index{mp\_prime\_random\_ex}
-\begin{alltt}
-int mp_prime_random_ex(mp_int *a,    int t,
-                       int     size, int flags,
-                       ltm_prime_callback cb, void *dat);
-\end{alltt}
-This will generate a prime in $a$ using $t$ tests of the primality testing algorithms.  The variable $size$
-specifies the bit length of the prime desired.  The variable $flags$ specifies one of several options available
-(see fig. \ref{fig:primeopts}) which can be OR'ed together.  The callback parameters are used as in
-mp\_prime\_random().
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|r|l|}
-\hline \textbf{Flag}         & \textbf{Meaning} \\
-\hline LTM\_PRIME\_BBS       & Make the prime congruent to $3$ modulo $4$ \\
-\hline LTM\_PRIME\_SAFE      & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
-                             & This option implies LTM\_PRIME\_BBS as well. \\
-\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
-                             & Is forced to zero.  \\
-\hline LTM\_PRIME\_2MSB\_ON  & Makes sure that the bit adjacent to the most significant bit \\
-                             & Is forced to one. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Primality Generation Options}
-\label{fig:primeopts}
-\end{figure}
-
-\chapter{Input and Output}
-\section{ASCII Conversions}
-\subsection{To ASCII}
-\index{mp\_toradix}
-\begin{alltt}
-int mp_toradix (mp_int * a, char *str, int radix);
-\end{alltt}
-This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars.  This function appends a NUL character
-to terminate the string.  Valid values of ``radix'' line in the range $[2, 64]$.  To determine the size (exact) required
-by the conversion before storing any data use the following function.
-
-\index{mp\_radix\_size}
-\begin{alltt}
-int mp_radix_size (mp_int * a, int radix, int *size)
-\end{alltt}
-This stores in ``size'' the number of characters (including space for the NUL terminator) required.  Upon error this
-function returns an error code and ``size'' will be zero.
-
-\subsection{From ASCII}
-\index{mp\_read\_radix}
-\begin{alltt}
-int mp_read_radix (mp_int * a, char *str, int radix);
-\end{alltt}
-This will read the base-``radix'' NUL terminated string from ``str'' into $a$.  It will stop reading when it reads a
-character it does not recognize (which happens to include th NUL char... imagine that...).  A single leading $-$ sign
-can be used to denote a negative number.
-
-\section{Binary Conversions}
-
-Converting an mp\_int to and from binary is another keen idea.
-
-\index{mp\_unsigned\_bin\_size}
-\begin{alltt}
-int mp_unsigned_bin_size(mp_int *a);
-\end{alltt}
-
-This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
-
-\index{mp\_to\_unsigned\_bin}
-\begin{alltt}
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-\end{alltt}
-This will store $a$ into the buffer $b$ in big--endian format.  Fortunately this is exactly what DER (or is it ASN?)
-requires.  It does not store the sign of the integer.
-
-\index{mp\_read\_unsigned\_bin}
-\begin{alltt}
-int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
-\end{alltt}
-This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$.  The resulting
-integer $a$ will always be positive.
-
-For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
-previous functions.
-
-\begin{alltt}
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-\end{alltt}
-They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
-byte depending on the sign.  If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
-is non--zero.
-
-\chapter{Algebraic Functions}
-\section{Extended Euclidean Algorithm}
-\index{mp\_exteuclid}
-\begin{alltt}
-int mp_exteuclid(mp_int *a, mp_int *b,
-                 mp_int *U1, mp_int *U2, mp_int *U3);
-\end{alltt}
-
-This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
-
-\begin{equation}
-a \cdot U1 + b \cdot U2 = U3
-\end{equation}
-
-Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
-
-\section{Greatest Common Divisor}
-\index{mp\_gcd}
-\begin{alltt}
-int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
-
-\section{Least Common Multiple}
-\index{mp\_lcm}
-\begin{alltt}
-int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-This will compute the least common multiple of $a$ and $b$ and store it in $c$.
-
-\section{Jacobi Symbol}
-\index{mp\_jacobi}
-\begin{alltt}
-int mp_jacobi (mp_int * a, mp_int * p, int *c)
-\end{alltt}
-This will compute the Jacobi symbol for $a$ with respect to $p$.  If $p$ is prime this essentially computes the Legendre
-symbol.  The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$.  If $p$ is prime
-then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$.  The result will be $0$ if $a$ divides $p$
-and the result will be $1$ if $a$ is a quadratic residue modulo $p$.
-
-\section{Modular square root}
-\index{mp\_sqrtmod\_prime}
-\begin{alltt}
-int mp_sqrtmod_prime(mp_int *n, mp_int *p, mp_int *r)
-\end{alltt}
-
-This will solve the modular equatioon $r^2 = n \mod p$ where $p$ is a prime number greater than 2 (odd prime).
-The result is returned in the third argument $r$, the function returns \textbf{MP\_OKAY} on success,
-other return values indicate failure.
-
-The implementation is split for two different cases:
-
-1. if $p \mod 4 == 3$ we apply \href{http://cacr.uwaterloo.ca/hac/}{Handbook of Applied Cryptography algorithm 3.36} and compute $r$ directly as
-$r = n^{(p+1)/4} \mod p$
-
-2. otherwise we use \href{https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm}{Tonelli-Shanks algorithm}
-
-The function does not check the primality of parameter $p$ thus it is up to the caller to assure that this parameter
-is a prime number. When $p$ is a composite the function behaviour is undefined, it may even return a false-positive
-\textbf{MP\_OKAY}.
-
-\section{Modular Inverse}
-\index{mp\_invmod}
-\begin{alltt}
-int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
-
-\section{Single Digit Functions}
-
-For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
-
-\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
-\begin{alltt}
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-\end{alltt}
-
-These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit.  These
-functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
-an entire mp\_int to store a number like $1$ or $2$.
-
-\input{bn.ind}
-
-\end{document}
diff --git a/doc/bn.tex b/doc/bn.tex
new file mode 100644
index 0000000..5804318
--- /dev/null
+++ b/doc/bn.tex
@@ -0,0 +1,1913 @@
+\documentclass[synpaper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{LibTomMath User Manual \\ v1.0}
+\author{Tom St Denis \\ tstdenis82@gmail.com}
+\maketitle
+This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been
+formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
+
+\vspace{10cm}
+
+\begin{flushright}Open Source.  Open Academia.  Open Minds.
+
+\mbox{ }
+
+Tom St Denis,
+
+Ontario, Canada
+\end{flushright}
+
+\tableofcontents
+\listoffigures
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{What is LibTomMath?}
+LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
+large integer numbers.  It was written in portable ISO C source code so that it will build on any platform with a conforming
+C compiler.
+
+In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
+to implement ``bignum'' math.  However, the resulting code has proven to be very useful.  It has been used by numerous
+universities, commercial and open source software developers.  It has been used on a variety of platforms ranging from
+Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.
+
+\section{License}
+As of the v0.25 the library source code has been placed in the public domain with every new release.  As of the v0.28
+release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
+release as well.  This textbook is meant to compliment the project by providing a more solid walkthrough of the development
+algorithms used in the library.
+
+Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.  They are not required to use LibTomMath.} are in the
+public domain everyone is entitled to do with them as they see fit.
+
+\section{Building LibTomMath}
+
+LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC.  However, the library will
+also build in MSVC, Borland C out of the box.  For any other ISO C compiler a makefile will have to be made by the end
+developer.
+
+\subsection{Static Libraries}
+To build as a static library for GCC issue the following
+\begin{alltt}
+make
+\end{alltt}
+
+command.  This will build the library and archive the object files in ``libtommath.a''.  Now you link against
+that and include ``tommath.h'' within your programs.  Alternatively to build with MSVC issue the following
+\begin{alltt}
+nmake -f makefile.msvc
+\end{alltt}
+
+This will build the library and archive the object files in ``tommath.lib''.  This has been tested with MSVC
+version 6.00 with service pack 5.
