Commit eed6765fe99a3e239152ae58fb7435be6221cc15

Tom St Denis 2003-07-12T14:31:43

added libtommath-0.23

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
diff --git a/bn.pdf b/bn.pdf
index a002099..8eac8d8 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index b5b17ec..d243a70 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
 \documentclass[]{article}
 \begin{document}
 
-\title{LibTomMath v0.22 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
+\title{LibTomMath v0.23 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
 \author{Tom St Denis \\ tomstdenis@iahu.ca}
 \maketitle
 \newpage
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index 5c003e3..7017455 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -64,7 +64,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
      * that W[ix-1] have  the carry cleared (see after the inner loop)
      */
     register mp_digit mu;
-    mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
+    mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;
 
     /* a = a + mu * m * b**i
      *
@@ -93,7 +93,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
       /* inner loop */
       for (iy = 0; iy < n->used; iy++) {
-          *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
+          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
       }
     }
 
@@ -101,7 +101,6 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
   }
 
-
   {
     register mp_digit *tmpx;
     register mp_word *_W, *_W1;
diff --git a/bn_fast_s_mp_mul_digs.c b/bn_fast_s_mp_mul_digs.c
index d09489d..bca2a71 100644
--- a/bn_fast_s_mp_mul_digs.c
+++ b/bn_fast_s_mp_mul_digs.c
@@ -81,7 +81,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
       pb = MIN (b->used, digs - ix);
 
       for (iy = 0; iy < pb; iy++) {
-        *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+        *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
       }
     }
 
@@ -104,20 +104,27 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
      * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the 
      * cost of the shifting.  On very small numbers this is slower 
      * but on most cryptographic size numbers it is faster.
+     *
+     * In this particular implementation we feed the carries from
+     * behind which means when the loop terminates we still have one
+     * last digit to copy
      */
     tmpc = c->dp;
     for (ix = 1; ix < digs; ix++) {
+      /* forward the carry from the previous temp */
       W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+
+      /* now extract the previous digit [below the carry] */
       *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
     }
+    /* fetch the last digit */
     *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
 
-    /* clear unused */
+    /* clear unused digits [that existed in the old copy of c] */
     for (; ix < olduse; ix++) {
       *tmpc++ = 0;
     }
   }
-
   mp_clamp (c);
   return MP_OKAY;
 }
diff --git a/bn_fast_s_mp_mul_high_digs.c b/bn_fast_s_mp_mul_high_digs.c
index 1cc1639..e0e9281 100644
--- a/bn_fast_s_mp_mul_high_digs.c
+++ b/bn_fast_s_mp_mul_high_digs.c
@@ -71,7 +71,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 
       /* compute column products for digits above the minimum */
       for (; iy < pb; iy++) {
-    *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+         *_W++ += ((mp_word) tmpx) * ((mp_word)*tmpy++);
       }
     }
   }
@@ -80,12 +80,15 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
   oldused = c->used;
   c->used = newused;
 
-  /* now convert the array W downto what we need */
+  /* now convert the array W downto what we need
+   *
+   * See comments in bn_fast_s_mp_mul_digs.c
+   */
   for (ix = digs + 1; ix < newused; ix++) {
     W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
     c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
   }
-  c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
+  c->dp[newused - 1] = (mp_digit) (W[newused - 1] & ((mp_word) MP_MASK));
 
   for (; ix < oldused; ix++) {
     c->dp[ix] = 0;
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index 74179ee..2c01cd0 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -68,7 +68,7 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
      * for a particular column only once which means that
      * there is no need todo a double precision addition
      */
-    W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+    W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
 
     {
       register mp_digit tmpx, *tmpy;
@@ -86,7 +86,7 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
 
       /* inner products */
       for (iy = ix + 1; iy < pa; iy++) {
-          *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+          *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
       }
     }
   }
diff --git a/bn_mp_clear.c b/bn_mp_clear.c
index 8273ac9..bc31c42 100644
--- a/bn_mp_clear.c
+++ b/bn_mp_clear.c
@@ -19,7 +19,6 @@ void
 mp_clear (mp_int * a)
 {
   if (a->dp != NULL) {
-
     /* first zero the digits */
     memset (a->dp, 0, sizeof (mp_digit) * a->used);
 
@@ -27,7 +26,7 @@ mp_clear (mp_int * a)
     free (a->dp);
 
     /* reset members to make debugging easier */
-    a->dp = NULL;
+    a->dp    = NULL;
     a->alloc = a->used = 0;
   }
 }
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index c721e6e..0f683a5 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -14,6 +14,19 @@
  */
 #include <tommath.h>
 
+static int s_is_power_of_two(mp_digit b, int *p)
+{
+   int x;
+
+   for (x = 1; x < DIGIT_BIT; x++) {
+      if (b == (((mp_digit)1)<<x)) {
+         *p = x;
+         return 1;
+      }
+   }
+   return 0;
+}
+
 /* single digit division (based on routine from MPI) */
 int
 mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
@@ -22,15 +35,40 @@ mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
   mp_word w;
   mp_digit t;
   int     res, ix;
-  
+
+  /* cannot divide by zero */
   if (b == 0) {
      return MP_VAL;
   }
-  
+
+  /* quick outs */
+  if (b == 1 || mp_iszero(a) == 1) {
+     if (d != NULL) {
+        *d = 0;
+     }
+     if (c != NULL) {
+        return mp_copy(a, c);
+     }
+     return MP_OKAY;
+  }
+
+  /* power of two ? */
+  if (s_is_power_of_two(b, &ix) == 1) {
+     if (d != NULL) {
+        *d = a->dp[0] & ((1<<ix) - 1);
+     }
+     if (c != NULL) {
+        return mp_div_2d(a, ix, c, NULL);
+     }
+     return MP_OKAY;
+  }
+
+  /* three? */
   if (b == 3) {
      return mp_div_3(a, c, d);
   }
-  
+
+  /* no easy answer [c'est la vie].  Just division */
   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index 567d614..8a5e565 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -82,7 +82,6 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
     }
   }
 
-
   /* determine and setup reduction code */
   if (redmode == 0) {
      /* now setup montgomery  */
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index e422cf3..99a8a55 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -44,7 +44,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
   for (ix = 0; ix < n->used; ix++) {
     /* mu = ai * m' mod b */
-    mu = (x->dp[ix] * rho) & MP_MASK;
+    mu = ((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK;
 