+
+\subsection{Shared Libraries}
+To build as a shared library for GCC issue the following
+\begin{alltt}
+make -f makefile.shared
+\end{alltt}
+This requires the ``libtool'' package (common on most Linux/BSD systems).  It will build LibTomMath as both shared
+and static then install (by default) into /usr/lib as well as install the header files in /usr/include.  The shared
+library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''.  Generally
+you use libtool to link your application against the shared object.
+
+There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile.  It requires
+Cygwin to work with since it requires the auto-export/import functionality.  The resulting DLL and import library
+``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
+
+\subsection{Testing}
+To build the library and the test harness type
+
+\begin{alltt}
+make test
+\end{alltt}
+
+This will build the library, ``test'' and ``mtest/mtest''.  The ``test'' program will accept test vectors and verify the
+results.  ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
+is included in the package}.  Simply pipe mtest into test using
+
+\begin{alltt}
+mtest/mtest | test
+\end{alltt}
+
+If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into
+mtest.  For example, if your PRNG program is called ``myprng'' simply invoke
+
+\begin{alltt}
+myprng | mtest/mtest | test
+\end{alltt}
+
+This will output a row of numbers that are increasing.  Each column is a different test (such as addition, multiplication, etc)
+that is being performed.  The numbers represent how many times the test was invoked.  If an error is detected the program
+will exit with a dump of the relevent numbers it was working with.
+
+\section{Build Configuration}
+LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.
+Each phase changes how the library is built and they are applied one after another respectively.
+
+To make the system more powerful you can tweak the build process.  Classes are defined in the file
+``tommath\_superclass.h''.  By default, the symbol ``LTM\_ALL'' shall be defined which simply
+instructs the system to build all of the functions.  This is how LibTomMath used to be packaged.  This will give you
+access to every function LibTomMath offers.
+
+However, there are cases where such a build is not optional.  For instance, you want to perform RSA operations.  You
+don't need the vast majority of the library to perform these operations.  Aside from LTM\_ALL there is
+another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt.  Additional
+classes can be defined base on the need of the user.
+
+\subsection{Build Depends}
+In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
+which further define symbols.  All of the symbols (technically they're macros $\ldots$) represent a given C source
+file.  For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''.  When a define has been enabled the
+function in the respective file will be compiled and linked into the library.  Accordingly when the define
+is absent the file will not be compiled and not contribute any size to the library.
+
+You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).
+This is to help resolve as many dependencies as possible.  In the last pass the symbol LTM\_LAST will be defined.
+This is useful for ``trims''.
+
+\subsection{Build Tweaks}
+A tweak is an algorithm ``alternative''.  For example, to provide tradeoffs (usually between size and space).
+They can be enabled at any pass of the configuration phase.
+
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Define} & \textbf{Purpose} \\
+\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
+                          & functional mp\_div() function \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+\subsection{Build Trims}
+A trim is a manner of removing functionality from a function that is not required.  For instance, to perform
+RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.
+Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
+only if LTM\_LAST has been defined.
+
+\subsubsection{Moduli Related}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Restriction} & \textbf{Undefine} \\
+\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
+                                           & BN\_MP\_REDUCE\_C \\
+                                           & BN\_MP\_REDUCE\_SETUP\_C \\
+                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+                                           & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+\hline Exponentiation with random odd moduli & (The above plus the following) \\
+                                           & BN\_MP\_REDUCE\_2K\_C \\
+                                           & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
+                                           & BN\_MP\_REDUCE\_IS\_2K\_C \\
+                                           & BN\_MP\_DR\_IS\_MODULUS\_C \\
+                                           & BN\_MP\_DR\_REDUCE\_C \\
+                                           & BN\_MP\_DR\_SETUP\_C \\
+\hline Modular inverse odd moduli only     & BN\_MP\_INVMOD\_SLOW\_C \\
+\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+\subsubsection{Operand Size Related}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Restriction} & \textbf{Undefine} \\
+\hline Moduli $\le 2560$ bits              & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
+                                           & BN\_S\_MP\_MUL\_DIGS\_C \\
+                                           & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+                                           & BN\_S\_MP\_SQR\_C \\
+\hline Polynomial Schmolynomial            & BN\_MP\_KARATSUBA\_MUL\_C \\
+                                           & BN\_MP\_KARATSUBA\_SQR\_C \\
+                                           & BN\_MP\_TOOM\_MUL\_C \\
+                                           & BN\_MP\_TOOM\_SQR\_C \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+
+\section{Purpose of LibTomMath}
+Unlike  GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with
+bleeding edge performance in mind.  First and foremost LibTomMath was written to be entirely open.  Not only is the
+source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
+source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
+arithmetic techniques.
+
+LibTomMath was written to be an instructive collection of source code.  This is why there are many comments, only one
+function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
+increase.
+
+Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
+the library (beat that!).
+
+So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
+are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|c|c|l|}
+\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
+\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 71.97$ \\
+\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
+\hline Speed && X & LibTomMath is slower.  \\
+\hline Totally free & X & & GPL has unfavourable restrictions.\\
+\hline Large function base & X & & GnuPG is barebones. \\
+\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
+\hline Portable & X & & GnuPG requires configuration to build. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{LibTomMath Valuation}
+\end{figure}
+
+It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application.
+However, LibTomMath was written with cryptography in mind.  It provides essentially all of the functions a cryptosystem
+would require when working with large integers.
+
+So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
+own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is
+not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular
+exponentiations.  It depends largely on the processor, compiler and the moduli being used.
+
+Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.  However,
+on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
+that is very flexible, complete and performs well in resource contrained environments.  Fast RSA for example can
+be performed with as little as 8KB of ram for data (again depending on build options).
+
+\chapter{Getting Started with LibTomMath}
+\section{Building Programs}
+In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically
+libtommath.a).  There is no library initialization required and the entire library is thread safe.
+
+\section{Return Codes}
+There are three possible return codes a function may return.
+
+\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
+\begin{figure}[here!]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Code} & \textbf{Meaning} \\
+\hline MP\_OKAY & The function succeeded. \\
+\hline MP\_VAL  & The function input was invalid. \\
+\hline MP\_MEM  & Heap memory exhausted. \\
+\hline &\\
+\hline MP\_YES  & Response is yes. \\
+\hline MP\_NO   & Response is no. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Return Codes}
+\end{figure}
+
+The last two codes listed are not actually ``return'ed'' by a function.  They are placed in an integer (the caller must
+provide the address of an integer it can store to) which the caller can access.  To convert one of the three return codes
+to a string use the following function.
+
+\index{mp\_error\_to\_string}
+\begin{alltt}
+char *mp_error_to_string(int code);
+\end{alltt}
+
+This will return a pointer to a string which describes the given error code.  It will not work for the return codes
+MP\_YES and MP\_NO.
+
+\section{Data Types}
+The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath.  This data type is used to
+organize all of the data required to manipulate the integer it represents.  Within LibTomMath it has been prototyped
+as the following.
+
+\index{mp\_int}
+\begin{alltt}
+typedef struct  \{
+    int used, alloc, sign;
+    mp_digit *dp;
+\} mp_int;
+\end{alltt}
+
+Where ``mp\_digit'' is a data type that represents individual digits of the integer.  By default, an mp\_digit is the
+ISO C ``unsigned long'' data type and each digit is $28-$bits long.  The mp\_digit type can be configured to suit other
+platforms by defining the appropriate macros.
+
+All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure.  You must allocate memory to
+hold the structure itself by yourself (whether off stack or heap it doesn't matter).  The very first thing that must be
+done to use an mp\_int is that it must be initialized.
+
+\section{Function Organization}
+
+The arithmetic functions of the library are all organized to have the same style prototype.  That is source operands
+are passed on the left and the destination is on the right.  For instance,
+
+\begin{alltt}
+mp_add(&a, &b, &c);       /* c = a + b */
+mp_mul(&a, &a, &c);       /* c = a * a */
+mp_div(&a, &b, &c, &d);   /* c = [a/b], d = a mod b */
+\end{alltt}
+
+Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
+For instance,
+
+\begin{alltt}
+mp_add(&a, &b, &b);       /* b = a + b */
+mp_div(&a, &b, &a, &c);   /* a = [a/b], c = a mod b */
+\end{alltt}
+
+This allows operands to be re-used which can make programming simpler.
+
+\section{Initialization}
+\subsection{Single Initialization}
+A single mp\_int can be initialized with the ``mp\_init'' function.
+
+\index{mp\_init}
+\begin{alltt}
+int mp_init (mp_int * a);
+\end{alltt}
+
+This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
+represents the default integer which is zero.  If the functions returns MP\_OKAY then the mp\_int is ready to be used
+by the other LibTomMath functions.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use the number */
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Single Free}
+When you are finished with an mp\_int it is ideal to return the heap it used back to the system.  The following function
+provides this functionality.
+
+\index{mp\_clear}
+\begin{alltt}
+void mp_clear (mp_int * a);
+\end{alltt}
+
+The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses.  It sets the
+pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations.
+Is is legal to call mp\_clear() twice on the same mp\_int in a row.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use the number */
+
+   /* We're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Multiple Initializations}
+Certain algorithms require more than one large integer.  In these instances it is ideal to initialize all of the mp\_int
+variables in an ``all or nothing'' fashion.  That is, they are either all initialized successfully or they are all
+not initialized.
+
+The  mp\_init\_multi() function provides this functionality.
+
+\index{mp\_init\_multi} \index{mp\_clear\_multi}
+\begin{alltt}
+int mp_init_multi(mp_int *mp, ...);
+\end{alltt}
+
+It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures.  It will attempt to initialize them all
+at once.  If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
+are available for use.  A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd
+from the heap at the same time.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int num1, num2, num3;
+   int result;
+
+   if ((result = mp_init_multi(&num1,
+                               &num2,
+                               &num3, NULL)) != MP\_OKAY) \{
+      printf("Error initializing the numbers.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use the numbers */
+
+   /* We're done with them. */
+   mp_clear_multi(&num1, &num2, &num3, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Other Initializers}
+To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.
+
+\index{mp\_init\_copy}
+\begin{alltt}
+int mp_init_copy (mp_int * a, mp_int * b);
+\end{alltt}
+
+This function will initialize $a$ and make it a copy of $b$ if all goes well.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int num1, num2;
+   int result;
+
+   /* initialize and do work on num1 ... */
+
+   /* We want a copy of num1 in num2 now */
+   if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
+     printf("Error initializing the copy.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* now num2 is ready and contains a copy of num1 */
+
+   /* We're done with them. */
+   mp_clear_multi(&num1, &num2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
+default number of digits.  By default, all initializers allocate \textbf{MP\_PREC} digits.  This function lets
+you override this behaviour.
+
+\index{mp\_init\_size}
+\begin{alltt}
+int mp_init_size (mp_int * a, int size);
+\end{alltt}
+
+The $size$ parameter must be greater than zero.  If the function succeeds the mp\_int $a$ will be initialized
+to have $size$ digits (which are all initially zero).
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   /* we need a 60-digit number */
+   if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use the number */
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\section{Maintenance Functions}
+
+\subsection{Reducing Memory Usage}
+When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
+digits can be removed to return memory to the heap with the mp\_shrink() function.
+
+\index{mp\_shrink}
+\begin{alltt}
+int mp_shrink (mp_int * a);
+\end{alltt}
+
+This will remove excess digits of the mp\_int $a$.  If the operation fails the mp\_int should be intact without the
+excess digits being removed.  Note that you can use a shrunk mp\_int in further computations, however, such operations
+will require heap operations which can be slow.  It is not ideal to shrink mp\_int variables that you will further
+modify in the system (unless you are seriously low on memory).
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use the number [e.g. pre-computation]  */
+
+   /* We're done with it for now. */
+   if ((result = mp_shrink(&number)) != MP_OKAY) \{
+      printf("Error shrinking the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use it .... */
+
+
+   /* we're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Adding additional digits}
+
+Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
+the integer the mp\_int is meant to equal.   The \textit{used} parameter dictates how many digits are significant, that is,
+contribute to the value of the mp\_int.  The \textit{alloc} parameter dictates how many digits are currently available in
+the array.  If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
+your desired size.
+
+\index{mp\_grow}
+\begin{alltt}
+int mp_grow (mp_int * a, int size);
+\end{alltt}
+
+This will grow the array of digits of $a$ to $size$.  If the \textit{alloc} parameter is already bigger than
+$size$ the function will not do anything.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* use the number */
+
+   /* We need to add 20 digits to the number  */
+   if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
+      printf("Error growing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+
+   /* use the number */
+
+   /* we're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\chapter{Basic Operations}
+\section{Small Constants}
+Setting mp\_ints to small constants is a relatively common operation.  To accomodate these instances there are two
+small constant assignment functions.  The first function is used to set a single digit constant while the second sets
+an ISO C style ``unsigned long'' constant.  The reason for both functions is efficiency.  Setting a single digit is quick but the
+domain of a digit can change (it's always at least $0 \ldots 127$).
+
+\subsection{Single Digit}
+
+Setting a single digit can be accomplished with the following function.
+
+\index{mp\_set}
+\begin{alltt}
+void mp_set (mp_int * a, mp_digit b);
+\end{alltt}
+
+This will zero the contents of $a$ and make it represent an integer equal to the value of $b$.  Note that this
+function has a return type of \textbf{void}.  It cannot cause an error so it is safe to assume the function
+succeeded.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the number to 5 */
+   mp_set(&number, 5);
+
+   /* we're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Long Constants}
+
+To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
+can be used.
+
+\index{mp\_set\_int}
+\begin{alltt}
+int mp_set_int (mp_int * a, unsigned long b);
+\end{alltt}
+
+This will assign the value of the 32-bit variable $b$ to the mp\_int $a$.  Unlike mp\_set() this function will always
+accept a 32-bit input regardless of the size of a single digit.  However, since the value may span several digits
+this function can fail if it runs out of heap memory.
+
+To get the ``unsigned long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_int}
+\begin{alltt}
+unsigned long mp_get_int (mp_int * a);
+\end{alltt}
+
+This will return the 32 least significant bits of the mp\_int $a$.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the number to 654321 (note this is bigger than 127) */
+   if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
+      printf("Error setting the value of the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   printf("number == \%lu", mp_get_int(&number));
+
+   /* we're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+This should output the following if the program succeeds.
+
+\begin{alltt}
+number == 654321
+\end{alltt}
+
+\subsection{Long Constants - platform dependant}
+
+\index{mp\_set\_long}
+\begin{alltt}
+int mp_set_long (mp_int * a, unsigned long b);
+\end{alltt}
+
+This will assign the value of the platform-dependant sized variable $b$ to the mp\_int $a$.
+
+To get the ``unsigned long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_long}
+\begin{alltt}
+unsigned long mp_get_long (mp_int * a);
+\end{alltt}
+
+This will return the least significant bits of the mp\_int $a$ that fit into an ``unsigned long''.
+
+\subsection{Long Long Constants}
+
+\index{mp\_set\_long\_long}
+\begin{alltt}
+int mp_set_long_long (mp_int * a, unsigned long long b);
+\end{alltt}
+
+This will assign the value of the 64-bit variable $b$ to the mp\_int $a$.
+
+To get the ``unsigned long long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_long\_long}
+\begin{alltt}
+unsigned long long mp_get_long_long (mp_int * a);
+\end{alltt}
+
+This will return the 64 least significant bits of the mp\_int $a$.
+
+\subsection{Initialize and Setting Constants}
+To both initialize and set small constants the following two functions are available.