     /* a = a + mu * m * b**i */
     {
@@ -61,7 +61,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
       
       /* Multiply and add in place */
       for (iy = 0; iy < n->used; iy++) {
-        r       = ((mp_word) mu) * ((mp_word) * tmpn++) + 
+        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
                   ((mp_word) u) + ((mp_word) * tmpx);
         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
         *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
diff --git a/bn_mp_mul_d.c b/bn_mp_mul_d.c
index 1c22208..8379035 100644
--- a/bn_mp_mul_d.c
+++ b/bn_mp_mul_d.c
@@ -50,7 +50,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
     u = 0;
     for (ix = 0; ix < pa; ix++) {
       /* compute product and carry sum for this term */
-      r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
+      r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 
       /* mask off higher bits to get a single digit */
       *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c
index 202f45a..b0e9746 100644
--- a/bn_mp_prime_fermat.c
+++ b/bn_mp_prime_fermat.c
@@ -31,6 +31,11 @@ mp_prime_fermat (mp_int * a, mp_int * b, int *result)
   /* default to fail */
   *result = 0;
 
+  /* ensure b > 1 */
+  if (mp_cmp_d(b, 1) != MP_GT) {
+     return MP_VAL;
+  }
+
   /* init t */
   if ((err = mp_init (&t)) != MP_OKAY) {
     return err;
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
index 1a782b3..f9cece9 100644
--- a/bn_mp_prime_is_prime.c
+++ b/bn_mp_prime_is_prime.c
@@ -17,7 +17,7 @@
 /* performs a variable number of rounds of Miller-Rabin
  *
  * Probability of error after t rounds is no more than
- * (1/4)^t when 1 <= t <= 256
+ * (1/4)^t when 1 <= t <= PRIME_SIZE
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
@@ -31,7 +31,7 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
   *result = 0;
 
   /* valid value of t? */
-  if (t < 1 || t > PRIME_SIZE) {
+  if (t <= 0 || t > PRIME_SIZE) {
     return MP_VAL;
   }
 
@@ -47,6 +47,8 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
   if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
     return err;
   }
+
+  /* return if it was trivially divisible */
   if (res == 1) {
     return MP_OKAY;
   }
diff --git a/bn_mp_prime_miller_rabin.c b/bn_mp_prime_miller_rabin.c
index 4a96674..f68ba75 100644
--- a/bn_mp_prime_miller_rabin.c
+++ b/bn_mp_prime_miller_rabin.c
@@ -30,6 +30,11 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   /* default */
   *result = 0;
 
+  /* ensure b > 1 */
+  if (mp_cmp_d(b, 1) != MP_GT) {
+     return MP_VAL;
+  }     
+
   /* get n1 = a - 1 */
   if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
     return err;
@@ -42,8 +47,13 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
     goto __N1;
   }
- 
+
+  /* count the number of least significant bits
+   * which are zero
+   */
   s = mp_cnt_lsb(&r);
+
+  /* now divide n - 1 by 2^s */
   if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
     goto __R;
   }
diff --git a/bn_mp_prime_next_prime.c b/bn_mp_prime_next_prime.c
index cfebbe5..0dde42a 100644
--- a/bn_mp_prime_next_prime.c
+++ b/bn_mp_prime_next_prime.c
@@ -16,39 +16,151 @@
 
 /* finds the next prime after the number "a" using "t" trials
  * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
  */
-int mp_prime_next_prime(mp_int *a, int t)
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
 {
-   int err, res;
+   int      err, res, x, y;
+   mp_digit res_tab[PRIME_SIZE], step, kstep;
+   mp_int   b;
 
-   if (mp_iseven(a) == 1) {
-      /* force odd */
-      if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
-         return err;
+   /* ensure t is valid */
+   if (t <= 0 || t > PRIME_SIZE) {
+      return MP_VAL;
+   }
+
+   /* force positive */
+   if (a->sign == MP_NEG) {
+      a->sign = MP_ZPOS;
+   }
+
+   /* simple algo if a is less than the largest prime in the table */
+   if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) {
+      /* find which prime it is bigger than */
+      for (x = PRIME_SIZE - 2; x >= 0; x--) {
+          if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) {
+             if (bbs_style == 1) {
+                /* ok we found a prime smaller or
+                 * equal [so the next is larger]
+                 *
+                 * however, the prime must be
+                 * congruent to 3 mod 4
+                 */
+                if ((__prime_tab[x + 1] & 3) != 3) {
+                   /* scan upwards for a prime congruent to 3 mod 4 */
+                   for (y = x + 1; y < PRIME_SIZE; y++) {
+                       if ((__prime_tab[y] & 3) == 3) {
+                          mp_set(a, __prime_tab[y]);
+                          return MP_OKAY;
+                       }
+                   }
+                }
+             } else {
+                mp_set(a, __prime_tab[x + 1]);
+                return MP_OKAY;
+             }
+          }
+      }
+      /* at this point a maybe 1 */
+      if (mp_cmp_d(a, 1) == MP_EQ) {
+         mp_set(a, 2);
+         return MP_OKAY;
+      }
+      /* fall through to the sieve */
+   }
+
+   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
+   if (bbs_style == 1) {
+      kstep   = 4;
+   } else {
+      kstep   = 2;
+   }
+
+   /* at this point we will use a combination of a sieve and Miller-Rabin */
+
+   if (bbs_style == 1) {
+      /* if a mod 4 != 3 subtract the correct value to make it so */
+      if ((a->dp[0] & 3) != 3) {
+         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
       }
    } else {
-      /* force to next odd number */
-      if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
+      if (mp_iseven(a) == 1) {
+         /* force odd */
+         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
+            return err;
+         }
+      }
+   }
+
+   /* generate the restable */
+   for (x = 1; x < PRIME_SIZE; x++) {
+      if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) {
          return err;
       }
    }
 