+\index{mp\_init\_set} \index{mp\_init\_set\_int}
+\begin{alltt}
+int mp_init_set (mp_int * a, mp_digit b);
+int mp_init_set_int (mp_int * a, unsigned long b);
+\end{alltt}
+
+Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
+
+\begin{alltt}
+int main(void)
+\{
+   mp_int number1, number2;
+   int    result;
+
+   /* initialize and set a single digit */
+   if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
+      printf("Error setting number1: \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* initialize and set a long */
+   if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
+      printf("Error setting number2: \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* display */
+   printf("Number1, Number2 == \%lu, \%lu",
+          mp_get_int(&number1), mp_get_int(&number2));
+
+   /* clear */
+   mp_clear_multi(&number1, &number2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+If this program succeeds it shall output.
+\begin{alltt}
+Number1, Number2 == 100, 1023
+\end{alltt}
+
+\section{Comparisons}
+
+Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  There are three possible return codes
+for any comparison.
+
+\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Result Code} & \textbf{Meaning} \\
+\hline MP\_GT & $a > b$ \\
+\hline MP\_EQ & $a = b$ \\
+\hline MP\_LT & $a < b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Codes for $a, b$}
+\label{fig:CMP}
+\end{figure}
+
+In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared.  In this case $a$ is said to be ``to the left'' of
+$b$.
+
+\subsection{Unsigned comparison}
+
+An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the
+mp\_int structures.  This is analogous to an absolute comparison.  The function mp\_cmp\_mag() will compare two
+mp\_int variables based on their digits only.
+
+\index{mp\_cmp\_mag}
+\begin{alltt}
+int mp_cmp_mag(mp_int * a, mp_int * b);
+\end{alltt}
+This will compare $a$ to $b$ placing $a$ to the left of $b$.  This function cannot fail and will return one of the
+three compare codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number1, number2;
+   int result;
+
+   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+      printf("Error initializing the numbers.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the number1 to 5 */
+   mp_set(&number1, 5);
+
+   /* set the number2 to -6 */
+   mp_set(&number2, 6);
+   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+      printf("Error negating number2.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   switch(mp_cmp_mag(&number1, &number2)) \{
+       case MP_GT:  printf("|number1| > |number2|"); break;
+       case MP_EQ:  printf("|number1| = |number2|"); break;
+       case MP_LT:  printf("|number1| < |number2|"); break;
+   \}
+
+   /* we're done with it. */
+   mp_clear_multi(&number1, &number2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
+successfully it should print the following.
+
+\begin{alltt}
+|number1| < |number2|
+\end{alltt}
+
+This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
+
+\subsection{Signed comparison}
+
+To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
+
+\index{mp\_cmp}
+\begin{alltt}
+int mp_cmp(mp_int * a, mp_int * b);
+\end{alltt}
+
+This will compare $a$ to the left of $b$.  It will first compare the signs of the two mp\_int variables.  If they
+differ it will return immediately based on their signs.  If the signs are equal then it will compare the digits
+individually.  This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number1, number2;
+   int result;
+
+   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+      printf("Error initializing the numbers.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the number1 to 5 */
+   mp_set(&number1, 5);
+
+   /* set the number2 to -6 */
+   mp_set(&number2, 6);
+   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+      printf("Error negating number2.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   switch(mp_cmp(&number1, &number2)) \{
+       case MP_GT:  printf("number1 > number2"); break;
+       case MP_EQ:  printf("number1 = number2"); break;
+       case MP_LT:  printf("number1 < number2"); break;
+   \}
+
+   /* we're done with it. */
+   mp_clear_multi(&number1, &number2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
+successfully it should print the following.
+
+\begin{alltt}
+number1 > number2
+\end{alltt}
+
+\subsection{Single Digit}
+
+To compare a single digit against an mp\_int the following function has been provided.
+
+\index{mp\_cmp\_d}
+\begin{alltt}
+int mp_cmp_d(mp_int * a, mp_digit b);
+\end{alltt}
+
+This will compare $a$ to the left of $b$ using a signed comparison.  Note that it will always treat $b$ as
+positive.  This function is rather handy when you have to compare against small values such as $1$ (which often
+comes up in cryptography).  The function cannot fail and will return one of the tree compare condition codes
+listed in figure \ref{fig:CMP}.
+
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the number to 5 */
+   mp_set(&number, 5);
+
+   switch(mp_cmp_d(&number, 7)) \{
+       case MP_GT:  printf("number > 7"); break;
+       case MP_EQ:  printf("number = 7"); break;
+       case MP_LT:  printf("number < 7"); break;
+   \}
+
+   /* we're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program functions properly it will print out the following.
+
+\begin{alltt}
+number < 7
+\end{alltt}
+
+\section{Logical Operations}
+
+Logical operations are operations that can be performed either with simple shifts or boolean operators such as
+AND, XOR and OR directly.  These operations are very quick.
+
+\subsection{Multiplication by two}
+
+Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
+right depending on the operation.
+
+When multiplying or dividing by two a special case routine can be used which are as follows.
+\index{mp\_mul\_2} \index{mp\_div\_2}
+\begin{alltt}
+int mp_mul_2(mp_int * a, mp_int * b);
+int mp_div_2(mp_int * a, mp_int * b);
+\end{alltt}
+
+The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$.  These functions are fast
+since the shift counts and maskes are hardcoded into the routines.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the number to 5 */
+   mp_set(&number, 5);
+
+   /* multiply by two */
+   if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
+      printf("Error multiplying the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+   switch(mp_cmp_d(&number, 7)) \{
+       case MP_GT:  printf("2*number > 7"); break;
+       case MP_EQ:  printf("2*number = 7"); break;
+       case MP_LT:  printf("2*number < 7"); break;
+   \}
+
+   /* now divide by two */
+   if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
+      printf("Error dividing the number.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+   switch(mp_cmp_d(&number, 7)) \{
+       case MP_GT:  printf("2*number/2 > 7"); break;
+       case MP_EQ:  printf("2*number/2 = 7"); break;
+       case MP_LT:  printf("2*number/2 < 7"); break;
+   \}
+
+   /* we're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program is successful it will print out the following text.
+
+\begin{alltt}
+2*number > 7
+2*number/2 < 7
+\end{alltt}
+
+Since $10 > 7$ and $5 < 7$.
+
+To multiply by a power of two the following function can be used.
+
+\index{mp\_mul\_2d}
+\begin{alltt}
+int mp_mul_2d(mp_int * a, int b, mp_int * c);
+\end{alltt}
+
+This will multiply $a$ by $2^b$ and store the result in ``c''.  If the value of $b$ is less than or equal to
+zero the function will copy $a$ to ``c'' without performing any further actions.  The multiplication itself
+is implemented as a right-shift operation of $a$ by $b$ bits.
+
+To divide by a power of two use the following.
+
+\index{mp\_div\_2d}
+\begin{alltt}
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
+\end{alltt}
+Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'.  If $b \le 0$ then the
+function simply copies $a$ over to ``c'' and zeroes $d$.  The variable $d$ may be passed as a \textbf{NULL}
+value to signal that the remainder is not desired.  The division itself is implemented as a left-shift
+operation of $a$ by $b$ bits.
+
+\subsection{Polynomial Basis Operations}
+
+Strictly speaking the organization of the integers within the mp\_int structures is what is known as a
+``polynomial basis''.  This simply means a field element is stored by divisions of a radix.  For example, if
+$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be
+the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.
+
+To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place.  The
+following function provides this operation.
+
+\index{mp\_lshd}
+\begin{alltt}
+int mp_lshd (mp_int * a, int b);
+\end{alltt}
+
+This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
+in the least significant digits.  Similarly to divide by a power of $x$ the following function is provided.
+
+\index{mp\_rshd}
+\begin{alltt}
+void mp_rshd (mp_int * a, int b)
+\end{alltt}
+This will divide $a$ in place by $x^b$ and discard the remainder.  This function cannot fail as it performs the operations
+in place and no new digits are required to complete it.
+
+\subsection{AND, OR and XOR Operations}
+
+While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances.  The
+three functions are prototyped as follows.
+
+\index{mp\_or} \index{mp\_and} \index{mp\_xor}
+\begin{alltt}
+int mp_or  (mp_int * a, mp_int * b, mp_int * c);
+int mp_and (mp_int * a, mp_int * b, mp_int * c);
+int mp_xor (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+
+Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.
+
+\section{Addition and Subtraction}
+
+To compute an addition or subtraction the following two functions can be used.
+
+\index{mp\_add} \index{mp\_sub}
+\begin{alltt}
+int mp_add (mp_int * a, mp_int * b, mp_int * c);
+int mp_sub (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+
+Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction.  The operations are fully sign
+aware.
+
+\section{Sign Manipulation}
+\subsection{Negation}
+\label{sec:NEG}
+Simple integer negation can be performed with the following.
+
+\index{mp\_neg}
+\begin{alltt}
+int mp_neg (mp_int * a, mp_int * b);
+\end{alltt}
+
+Which assigns $-a$ to $b$.
+
+\subsection{Absolute}
+Simple integer absolutes can be performed with the following.
+
+\index{mp\_neg}
+\begin{alltt}
+int mp_abs (mp_int * a, mp_int * b);
+\end{alltt}
+
+Which assigns $\vert a \vert$ to $b$.
+
+\section{Integer Division and Remainder}
+To perform a complete and general integer division with remainder use the following function.
+
+\index{mp\_div}
+\begin{alltt}
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
+\end{alltt}
+
+This divides $a$ by $b$ and stores the quotient in $c$ and $d$.  The signed quotient is computed such that
+$bc + d = a$.  Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required.  If
+$b$ is zero the function returns \textbf{MP\_VAL}.
+
+
+\chapter{Multiplication and Squaring}
+\section{Multiplication}
+A full signed integer multiplication can be performed with the following.
+\index{mp\_mul}
+\begin{alltt}
+int mp_mul (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+Which assigns the full signed product $ab$ to $c$.  This function actually breaks into one of four cases which are
+specific multiplication routines optimized for given parameters.  First there are the Toom-Cook multiplications which
+should only be used with very large inputs.  This is followed by the Karatsuba multiplications which are for moderate
+sized inputs.  Then followed by the Comba and baseline multipliers.
+
+Fortunately for the developer you don't really need to know this unless you really want to fine tune the system.  mp\_mul()
+will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
+
+\begin{alltt}
+int main(void)
+\{
+   mp_int number1, number2;
+   int result;
+
+   /* Initialize the numbers */
+   if ((result = mp_init_multi(&number1,
+                               &number2, NULL)) != MP_OKAY) \{
+      printf("Error initializing the numbers.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* set the terms */
+   if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
+      printf("Error setting number1.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
+      printf("Error setting number2.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* multiply them */
+   if ((result = mp_mul(&number1, &number2,
+                        &number1)) != MP_OKAY) \{
+      printf("Error multiplying terms.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* display */
+   printf("number1 * number2 == \%lu", mp_get_int(&number1));
+
+   /* free terms and return */
+   mp_clear_multi(&number1, &number2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+If this program succeeds it shall output the following.
+
+\begin{alltt}
+number1 * number2 == 262911
+\end{alltt}
+
+\section{Squaring}
+Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
+mp\_mul().
+
+\index{mp\_sqr}
+\begin{alltt}
+int mp_sqr (mp_int * a, mp_int * b);
+\end{alltt}
+
+Will square $a$ and store it in $b$.  Like the case of multiplication there are four different squaring
+algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms because
+of the speed difference.
+
+\section{Tuning Polynomial Basis Routines}
+
+Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
+the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require
+considerably less work.  For example, a 10000-digit multiplication would take roughly 724,000 single precision
+multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
+of 138).
+
+So why not always use Karatsuba or Toom-Cook?   The simple answer is that they have so much overhead that they're not
+actually faster than Comba until you hit distinct  ``cutoff'' points.  For Karatsuba with the default configuration,
+GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4).  That is, at
+110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
+
+Toom-Cook has incredible overhead and is probably only useful for very large inputs.  So far no known cutoff points
+exist and for the most part I just set the cutoff points very high to make sure they're not called.
+
+A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points.  This
+can be built with GCC as follows
+
+\begin{alltt}
+make XXX
+\end{alltt}
+Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value of XXX} & \textbf{Meaning} \\
+\hline tune & Builds portable tuning application \\
+\hline tune86 & Builds x86 (pentium and up) program for COFF \\
+\hline tune86c & Builds x86 program for Cygwin \\
+\hline tune86l & Builds x86 program for Linux (ELF format) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Build Names for Tuning Programs}
+\label{fig:tuning}
+\end{figure}
+
+When the program is running it will output a series of measurements for different cutoff points.  It will first find
+good Karatsuba squaring and multiplication points.  Then it proceeds to find Toom-Cook points.  Note that the Toom-Cook
+tuning takes a very long time as the cutoff points are likely to be very high.
+
+\chapter{Modular Reduction}
+
+Modular reduction is process of taking the remainder of one quantity divided by another.  Expressed
+as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
+
+\begin{equation}
+a \equiv b \mbox{ (mod }c\mbox{)}
+\label{eqn:mod}
+\end{equation}
+
+Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
+fast reduction algorithms can be written for the limited range.
+
+Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
+algorithm mp\_exptmod when an appropriate modulus is detected.
+
+\section{Straight Division}
+In order to effect an arbitrary modular reduction the following algorithm is provided.
+
+\index{mp\_mod}
+\begin{alltt}
+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+\end{alltt}
+
+This reduces $a$ modulo $b$ and stores the result in $c$.  The sign of $c$ shall agree with the sign
+of $b$.  This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
+
+\section{Barrett Reduction}
+
+Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
+a decent speedup over straight division.  First a $\mu$ value must be precomputed with the following function.
+
+\index{mp\_reduce\_setup}
+\begin{alltt}
+int mp_reduce_setup(mp_int *a, mp_int *b);
+\end{alltt}
+
+Given a modulus in $b$ this produces the required $\mu$ value in $a$.  For any given modulus this only has to
+be computed once.  Modular reduction can now be performed with the following.
+
+\index{mp\_reduce}
+\begin{alltt}
+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+\end{alltt}
+
+This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$.  $a$ must be in the range
+$0 \le a < b^2$.
+
+\begin{alltt}
+int main(void)
+\{
+   mp_int   a, b, c, mu;
+   int      result;
+
+   /* initialize a,b to desired values, mp_init mu,
+    * c and set c to 1...we want to compute a^3 mod b
+    */
+
+   /* get mu value */
+   if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
+      printf("Error getting mu.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* square a to get c = a^2 */
+   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
+      printf("Error squaring.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* now reduce `c' modulo b */
+   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* multiply a to get c = a^3 */
+   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* now reduce `c' modulo b  */
+   if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* c now equals a^3 mod b */
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
+
+\section{Montgomery Reduction}
+
+Montgomery is a specialized reduction algorithm for any odd moduli.  Like Barrett reduction a pre--computation
+step is required.  This is accomplished with the following.
+
+\index{mp\_montgomery\_setup}
+\begin{alltt}
+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+\end{alltt}
+
+For the given odd moduli $a$ the precomputation value is placed in $mp$.  The reduction is computed with the
+following.
+
+\index{mp\_montgomery\_reduce}
+\begin{alltt}
+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+\end{alltt}
+This reduces $a$ in place modulo $m$ with the pre--computed value $mp$.   $a$ must be in the range
+$0 \le a < b^2$.
+
+Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit.  With the default
+setup for instance, the limit is $127$ digits ($3556$--bits).   Note that this function is not limited to
+$127$ digits just that it falls back to a baseline algorithm after that point.
+
+An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
+where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
+
+To quickly calculate $R$ the following function was provided.
+
+\index{mp\_montgomery\_calc\_normalization}
+\begin{alltt}
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+\end{alltt}
+Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
+
+The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system.  For
+example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
+multiplying it by $R$.  Consider the following code snippet.
+
+\begin{alltt}
+int main(void)
+\{
+   mp_int   a, b, c, R;
+   mp_digit mp;
+   int      result;
+
+   /* initialize a,b to desired values,
+    * mp_init R, c and set c to 1....