+   /* init temp used for Miller-Rabin Testing */
+   if ((err = mp_init(&b)) != MP_OKAY) {
+      return err;
+   }
+
    for (;;) {
+      /* skip to the next non-trivially divisible candidate */
+      step = 0;
+      do {
+         /* y == 1 if any residue was zero [e.g. cannot be prime] */
+         y     =  0;
+
+         /* increase step to next odd */
+         step += kstep;
+
+         /* compute the new residue without using division */
+         for (x = 1; x < PRIME_SIZE; x++) {
+             /* add the step to each residue */
+             res_tab[x] += kstep;
+
+             /* subtract the modulus [instead of using division] */
+             if (res_tab[x] >= __prime_tab[x]) {
+                res_tab[x]  -= __prime_tab[x];
+             }
+
+             /* set flag if zero */
+             if (res_tab[x] == 0) {
+                y = 1;
+             }
+         }
+      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
+
+      /* add the step */
+      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
+         goto __ERR;
+      }
+
+      /* if step == MAX then skip test */
+      if (step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
+         continue;
+      }
+
       /* is this prime? */
-      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
-         return err;
+      for (x = 0; x < t; x++) {
+          mp_set(&b, __prime_tab[t]);
+          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+             goto __ERR;
+          }
+          if (res == 0) {
+             break;
+          }
       }
 
       if (res == 1) {
          break;
       }
-
-      /* add two, next candidate */
-      if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
-         return err;
-      }
    }
 
-   return MP_OKAY;
+   err = MP_OKAY;
+__ERR:
+   mp_clear(&b);
+   return err;
 }
 
diff --git a/bn_mp_read_unsigned_bin.c b/bn_mp_read_unsigned_bin.c
index 378d1fa..8ca2c11 100644
--- a/bn_mp_read_unsigned_bin.c
+++ b/bn_mp_read_unsigned_bin.c
@@ -25,14 +25,14 @@ mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
       return res;
     }
 
-    if (DIGIT_BIT != 7) {
+#ifndef MP_8BIT
       a->dp[0] |= *b++;
       a->used += 1;
-    } else {
+#else
       a->dp[0] = (*b & MP_MASK);
       a->dp[1] |= ((*b++ >> 7U) & 1);
       a->used += 2;
-    }
+#endif
   }
   mp_clamp (a);
   return MP_OKAY;
diff --git a/bn_mp_to_unsigned_bin.c b/bn_mp_to_unsigned_bin.c
index 8f5eeb7..54e0739 100644
--- a/bn_mp_to_unsigned_bin.c
+++ b/bn_mp_to_unsigned_bin.c
@@ -27,11 +27,11 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
 
   x = 0;
   while (mp_iszero (&t) == 0) {
-    if (DIGIT_BIT != 7) {
+#ifndef MP_8BIT
       b[x++] = (unsigned char) (t.dp[0] & 255);
-    } else {
+#else
       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
-    }
+#endif
     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
       mp_clear (&t);
       return res;
diff --git a/bn_s_mp_mul_digs.c b/bn_s_mp_mul_digs.c
index c126a0c..cb3dbd7 100644
--- a/bn_s_mp_mul_digs.c
+++ b/bn_s_mp_mul_digs.c
@@ -62,7 +62,7 @@ s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
     for (iy = 0; iy < pb; iy++) {
       /* compute the column as a mp_word */
       r = ((mp_word) *tmpt) + 
-          ((mp_word) tmpx) * ((mp_word) * tmpy++) + 
+          ((mp_word)tmpx) * ((mp_word)*tmpy++) +
           ((mp_word) u);
 
       /* the new column is the lower part of the result */
diff --git a/bn_s_mp_mul_high_digs.c b/bn_s_mp_mul_high_digs.c
index bbe7378..a0c2c0e 100644
--- a/bn_s_mp_mul_high_digs.c
+++ b/bn_s_mp_mul_high_digs.c
@@ -55,7 +55,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 
     for (iy = digs - ix; iy < pb; iy++) {
       /* calculate the double precision result */
-      r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
+      r = ((mp_word) * tmpt) + ((mp_word)tmpx) * ((mp_word)*tmpy++) + ((mp_word) u);
 
       /* get the lower part */
       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index bd4bc51..d45a00e 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -32,8 +32,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
   for (ix = 0; ix < pa; ix++) {
     /* first calculate the digit at 2*ix */
     /* calculate double precision result */
-    r = ((mp_word) t.dp[2*ix]) + 
-        ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+    r = ((mp_word) t.dp[2*ix]) +
+        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 
     /* store lower part in result */
     t.dp[2*ix] = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -49,12 +49,12 @@ s_mp_sqr (mp_int * a, mp_int * b)
     
     for (iy = ix + 1; iy < pa; iy++) {
       /* first calculate the product */
-      r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
+      r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 
       /* now calculate the double precision result, note we use
        * addition instead of *2 since it's easier to optimize
        */
-      r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
+      r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 
       /* store lower part */
       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/changes.txt b/changes.txt
index 2dc77c8..be4869f 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,21 @@
+July 12th, 2003
+v0.23  -- Optimized mp_prime_next_prime() to not use mp_mod [via is_divisible()] in each
+          iteration.  Instead now a smaller table is kept of the residues which can be updated
+          without division.
+       -- Fixed a bug in next_prime() where an input of zero would be treated as odd and
+          have two added to it [to move to the next odd].
+       -- fixed a bug in prime_fermat() and prime_miller_rabin() which allowed the base
+          to be negative, zero or one.  Normally the test is only valid if the base is
+          greater than one.
+       -- changed the next_prime() prototype to accept a new parameter "bbs_style" which
+          will find the next prime congruent to 3 mod 4.  The default [bbs_style==0] will
+          make primes which are either congruent to 1 or 3 mod 4.
+       -- fixed mp_read_unsigned_bin() so that it doesn't include both code for
+          the case DIGIT_BIT < 8 and >= 8
+       -- optimized div_d() to easy out on division by 1 [or if a == 0] and use
+          logical shifts if the divisor is a power of two.
+       -- the default DIGIT_BIT type was not int for non-default builds.  Fixed.
+
 July 2nd, 2003
 v0.22  -- Fixed up mp_invmod so the result is properly in range now [was always congruent to the inverse...]
        -- Fixed up s_mp_exptmod and mp_exptmod_fast so the lower half of the pre-computed table isn't allocated
diff --git a/demo/demo.c b/demo/demo.c
index a60d112..e7b3fdb 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -66,6 +66,31 @@ int main(void)
    srand(time(NULL));
 