+    */
+
+   /* get normalization */
+   if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
+      printf("Error getting norm.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* get mp value */
+   if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
+      printf("Error setting up montgomery.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* normalize `a' so now a is equal to aR */
+   if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
+      printf("Error computing aR.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* square a to get c = a^2R^2 */
+   if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
+      printf("Error squaring.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
+   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* multiply a to get c = a^3R^2 */
+   if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
+   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
+   if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+      printf("Error reducing.  \%s",
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   /* c now equals a^3 mod b */
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+This particular example does not look too efficient but it demonstrates the point of the algorithm.  By
+normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$.  This allows
+a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
+
+For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
+
+\section{Restricted Dimminished Radix}
+
+``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
+digit shifting and small multiplications.  In this case the ``restricted'' variant refers to moduli of the
+form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
+
+As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
+
+\index{mp\_dr\_setup}
+\begin{alltt}
+void mp_dr_setup(mp_int *a, mp_digit *d);
+\end{alltt}
+
+This computes the value required for the modulus $a$ and stores it in $d$.  This function cannot fail
+and does not return any error codes.  After the pre--computation a reduction can be performed with the
+following.
+
+\index{mp\_dr\_reduce}
+\begin{alltt}
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+\end{alltt}
+
+This reduces $a$ in place modulo $b$ with the pre--computed value $mp$.  $b$ must be of a restricted
+dimminished radix form and $a$ must be in the range $0 \le a < b^2$.  Dimminished radix reductions are
+much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
+
+Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
+BBS cryptographic purposes.  This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
+primes are acceptable.
+
+Note that unlike Montgomery reduction there is no normalization process.  The result of this function is
+equal to the correct residue.
+
+\section{Unrestricted Dimminshed Radix}
+
+Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
+form $2^k - p$ for $0 < p < \beta$.  In this sense the unrestricted reductions are more flexible as they
+can be applied to a wider range of numbers.
+
+\index{mp\_reduce\_2k\_setup}
+\begin{alltt}
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+\end{alltt}
+
+This will compute the required $d$ value for the given moduli $a$.
+
+\index{mp\_reduce\_2k}
+\begin{alltt}
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+\end{alltt}
+
+This will reduce $a$ in place modulo $n$ with the pre--computed value $d$.  From my experience this routine is
+slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
+
+\chapter{Exponentiation}
+\section{Single Digit Exponentiation}
+\index{mp\_expt\_d\_ex}
+\begin{alltt}
+int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
+\end{alltt}
+This function computes $c = a^b$.
+
+With parameter \textit{fast} set to $0$ the old version of the algorithm is used,
+when \textit{fast} is $1$, a faster but not statically timed version of the algorithm is used.
+
+The old version uses a simple binary left-to-right algorithm.
+It is faster than repeated multiplications by $a$ for all values of $b$ greater than three.
+
+The new version uses a binary right-to-left algorithm.
+
+The difference between the old and the new version is that the old version always
+executes $DIGIT\_BIT$ iterations. The new algorithm executes only $n$ iterations
+where $n$ is equal to the position of the highest bit that is set in $b$.
+
+\index{mp\_expt\_d}
+\begin{alltt}
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+mp\_expt\_d(a, b, c) is a wrapper function to mp\_expt\_d\_ex(a, b, c, 0).
+
+\section{Modular Exponentiation}
+\index{mp\_exptmod}
+\begin{alltt}
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+\end{alltt}
+This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm.  This function
+will automatically detect the fastest modular reduction technique to use during the operation.  For negative values of
+$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
+$gcd(G, P) = 1$.
+
+This function is actually a shell around the two internal exponentiation functions.  This routine will automatically
+detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used.  Generally
+moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations.  Followed by Montgomery
+and the other two algorithms.
+
+\section{Root Finding}
+\index{mp\_n\_root}
+\begin{alltt}
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$.  The implementation of this function is not
+ideal for values of $b$ greater than three.  It will work but become very slow.  So unless you are working with very small
+numbers (less than 1000 bits) I'd avoid $b > 3$ situations.  Will return a positive root only for even roots and return
+a root with the sign of the input for odd roots.  For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
+will return $-2$.
+
+This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly.  Since
+the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
+values of $b$.  If particularly large roots are required then a factor method could be used instead.  For example,
+$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply
+$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
+
+\chapter{Prime Numbers}
+\section{Trial Division}
+\index{mp\_prime\_is\_divisible}
+\begin{alltt}
+int mp_prime_is_divisible (mp_int * a, int *result)
+\end{alltt}
+This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the
+outcome in ``result''.  That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is.  Note that
+if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
+the default is to set it to zero first.}.
+
+\section{Fermat Test}
+\index{mp\_prime\_fermat}
+\begin{alltt}
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Fermat primality test to the base $b$.  That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
+equal to $b$ or not.  If the values are equal then $a$ is probably prime and $result$ is set to one.  Otherwise $result$
+is set to zero.
+
+\section{Miller-Rabin Test}
+\index{mp\_prime\_miller\_rabin}
+\begin{alltt}
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Miller-Rabin test to the base $b$ of $a$.  This test is much stronger than the Fermat test and is very hard to
+fool (besides with Carmichael numbers).  If $a$ passes the test (therefore is probably prime) $result$ is set to one.
+Otherwise $result$ is set to zero.
+
+Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of
+Miller-Rabin are a subset of the failures of the Fermat test.
+
+\subsection{Required Number of Tests}
+Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
+or so unique bases.  However, it has been proven that the probability of failure goes down as the size of the input goes up.
+This is why a simple function has been provided to help out.
+
+\index{mp\_prime\_rabin\_miller\_trials}
+\begin{alltt}
+int mp_prime_rabin_miller_trials(int size)
+\end{alltt}
+This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
+in bits.  This comes in handy specially since larger numbers are slower to test.  For example, a 512-bit number would
+require ten tests whereas a 1024-bit number would only require four tests.
+
+You should always still perform a trial division before a Miller-Rabin test though.
+
+\section{Primality Testing}
+\index{mp\_prime\_is\_prime}
+\begin{alltt}
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+\end{alltt}
+This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.
+If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.  Note that $t$ is bounded by
+$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
+
+\section{Next Prime}
+\index{mp\_prime\_next\_prime}
+\begin{alltt}
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
+\end{alltt}
+This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests.  Set $bbs\_style$ to one if you
+want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
+
+\section{Random Primes}
+\index{mp\_prime\_random}
+\begin{alltt}
+int mp_prime_random(mp_int *a, int t, int size, int bbs,
+                    ltm_prime_callback cb, void *dat)
+\end{alltt}
+This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
+$t$ rounds of tests.  The ``ltm\_prime\_callback'' is a typedef for
+
+\begin{alltt}
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+\end{alltt}
+
+Which is a function that must read $len$ bytes (and return the amount stored) into $dst$.  The $dat$ variable is simply
+copied from the original input.  It can be used to pass RNG context data to the callback.  The function
+mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
+is no skew on the least significant bits.
+
+\textit{Note:}  As of v0.30 of the LibTomMath library this function has been deprecated.  It is still available
+but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
+
+\subsection{Extended Generation}
+\index{mp\_prime\_random\_ex}
+\begin{alltt}
+int mp_prime_random_ex(mp_int *a,    int t,
+                       int     size, int flags,
+                       ltm_prime_callback cb, void *dat);
+\end{alltt}
+This will generate a prime in $a$ using $t$ tests of the primality testing algorithms.  The variable $size$
+specifies the bit length of the prime desired.  The variable $flags$ specifies one of several options available
+(see fig. \ref{fig:primeopts}) which can be OR'ed together.  The callback parameters are used as in
+mp\_prime\_random().