 #if 0
+   for (;;) {
+      fgets(buf, sizeof(buf), stdin);
+      mp_read_radix(&a, buf, 10);
+      mp_prime_next_prime(&a, 5, 1);
+      mp_toradix(&a, buf, 10);
+      printf("%s, %lu\n", buf, a.dp[0] & 3);
+   }
+#endif
+
+#if 0
+{
+   mp_word aa, bb;
+
+   for (;;) {
+       aa = abs(rand()) & MP_MASK;
+       bb = abs(rand()) & MP_MASK;
+	  if (MULT(aa,bb) != (aa*bb)) {
+             printf("%llu * %llu == %llu or %llu?\n", aa, bb, (ulong64)MULT(aa,bb), (ulong64)(aa*bb));
+             return 0;
+          }
+   }
+}
+#endif
+
+#if 0
    /* test mp_cnt_lsb */
    mp_set(&a, 1);
    for (ix = 0; ix < 128; ix++) {
@@ -122,7 +147,6 @@ int main(void)
 
 /* test the DR reduction */
 #if 0
-
    for (cnt = 2; cnt < 32; cnt++) {
        printf("%d digit modulus\n", cnt);
        mp_grow(&a, cnt);
@@ -175,8 +199,6 @@ int main(void)
          fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
       }
       fclose(log);
-      
-      return 0;
 
       log = fopen("logs/sub.log", "w");
       for (cnt = 8; cnt <= 128; cnt += 8) {
diff --git a/etc/2kprime.1 b/etc/2kprime.1
index c41ded1..e1384db 100644
--- a/etc/2kprime.1
+++ b/etc/2kprime.1
@@ -1,2 +1 @@
-256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
-512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
+259-bits (k = 17745) = 926336713898529563388567880069503262826159877325124512315660672063305037101743
diff --git a/etc/drprime.c b/etc/drprime.c
index 157e358..2b561e3 100644
--- a/etc/drprime.c
+++ b/etc/drprime.c
@@ -1,7 +1,7 @@
 /* Makes safe primes of a DR nature */
 #include <tommath.h>
 
-const int sizes[] = { 8, 19, 28, 37, 55, 74,  110, 147 };
+int sizes[] = { 256/DIGIT_BIT, 512/DIGIT_BIT, 768/DIGIT_BIT, 1024/DIGIT_BIT, 2048/DIGIT_BIT, 4096/DIGIT_BIT };
 int main(void)
 {
    int res, x, y;
@@ -14,6 +14,7 @@ int main(void)
    
    out = fopen("drprimes.txt", "w");
    for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
+   top:
        printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
        mp_grow(&a, sizes[x]);
        mp_zero(&a);
@@ -22,21 +23,26 @@ int main(void)
        }
        
        /* make a DR modulus */
-       a.dp[0] = 1;
+       a.dp[0] = -1;
        a.used = sizes[x];
        
        /* now loop */
-       do { 
-          fflush(stdout);
-          mp_prime_next_prime(&a, 3);
-          printf(".");
+       for (;;) { 
+          a.dp[0] += 4;
+          if (a.dp[0] >= MP_MASK) break;
+          mp_prime_is_prime(&a, 1, &res);
+          if (res == 0) continue;
+          printf("."); fflush(stdout);
           mp_sub_d(&a, 1, &b);
           mp_div_2(&b, &b);
           mp_prime_is_prime(&b, 3, &res);  
-	} while (res == 0);          
+          if (res == 0) continue;
+          mp_prime_is_prime(&a, 3, &res);
+          if (res == 1) break;
+	}
         
-        if (mp_dr_is_modulus(&a) != 1) {
-           printf("Error not DR modulus\n");
+        if (res != 1) {
+           printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
         } else {
            mp_toradix(&a, buf, 10);
            printf("\n\np == %s\n\n", buf);
diff --git a/etc/drprimes.1 b/etc/drprimes.1
deleted file mode 100644
index e7cc366..0000000
--- a/etc/drprimes.1
+++ /dev/null
@@ -1,23 +0,0 @@
-224-bit prime:
-p == 26959946667150639794667015087019630673637144422540572481103341844143
-
-532-bit prime:
-p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
-
-784-bit prime:
-p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
-
-1036-bit prime:
-p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
-
-1540-bit prime:
-p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
-
-2072-bit prime:
-p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
-
-3080-bit prime:
-p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
-
-4116-bit prime:
-p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
diff --git a/etc/drprimes.28 b/etc/drprimes.28
new file mode 100644
index 0000000..9d438ad
--- /dev/null
+++ b/etc/drprimes.28
@@ -0,0 +1,25 @@
+DR safe primes for 28-bit digits.
+
+224-bit prime:
+p == 26959946667150639794667015087019630673637144422540572481103341844143
+
+532-bit prime:
+p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
+
+784-bit prime:
+p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
+
+1036-bit prime:
+p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
+
+1540-bit prime:
+p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
+
+2072-bit prime:
+p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
+
+3080-bit prime:
+p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
+
+4116-bit prime:
+p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
diff --git a/etc/drprimes.txt b/etc/drprimes.txt
index 6593cd5..717420d 100644
--- a/etc/drprimes.txt
+++ b/etc/drprimes.txt
@@ -1,6 +1,15 @@
-224-bit prime:
-p == 26959946667150639794667015087019630673637144422540572481103341844143
+300-bit prime:
+p == 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183393387
 