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|r|l|}
+\hline \textbf{Flag}         & \textbf{Meaning} \\
+\hline LTM\_PRIME\_BBS       & Make the prime congruent to $3$ modulo $4$ \\
+\hline LTM\_PRIME\_SAFE      & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
+                             & This option implies LTM\_PRIME\_BBS as well. \\
+\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
+                             & Is forced to zero.  \\
+\hline LTM\_PRIME\_2MSB\_ON  & Makes sure that the bit adjacent to the most significant bit \\
+                             & Is forced to one. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Primality Generation Options}
+\label{fig:primeopts}
+\end{figure}
+
+\chapter{Input and Output}
+\section{ASCII Conversions}
+\subsection{To ASCII}
+\index{mp\_toradix}
+\begin{alltt}
+int mp_toradix (mp_int * a, char *str, int radix);
+\end{alltt}
+This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars.  This function appends a NUL character
+to terminate the string.  Valid values of ``radix'' line in the range $[2, 64]$.  To determine the size (exact) required
+by the conversion before storing any data use the following function.
+
+\index{mp\_radix\_size}
+\begin{alltt}
+int mp_radix_size (mp_int * a, int radix, int *size)
+\end{alltt}
+This stores in ``size'' the number of characters (including space for the NUL terminator) required.  Upon error this
+function returns an error code and ``size'' will be zero.
+
+\subsection{From ASCII}
+\index{mp\_read\_radix}
+\begin{alltt}
+int mp_read_radix (mp_int * a, char *str, int radix);
+\end{alltt}
+This will read the base-``radix'' NUL terminated string from ``str'' into $a$.  It will stop reading when it reads a
+character it does not recognize (which happens to include th NUL char... imagine that...).  A single leading $-$ sign
+can be used to denote a negative number.
+
+\section{Binary Conversions}
+
+Converting an mp\_int to and from binary is another keen idea.
+
+\index{mp\_unsigned\_bin\_size}
+\begin{alltt}
+int mp_unsigned_bin_size(mp_int *a);
+\end{alltt}
+
+This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
+
+\index{mp\_to\_unsigned\_bin}
+\begin{alltt}
+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+\end{alltt}
+This will store $a$ into the buffer $b$ in big--endian format.  Fortunately this is exactly what DER (or is it ASN?)
+requires.  It does not store the sign of the integer.
+
+\index{mp\_read\_unsigned\_bin}
+\begin{alltt}
+int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
+\end{alltt}
+This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$.  The resulting
+integer $a$ will always be positive.
+
+For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
+previous functions.
+
+\begin{alltt}
+int mp_signed_bin_size(mp_int *a);
+int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_signed_bin(mp_int *a, unsigned char *b);
+\end{alltt}
+They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
+byte depending on the sign.  If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
+is non--zero.
+
+\chapter{Algebraic Functions}
+\section{Extended Euclidean Algorithm}
+\index{mp\_exteuclid}
+\begin{alltt}
+int mp_exteuclid(mp_int *a, mp_int *b,
+                 mp_int *U1, mp_int *U2, mp_int *U3);
+\end{alltt}
+
+This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
+
+\begin{equation}
+a \cdot U1 + b \cdot U2 = U3
+\end{equation}
+
+Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
+
+\section{Greatest Common Divisor}
+\index{mp\_gcd}
+\begin{alltt}
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
+
+\section{Least Common Multiple}
+\index{mp\_lcm}
+\begin{alltt}
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the least common multiple of $a$ and $b$ and store it in $c$.
+
+\section{Jacobi Symbol}
+\index{mp\_jacobi}
+\begin{alltt}
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
+\end{alltt}
+This will compute the Jacobi symbol for $a$ with respect to $p$.  If $p$ is prime this essentially computes the Legendre
+symbol.  The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$.  If $p$ is prime
+then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$.  The result will be $0$ if $a$ divides $p$
+and the result will be $1$ if $a$ is a quadratic residue modulo $p$.
+
+\section{Modular square root}
+\index{mp\_sqrtmod\_prime}
+\begin{alltt}
+int mp_sqrtmod_prime(mp_int *n, mp_int *p, mp_int *r)
+\end{alltt}
+
+This will solve the modular equatioon $r^2 = n \mod p$ where $p$ is a prime number greater than 2 (odd prime).
+The result is returned in the third argument $r$, the function returns \textbf{MP\_OKAY} on success,
+other return values indicate failure.
+
+The implementation is split for two different cases:
+
+1. if $p \mod 4 == 3$ we apply \href{http://cacr.uwaterloo.ca/hac/}{Handbook of Applied Cryptography algorithm 3.36} and compute $r$ directly as
+$r = n^{(p+1)/4} \mod p$
+
+2. otherwise we use \href{https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm}{Tonelli-Shanks algorithm}
+
+The function does not check the primality of parameter $p$ thus it is up to the caller to assure that this parameter
+is a prime number. When $p$ is a composite the function behaviour is undefined, it may even return a false-positive
+\textbf{MP\_OKAY}.
+
+\section{Modular Inverse}
+\index{mp\_invmod}
+\begin{alltt}
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
+
+\section{Single Digit Functions}
+
+For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
+
+\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
+\begin{alltt}
+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+\end{alltt}
+
+These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit.  These
+functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
+an entire mp\_int to store a number like $1$ or $2$.
+
+\input{bn.ind}
+
+\end{document}
diff --git a/doc/makefile b/doc/makefile
new file mode 100644
index 0000000..fcc47c9
--- /dev/null
+++ b/doc/makefile
@@ -0,0 +1,69 @@
+ifeq ($V,1)
+silent_stdout=
+else
+silent_stdout= > /dev/null
+endif
+
+PLATFORM := $(shell uname | sed -e 's/_.*//')
+ifeq ($(PLATFORM), Darwin)
+err:
+	$(error Docs can't be built on Mac)
+
+docdvi poster docs mandvi manual: err
+endif
+
+# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
+docdvi: tommath.src
+	cd pics ; MAKE=${MAKE} ${MAKE}
+	echo "hello" ${silent_stdout}
+	perl booker.pl
+	latex tommath ${silent_stdout}
+	latex tommath ${silent_stdout}
+	makeindex tommath
+	latex tommath ${silent_stdout}
+
+# poster, makes the single page PDF poster
+poster: poster.tex
+	cp poster.tex poster.bak
+	touch --reference=poster.tex poster.bak
+	(printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y poster.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > poster-deterministic.tex
+	printf "%s\n" "\pdfinfo{" >> poster-deterministic.tex
+	printf "%s\n" "  /CreationDate (\fixedpdfdate)" >> poster-deterministic.tex
+	printf "%s\n}\n" "  /ModDate (\fixedpdfdate)" >> poster-deterministic.tex
+	cat poster.tex >> poster-deterministic.tex
+	mv poster-deterministic.tex poster.tex
+	touch --reference=poster.bak poster.tex
+	pdflatex poster
+	sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' poster.pdf
+	mv poster.bak poster.tex
+	rm -f poster.aux poster.log poster.out
+
+# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
+docs: docdvi
+	dvipdf tommath
+	rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
+	cd pics ; MAKE=${MAKE} ${MAKE} clean
+
+#LTM user manual
+mandvi: bn.tex
+	cp bn.tex bn.bak
+	touch --reference=bn.tex bn.bak
+	(printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y bn.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > bn-deterministic.tex