-532-bit prime:
-p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
+510-bit prime:
+p == 3351951982485649274893506249551461531869841455148098344430890360930441007518386744200468574541725856922507964546621512713438470702986642486608412251494847
+
+765-bit prime:
+p == 194064761537588616893622436057812819407110752139587076392381504753256369085797110791359801103580809743810966337141384150771447505514351798930535909380147642400556872002606238193783160703949805603157874899214558593861605856727005843
+
+1740-bit prime:
+p == 61971563797913992479098926650774597592238975917324828616370329001490282756182680310375299496755876376552390992409906202402580445340335946188208371182877207703039791403230793200138374588682414508868522097839706723444887189794752005280474068640895359332705297533442094790319040758184131464298255306336601284054032615054089107503261218395204931877449590906016855549287497608058070532126514935495184332288660623518513755499687752752528983258754107553298994358814410594621086881204713587661301862918471291451469190214535690028223
+
+2145-bit prime:
+p == 5120834017984591518147028606005386392991070803233539296225079797126347381640561714282620018633786528684625023495254338414266418034876748837569635527008462887513799703364491256252208677097644781218029521545625387720450034199300257983090290650191518075514440227307582827991892955933645635564359934476985058395497772801264225688705417270604479898255105628816161764712152286804906915652283101897505006786990112535065979412882966109410722156057838063961993103028819293481078313367826492291911499907219457764211473530756735049840415233164976184864760203928986194694093688479274544786530457604655777313274555786861719645260099496565700321073395329400403
 
diff --git a/logs/add.log b/logs/add.log
index e69de29..1d02326 100644
--- a/logs/add.log
+++ b/logs/add.log
@@ -0,0 +1,16 @@
+224  12444616
+448  10412040
+672   8825112
+896   7519080
+1120   6428432
+1344   5794784
+1568   5242952
+1792   4737008
+2016   4434104
+2240   4132912
+2464   3827752
+2688   3589672
+2912   3350176
+3136   3180208
+3360   3014160
+3584   2847672
diff --git a/logs/sqr.log b/logs/sqr.log
index 2fb2e98..e69de29 100644
--- a/logs/sqr.log
+++ b/logs/sqr.log
@@ -1,17 +0,0 @@
-896    415472
-1344    223736
-1792    141232
-2240     97624
-2688     71400
-3136     54800
-3584     16904
-4032     13528
-4480     10968
-4928      9128
-5376      7784
-5824      6672
-6272      5760
-6720      5056
-7168      4440
-7616      3952
-8064      3512
diff --git a/logs/sub.log b/logs/sub.log
index 91c7d65..272c098 100644
--- a/logs/sub.log
+++ b/logs/sub.log
@@ -1,16 +1,16 @@
-224   9728504
-448   8573648
-672   7488096
-896   6714064
-1120   5950472
-1344   5457400
-1568   5038896
-1792   4683632
-2016   4384656
-2240   4105976
-2464   3871608
-2688   3650680
-2912   3463552
-3136   3290016
-3360   3135272
-3584   2993848
+224  10876088
+448   9103552
+672   7823536
+896   6724960
+1120   5993496
+1344   5278984
+1568   4947736
+1792   4478384
+2016   4108840
+2240   3838696
+2464   3604128
+2688   3402192
+2912   3166568
+3136   3090672
+3360   2946720
+3584   2781288
diff --git a/makefile b/makefile
index ddfb64c..5ff6957 100644
--- a/makefile
+++ b/makefile
@@ -1,6 +1,6 @@
 CFLAGS  +=  -I./ -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops
 
-VERSION=0.22
+VERSION=0.23
 
 default: libtommath.a
 
diff --git a/makefile.msvc b/makefile.msvc
index 619e2f0..0af7c89 100644
--- a/makefile.msvc
+++ b/makefile.msvc
@@ -2,7 +2,7 @@
 #
 #Tom St Denis
 
-CFLAGS = /I. /Ox /DWIN32 /W3 /WX
+CFLAGS = /I. /Ox /DWIN32 /W3
 
 default: library
 
@@ -29,7 +29,5 @@ bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
 bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
 bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj
 
-
-
 library: $(OBJECTS)
 	lib /out:tommath.lib $(OBJECTS)
diff --git a/poster.pdf b/poster.pdf
index a37d2db..3d3377d 100644
Binary files a/poster.pdf and b/poster.pdf differ
diff --git a/poster.tex b/poster.tex
index 83ff45f..64af993 100644
--- a/poster.tex
+++ b/poster.tex
@@ -1,36 +1,36 @@
-\documentclass[landscape,11pt]{article}
-\usepackage{amsmath, amssymb}
-\usepackage{hyperref}
-\begin{document}
-
-\hspace*{-3in}
-\begin{tabular}{llllll}
-$c = a + b$  & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$  & {\tt mp\_mul\_2(\&a, \&b)} & \\
-$c = a - b$  & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
-$c = ab $   & {\tt mp\_mul(\&a, \&b, \&c)}  & $c = 2^ba$  & {\tt mp\_mul\_2d(\&a, b, \&c)}  \\
-$b = a^2 $  & {\tt mp\_sqr(\&a, \&b)}       & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
-$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $  & {\tt mp\_mod\_2d(\&a, b, \&c)}  \\
- && \\
-$a = b $  & {\tt mp\_set\_int(\&a, b)}  & $c = a \vee b$  & {\tt mp\_or(\&a, \&b, \&c)}  \\
-$b = a $  & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$  & {\tt mp\_and(\&a, \&b, \&c)}  \\
- && $c = a \oplus b$  & {\tt mp\_xor(\&a, \&b, \&c)}  \\
- & \\
-$b = -a $  & {\tt mp\_neg(\&a, \&b)}  & $d = a + b \mod c$  & {\tt mp\_addmod(\&a, \&b, \&c, \&d)}  \\
-$b = |a| $  & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$  & {\tt mp\_submod(\&a, \&b, \&c, \&d)}  \\
- && $d = ab \mod c$  & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)}  \\
-Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$  & {\tt mp\_sqrmod(\&a, \&b, \&c)}  \\
-Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$  & {\tt mp\_invmod(\&a, \&b, \&c)} \\
-Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
-Is Odd ? & {\tt mp\_isodd(\&a)} \\
-&\\
-$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
-$buf \leftarrow a$          & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t)} \\
-$a \leftarrow buf[0..len-1]$          & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
-&\\
-$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)}  & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
-$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
-&\\
-Greater Than & MP\_GT & Equal To & MP\_EQ \\
-Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
-\end{tabular}
-\end{document}
\ No newline at end of file
+\documentclass[landscape,11pt]{article}
+\usepackage{amsmath, amssymb}
+\usepackage{hyperref}
+\begin{document}
+
+\hspace*{-3in}
+\begin{tabular}{llllll}
+$c = a + b$  & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$  & {\tt mp\_mul\_2(\&a, \&b)} & \\
+$c = a - b$  & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
+$c = ab $   & {\tt mp\_mul(\&a, \&b, \&c)}  & $c = 2^ba$  & {\tt mp\_mul\_2d(\&a, b, \&c)}  \\
+$b = a^2 $  & {\tt mp\_sqr(\&a, \&b)}       & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
+$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $  & {\tt mp\_mod\_2d(\&a, b, \&c)}  \\
+ && \\
+$a = b $  & {\tt mp\_set\_int(\&a, b)}  & $c = a \vee b$  & {\tt mp\_or(\&a, \&b, \&c)}  \\
+$b = a $  & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$  & {\tt mp\_and(\&a, \&b, \&c)}  \\
+ && $c = a \oplus b$  & {\tt mp\_xor(\&a, \&b, \&c)}  \\
+ & \\
+$b = -a $  & {\tt mp\_neg(\&a, \&b)}  & $d = a + b \mod c$  & {\tt mp\_addmod(\&a, \&b, \&c, \&d)}  \\
+$b = |a| $  & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$  & {\tt mp\_submod(\&a, \&b, \&c, \&d)}  \\
+ && $d = ab \mod c$  & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)}  \\
+Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$  & {\tt mp\_sqrmod(\&a, \&b, \&c)}  \\
+Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$  & {\tt mp\_invmod(\&a, \&b, \&c)} \\
+Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
+Is Odd ? & {\tt mp\_isodd(\&a)} \\
+&\\
+$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
+$buf \leftarrow a$          & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
+$a \leftarrow buf[0..len-1]$          & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
+&\\
+$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)}  & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
+$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
+&\\
+Greater Than & MP\_GT & Equal To & MP\_EQ \\
+Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
+\end{tabular}
+\end{document}
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
index 9818cbe..5c09fbf 100644
--- a/pre_gen/mpi.c
+++ b/pre_gen/mpi.c
@@ -216,7 +216,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
      * that W[ix-1] have  the carry cleared (see after the inner loop)
      */
     register mp_digit mu;
-    mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
+    mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;
 