+	printf "%s\n" "\pdfinfo{" >> bn-deterministic.tex
+	printf "%s\n" "  /CreationDate (\fixedpdfdate)" >> bn-deterministic.tex
+	printf "%s\n}\n" "  /ModDate (\fixedpdfdate)" >> bn-deterministic.tex
+	cat bn.tex >> bn-deterministic.tex
+	mv bn-deterministic.tex bn.tex
+	touch --reference=bn.bak bn.tex
+	echo "hello" > bn.ind
+	latex bn ${silent_stdout}
+	latex bn ${silent_stdout}
+	makeindex bn
+	latex bn ${silent_stdout}
+
+#LTM user manual [pdf]
+manual:	mandvi
+	pdflatex bn >/dev/null
+	sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' bn.pdf
+	mv bn.bak bn.tex
+	rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
diff --git a/doc/pics/design_process.sxd b/doc/pics/design_process.sxd
new file mode 100644
index 0000000..7414dbb
Binary files /dev/null and b/doc/pics/design_process.sxd differ
diff --git a/doc/pics/design_process.tif b/doc/pics/design_process.tif
new file mode 100644
index 0000000..4a0c012
Binary files /dev/null and b/doc/pics/design_process.tif differ
diff --git a/doc/pics/expt_state.sxd b/doc/pics/expt_state.sxd
new file mode 100644
index 0000000..6518404
Binary files /dev/null and b/doc/pics/expt_state.sxd differ
diff --git a/doc/pics/expt_state.tif b/doc/pics/expt_state.tif
new file mode 100644
index 0000000..cb06e8e
Binary files /dev/null and b/doc/pics/expt_state.tif differ
diff --git a/doc/pics/makefile b/doc/pics/makefile
new file mode 100644
index 0000000..3ecb02f
--- /dev/null
+++ b/doc/pics/makefile
@@ -0,0 +1,35 @@
+# makes the images... yeah
+
+default:  pses
+
+design_process.ps: design_process.tif
+	tiff2ps -s -e design_process.tif > design_process.ps
+
+sliding_window.ps: sliding_window.tif
+	tiff2ps -s -e sliding_window.tif > sliding_window.ps
+	
+expt_state.ps: expt_state.tif
+	tiff2ps -s -e expt_state.tif > expt_state.ps
+
+primality.ps: primality.tif
+	tiff2ps -s -e primality.tif > primality.ps
+
+design_process.pdf: design_process.ps
+	epstopdf design_process.ps
+
+sliding_window.pdf: sliding_window.ps
+	epstopdf sliding_window.ps
+	
+expt_state.pdf: expt_state.ps
+	epstopdf expt_state.ps
+
+primality.pdf: primality.ps
+	epstopdf primality.ps
+
+
+pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
+pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
+
+clean:
+	rm -rf *.ps *.pdf .xvpics
+   
\ No newline at end of file
diff --git a/doc/pics/primality.tif b/doc/pics/primality.tif
new file mode 100644
index 0000000..76d6be3
Binary files /dev/null and b/doc/pics/primality.tif differ
diff --git a/doc/pics/radix.sxd b/doc/pics/radix.sxd
new file mode 100644
index 0000000..b9eb9a0
Binary files /dev/null and b/doc/pics/radix.sxd differ
diff --git a/doc/pics/sliding_window.sxd b/doc/pics/sliding_window.sxd
new file mode 100644
index 0000000..91e7c0d
Binary files /dev/null and b/doc/pics/sliding_window.sxd differ
diff --git a/doc/pics/sliding_window.tif b/doc/pics/sliding_window.tif
new file mode 100644
index 0000000..bb4cb96
Binary files /dev/null and b/doc/pics/sliding_window.tif differ
diff --git a/makefile b/makefile
index 96578ee..3fd47d2 100644
--- a/makefile
+++ b/makefile
@@ -108,61 +108,8 @@ timing: $(LIBNAME)
 coveralls: coverage
 	cpp-coveralls
 
-# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
-docdvi: tommath.src
-	cd pics ; MAKE=${MAKE} ${MAKE}
-	echo "hello" > tommath.ind
-	perl booker.pl
-	latex tommath > /dev/null
-	latex tommath > /dev/null
-	makeindex tommath
-	latex tommath > /dev/null
-
-# poster, makes the single page PDF poster
-poster: poster.tex
-	cp poster.tex poster.bak
-	touch --reference=poster.tex poster.bak
-	(printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y poster.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > poster-deterministic.tex
-	printf "%s\n" "\pdfinfo{" >> poster-deterministic.tex
-	printf "%s\n" "  /CreationDate (\fixedpdfdate)" >> poster-deterministic.tex
-	printf "%s\n}\n" "  /ModDate (\fixedpdfdate)" >> poster-deterministic.tex
-	cat poster.tex >> poster-deterministic.tex
-	mv poster-deterministic.tex poster.tex
-	touch --reference=poster.bak poster.tex
-	pdflatex poster
-	sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' poster.pdf
-	mv poster.bak poster.tex
-	rm -f poster.aux poster.log poster.out
-
-# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
-docs:   docdvi
-	dvipdf tommath
-	rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
-	cd pics ; MAKE=${MAKE} ${MAKE} clean
-
-#LTM user manual
-mandvi: bn.tex
-	cp bn.tex bn.bak
-	touch --reference=bn.tex bn.bak
-	(printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y bn.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > bn-deterministic.tex
-	printf "%s\n" "\pdfinfo{" >> bn-deterministic.tex
-	printf "%s\n" "  /CreationDate (\fixedpdfdate)" >> bn-deterministic.tex
-	printf "%s\n}\n" "  /ModDate (\fixedpdfdate)" >> bn-deterministic.tex
-	cat bn.tex >> bn-deterministic.tex
-	mv bn-deterministic.tex bn.tex
-	touch --reference=bn.bak bn.tex
-	echo "hello" > bn.ind
-	latex bn > /dev/null
-	latex bn > /dev/null
-	makeindex bn
-	latex bn > /dev/null
-
-#LTM user manual [pdf]
-manual:	mandvi
-	pdflatex bn >/dev/null
-	sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' bn.pdf
-	mv bn.bak bn.tex
-	rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
+docdvi poster docs mandvi manual:
+	$(MAKE) -C doc/ $@ V=$(V)
 
 pretty:
 	perl pretty.build
diff --git a/pics/design_process.sxd b/pics/design_process.sxd
deleted file mode 100644
index 7414dbb..0000000
Binary files a/pics/design_process.sxd and /dev/null differ
diff --git a/pics/design_process.tif b/pics/design_process.tif
deleted file mode 100644
index 4a0c012..0000000
Binary files a/pics/design_process.tif and /dev/null differ
diff --git a/pics/expt_state.sxd b/pics/expt_state.sxd
deleted file mode 100644
index 6518404..0000000
Binary files a/pics/expt_state.sxd and /dev/null differ
diff --git a/pics/expt_state.tif b/pics/expt_state.tif
deleted file mode 100644
index cb06e8e..0000000
Binary files a/pics/expt_state.tif and /dev/null differ
diff --git a/pics/makefile b/pics/makefile
deleted file mode 100644
index 3ecb02f..0000000
--- a/pics/makefile
+++ /dev/null
@@ -1,35 +0,0 @@
-# makes the images... yeah
-
-default:  pses
-
-design_process.ps: design_process.tif
-	tiff2ps -s -e design_process.tif > design_process.ps
-
-sliding_window.ps: sliding_window.tif
-	tiff2ps -s -e sliding_window.tif > sliding_window.ps
-	
-expt_state.ps: expt_state.tif
-	tiff2ps -s -e expt_state.tif > expt_state.ps
-
-primality.ps: primality.tif
-	tiff2ps -s -e primality.tif > primality.ps
-
-design_process.pdf: design_process.ps
-	epstopdf design_process.ps
-
-sliding_window.pdf: sliding_window.ps
-	epstopdf sliding_window.ps
-	
-expt_state.pdf: expt_state.ps
-	epstopdf expt_state.ps
-
-primality.pdf: primality.ps
-	epstopdf primality.ps
-
-
-pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
-pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
-
-clean:
-	rm -rf *.ps *.pdf .xvpics
-   
\ No newline at end of file
diff --git a/pics/primality.tif b/pics/primality.tif
deleted file mode 100644
index 76d6be3..0000000
Binary files a/pics/primality.tif and /dev/null differ
diff --git a/pics/radix.sxd b/pics/radix.sxd
deleted file mode 100644
index b9eb9a0..0000000
Binary files a/pics/radix.sxd and /dev/null differ
diff --git a/pics/sliding_window.sxd b/pics/sliding_window.sxd
deleted file mode 100644
index 91e7c0d..0000000
Binary files a/pics/sliding_window.sxd and /dev/null differ
diff --git a/pics/sliding_window.tif b/pics/sliding_window.tif
deleted file mode 100644
index bb4cb96..0000000
Binary files a/pics/sliding_window.tif and /dev/null differ