     /* a = a + mu * m * b**i
      *
@@ -245,7 +245,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
       /* inner loop */
       for (iy = 0; iy < n->used; iy++) {
-          *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
+          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
       }
     }
 
@@ -253,7 +253,6 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
   }
 
-
   {
     register mp_digit *tmpx;
     register mp_word *_W, *_W1;
@@ -383,7 +382,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
       pb = MIN (b->used, digs - ix);
 
       for (iy = 0; iy < pb; iy++) {
-        *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+        *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
       }
     }
 
@@ -406,20 +405,27 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
      * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the 
      * cost of the shifting.  On very small numbers this is slower 
      * but on most cryptographic size numbers it is faster.
+     *
+     * In this particular implementation we feed the carries from
+     * behind which means when the loop terminates we still have one
+     * last digit to copy
      */
     tmpc = c->dp;
     for (ix = 1; ix < digs; ix++) {
+      /* forward the carry from the previous temp */
       W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+
+      /* now extract the previous digit [below the carry] */
       *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
     }
+    /* fetch the last digit */
     *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
 
-    /* clear unused */
+    /* clear unused digits [that existed in the old copy of c] */
     for (; ix < olduse; ix++) {
       *tmpc++ = 0;
     }
   }
-
   mp_clamp (c);
   return MP_OKAY;
 }
@@ -500,7 +506,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 
       /* compute column products for digits above the minimum */
       for (; iy < pb; iy++) {
-    *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+         *_W++ += ((mp_word) tmpx) * ((mp_word)*tmpy++);
       }
     }
   }
@@ -509,12 +515,15 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
   oldused = c->used;
   c->used = newused;
 
-  /* now convert the array W downto what we need */
+  /* now convert the array W downto what we need
+   *
+   * See comments in bn_fast_s_mp_mul_digs.c
+   */
   for (ix = digs + 1; ix < newused; ix++) {
     W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
     c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
   }
-  c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
+  c->dp[newused - 1] = (mp_digit) (W[newused - 1] & ((mp_word) MP_MASK));
 
   for (; ix < oldused; ix++) {
     c->dp[ix] = 0;
@@ -596,7 +605,7 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
      * for a particular column only once which means that
      * there is no need todo a double precision addition
      */
-    W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+    W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
 
     {
       register mp_digit tmpx, *tmpy;
@@ -614,7 +623,7 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
 
       /* inner products */
       for (iy = ix + 1; iy < pa; iy++) {
-          *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+          *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
       }
     }
   }
@@ -972,7 +981,6 @@ void
 mp_clear (mp_int * a)
 {
   if (a->dp != NULL) {
-
     /* first zero the digits */
     memset (a->dp, 0, sizeof (mp_digit) * a->used);
 
@@ -980,7 +988,7 @@ mp_clear (mp_int * a)
     free (a->dp);
 
     /* reset members to make debugging easier */
-    a->dp = NULL;
+    a->dp    = NULL;
     a->alloc = a->used = 0;
   }
 }
@@ -1724,6 +1732,19 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
  */
 #include <tommath.h>
 
+static int s_is_power_of_two(mp_digit b, int *p)
+{
+   int x;
+
+   for (x = 1; x < DIGIT_BIT; x++) {
+      if (b == (((mp_digit)1)<<x)) {
+         *p = x;
+         return 1;
+      }
+   }
+   return 0;
+}
+
 /* single digit division (based on routine from MPI) */
 int
 mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
@@ -1732,15 +1753,40 @@ mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
   mp_word w;
   mp_digit t;
   int     res, ix;
-  
+
+  /* cannot divide by zero */
   if (b == 0) {
      return MP_VAL;
   }
-  
+
+  /* quick outs */
+  if (b == 1 || mp_iszero(a) == 1) {
+     if (d != NULL) {
+        *d = 0;
+     }
+     if (c != NULL) {
+        return mp_copy(a, c);
+     }
+     return MP_OKAY;
+  }
+
+  /* power of two ? */
+  if (s_is_power_of_two(b, &ix) == 1) {
+     if (d != NULL) {
+        *d = a->dp[0] & ((1<<ix) - 1);
+     }
+     if (c != NULL) {
+        return mp_div_2d(a, ix, c, NULL);
+     }
+     return MP_OKAY;
+  }
+
+  /* three? */
   if (b == 3) {
      return mp_div_3(a, c, d);
   }
-  
+
+  /* no easy answer [c'est la vie].  Just division */
   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
      return res;
   }
@@ -2186,7 +2232,6 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
     }
   }
 
-
   /* determine and setup reduction code */
   if (redmode == 0) {
      /* now setup montgomery  */
@@ -3666,7 +3711,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
   for (ix = 0; ix < n->used; ix++) {
     /* mu = ai * m' mod b */
-    mu = (x->dp[ix] * rho) & MP_MASK;
+    mu = ((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK;
 
     /* a = a + mu * m * b**i */
     {
@@ -3683,7 +3728,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
       
       /* Multiply and add in place */
       for (iy = 0; iy < n->used; iy++) {
-        r       = ((mp_word) mu) * ((mp_word) * tmpn++) + 
+        r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
                   ((mp_word) u) + ((mp_word) * tmpx);
         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
         *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
@@ -4039,7 +4084,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
     u = 0;
     for (ix = 0; ix < pa; ix++) {
       /* compute product and carry sum for this term */
-      r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
+      r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 
       /* mask off higher bits to get a single digit */
       *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -4415,6 +4460,11 @@ mp_prime_fermat (mp_int * a, mp_int * b, int *result)
   /* default to fail */
   *result = 0;
 
+  /* ensure b > 1 */
+  if (mp_cmp_d(b, 1) != MP_GT) {
+     return MP_VAL;
+  }
+
   /* init t */
   if ((err = mp_init (&t)) != MP_OKAY) {
     return err;
@@ -4506,7 +4556,7 @@ mp_prime_is_divisible (mp_int * a, int *result)
 /* performs a variable number of rounds of Miller-Rabin
  *
  * Probability of error after t rounds is no more than
- * (1/4)^t when 1 <= t <= 256
+ * (1/4)^t when 1 <= t <= PRIME_SIZE
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
@@ -4520,7 +4570,7 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
   *result = 0;
 
   /* valid value of t? */
-  if (t < 1 || t > PRIME_SIZE) {
+  if (t <= 0 || t > PRIME_SIZE) {
     return MP_VAL;
   }
 
@@ -4536,6 +4586,8 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
   if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
     return err;
   }
+
+  /* return if it was trivially divisible */
   if (res == 1) {
     return MP_OKAY;
   }
@@ -4599,6 +4651,11 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   /* default */
   *result = 0;
 
+  /* ensure b > 1 */
+  if (mp_cmp_d(b, 1) != MP_GT) {
+     return MP_VAL;
+  }     
+
   /* get n1 = a - 1 */
   if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
     return err;
@@ -4611,8 +4668,13 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
     goto __N1;
   }
- 
+
+  /* count the number of least significant bits
+   * which are zero
+   */
   s = mp_cnt_lsb(&r);
+
+  /* now divide n - 1 by 2^s */
   if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
     goto __R;
   }
@@ -4677,40 +4739,152 @@ __N1:mp_clear (&n1);
 
 /* finds the next prime after the number "a" using "t" trials
  * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
  */
-int mp_prime_next_prime(mp_int *a, int t)
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
 {
-   int err, res;
+   int      err, res, x, y;
+   mp_digit res_tab[PRIME_SIZE], step, kstep;
+   mp_int   b;
 
-   if (mp_iseven(a) == 1) {
-      /* force odd */
-      if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
-         return err;
+   /* ensure t is valid */
+   if (t <= 0 || t > PRIME_SIZE) {
+      return MP_VAL;
+   }
+
+   /* force positive */
+   if (a->sign == MP_NEG) {
+      a->sign = MP_ZPOS;
+   }
+
+   /* simple algo if a is less than the largest prime in the table */
+   if (mp_cmp_d(a, __prime_tab[PRIME_SIZE-1]) == MP_LT) {
+      /* find which prime it is bigger than */
+      for (x = PRIME_SIZE - 2; x >= 0; x--) {
+          if (mp_cmp_d(a, __prime_tab[x]) != MP_LT) {
+             if (bbs_style == 1) {
+                /* ok we found a prime smaller or
+                 * equal [so the next is larger]
+                 *
+                 * however, the prime must be
+                 * congruent to 3 mod 4
+                 */
+                if ((__prime_tab[x + 1] & 3) != 3) {
+                   /* scan upwards for a prime congruent to 3 mod 4 */
+                   for (y = x + 1; y < PRIME_SIZE; y++) {
+                       if ((__prime_tab[y] & 3) == 3) {
+                          mp_set(a, __prime_tab[y]);
+                          return MP_OKAY;
+                       }
+                   }
+                }
+             } else {
+                mp_set(a, __prime_tab[x + 1]);
+                return MP_OKAY;
+             }
+          }
       }
+      /* at this point a maybe 1 */
+      if (mp_cmp_d(a, 1) == MP_EQ) {
+         mp_set(a, 2);
+         return MP_OKAY;
+      }
+      /* fall through to the sieve */
+   }
+
+   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
+   if (bbs_style == 1) {
+      kstep   = 4;
    } else {
-      /* force to next odd number */
-      if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
+      kstep   = 2;
+   }
+
+   /* at this point we will use a combination of a sieve and Miller-Rabin */
+
+   if (bbs_style == 1) {
+      /* if a mod 4 != 3 subtract the correct value to make it so */
+      if ((a->dp[0] & 3) != 3) {
+         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
+      }
+   } else {
+      if (mp_iseven(a) == 1) {
+         /* force odd */
+         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
+            return err;
+         }
+      }
+   }
+
+   /* generate the restable */
+   for (x = 1; x < PRIME_SIZE; x++) {
+      if ((err = mp_mod_d(a, __prime_tab[x], res_tab + x)) != MP_OKAY) {
          return err;
       }
    }
 
+   /* init temp used for Miller-Rabin Testing */
+   if ((err = mp_init(&b)) != MP_OKAY) {
+      return err;
+   }
+
    for (;;) {
+      /* skip to the next non-trivially divisible candidate */
+      step = 0;
+      do {
+         /* y == 1 if any residue was zero [e.g. cannot be prime] */
+         y     =  0;
+
+         /* increase step to next odd */
+         step += kstep;
+
+         /* compute the new residue without using division */
+         for (x = 1; x < PRIME_SIZE; x++) {
+             /* add the step to each residue */
+             res_tab[x] += kstep;
+
+             /* subtract the modulus [instead of using division] */
+             if (res_tab[x] >= __prime_tab[x]) {
+                res_tab[x]  -= __prime_tab[x];
+             }
+
+             /* set flag if zero */
+             if (res_tab[x] == 0) {
+                y = 1;
+             }
+         }
+      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
+
+      /* add the step */
+      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
+         goto __ERR;
+      }
+
+      /* if step == MAX then skip test */
+      if (step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
+         continue;
+      }
+
       /* is this prime? */
-      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
-         return err;
+      for (x = 0; x < t; x++) {
+          mp_set(&b, __prime_tab[t]);
+          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+             goto __ERR;
+          }
+          if (res == 0) {
+             break;
+          }
       }
 
       if (res == 1) {
          break;
       }
-
-      /* add two, next candidate */
-      if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
-         return err;
-      }
    }
 
-   return MP_OKAY;
+   err = MP_OKAY;
+__ERR:
+   mp_clear(&b);
+   return err;
 }
 
 
@@ -4990,14 +5164,14 @@ mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
       return res;
     }
 
-    if (DIGIT_BIT != 7) {
+#ifndef MP_8BIT
       a->dp[0] |= *b++;
       a->used += 1;
-    } else {
+#else
       a->dp[0] = (*b & MP_MASK);
       a->dp[1] |= ((*b++ >> 7U) & 1);
       a->used += 2;
-    }
+#endif
   }
   mp_clamp (a);
   return MP_OKAY;
@@ -5756,11 +5930,11 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
 
   x = 0;
   while (mp_iszero (&t) == 0) {
-    if (DIGIT_BIT != 7) {
+#ifndef MP_8BIT
       b[x++] = (unsigned char) (t.dp[0] & 255);
-    } else {
+#else
       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
-    }
+#endif
     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
       mp_clear (&t);
       return res;
@@ -6954,7 +7128,7 @@ s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
     for (iy = 0; iy < pb; iy++) {
       /* compute the column as a mp_word */
       r = ((mp_word) *tmpt) + 
-          ((mp_word) tmpx) * ((mp_word) * tmpy++) + 
+          ((mp_word)tmpx) * ((mp_word)*tmpy++) +
           ((mp_word) u);
 
       /* the new column is the lower part of the result */
@@ -7036,7 +7210,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 
     for (iy = digs - ix; iy < pb; iy++) {
       /* calculate the double precision result */
-      r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
+      r = ((mp_word) * tmpt) + ((mp_word)tmpx) * ((mp_word)*tmpy++) + ((mp_word) u);
 
       /* get the lower part */
       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -7089,8 +7263,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
   for (ix = 0; ix < pa; ix++) {
     /* first calculate the digit at 2*ix */
     /* calculate double precision result */
-    r = ((mp_word) t.dp[2*ix]) + 
-        ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+    r = ((mp_word) t.dp[2*ix]) +
+        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 
     /* store lower part in result */
     t.dp[2*ix] = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -7106,12 +7280,12 @@ s_mp_sqr (mp_int * a, mp_int * b)
     
     for (iy = ix + 1; iy < pa; iy++) {
       /* first calculate the product */
-      r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
+      r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 
       /* now calculate the double precision result, note we use
        * addition instead of *2 since it's easier to optimize
        */
-      r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
+      r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 
       /* store lower part */
       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/test.c b/test.c
deleted file mode 100644
index 37f7e9c..0000000
--- a/test.c
+++ /dev/null
@@ -1,46 +0,0 @@
-#include <tommath.h>
-int main(int argc, char ** argv) {
-
-	const unsigned int a = 65537;
-	char b[] = 
-"272621192922230283305477639564135351471136149273956463844361347729298759183125368038593484043149128512765280523210111782526587388894777249539002925324108547349408624093466297893486263619517809026841716115227596170065100354451708345238523975900663359145770823068375223714001310312030819080370340176730626251422070";
-	char radix[1000];
-	mp_int vala, valb, valc;
-
-	if (mp_init(&vala) != MP_OKAY) {
-		fprintf(stderr, "failed to init vala\n");
-		exit(1);
-	}
-
-	if (mp_init(&valb) != MP_OKAY) {
-		fprintf(stderr, "failed to init valb\n");
-		exit(1);
-	}
-
-	if (mp_init(&valc) != MP_OKAY) {
-		fprintf(stderr, "failed to init valc\n");
-		exit(1);
-	}
-	if (mp_set_int(&vala, 65537) != MP_OKAY) {
-		fprintf(stderr, "failed to set vala to 65537\n");
-		exit(1);
-	}
-
-	if (mp_read_radix(&valb, b, 10) != MP_OKAY) {
-		fprintf(stderr, "failed to set valb to %s\n", b);
-		exit(1);
-	}
-
-	if (mp_invmod(&vala, &valb, &valc) != MP_OKAY) {
-		fprintf(stderr, "mp_invmod failed\n");
-		exit(1);
-	}
-
-	if (mp_toradix(&valc, radix, 10) != MP_OKAY) {
-		fprintf(stderr, "failed to convert value to radix 10\n");
-		exit(1);
-	}
-
-	fprintf(stderr, "a = %d\nb = %s\nc = %s\n", a, b, radix);
-	return 0;
-}
\ No newline at end of file
diff --git a/tommath.h b/tommath.h
index fe50906..e5e166b 100644
--- a/tommath.h
+++ b/tommath.h
@@ -85,12 +85,13 @@ extern "C" {
    #define DIGIT_BIT          31
 #else
    #define DIGIT_BIT          28
+   #define MP_28BIT
 #endif   
 #endif
 
 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
 #ifndef DIGIT_BIT
-   #define DIGIT_BIT     ((CHAR_BIT * sizeof(mp_digit) - 1))  /* bits per digit */
+   #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
 #endif
 
 
@@ -400,9 +401,10 @@ int mp_prime_is_prime(mp_int *a, int t, int *result);
 
 /* finds the next prime after the number "a" using "t" trials
  * of Miller-Rabin.
+ *
+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
  */
-int mp_prime_next_prime(mp_int *a, int t);
-
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
 
 /* ---> radix conversion <--- */
 int mp_count_bits(mp_int *a);