Commit f4449362c0bc10d07412e2ffc1ae184ee0c1cdc0

czurnieden 2018-05-26T01:39:03

fixes for MP_8BIT and mx32, prefinal design

diff --git a/bn_mp_get_bit.c b/bn_mp_get_bit.c
index e805701..000df13 100644
--- a/bn_mp_get_bit.c
+++ b/bn_mp_get_bit.c
@@ -42,7 +42,8 @@ int mp_get_bit(const mp_int *a, int b)
       return MP_VAL;
    }
 
-   bit = (mp_digit)1 << ((mp_digit)b % DIGIT_BIT);
+   bit = (mp_digit)(1) << (b % DIGIT_BIT);
+
    isset = a->dp[limb] & bit;
    return (isset != 0) ? MP_YES : MP_NO;
 }
diff --git a/bn_mp_prime_frobenius_underwood.c b/bn_mp_prime_frobenius_underwood.c
index 5be9d0d..323e8ca 100644
--- a/bn_mp_prime_frobenius_underwood.c
+++ b/bn_mp_prime_frobenius_underwood.c
@@ -14,24 +14,23 @@
  * guarantee it works.
  */
 
+/*
+ *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
+ */
+#ifndef LTM_USE_FIPS_ONLY
+
 #ifdef MP_8BIT
 /*
  * floor of positive solution of
  * (2^16)-1 = (a+4)*(2*a+5)
- * TODO: that is too small, would have to use a bigint for a instead
+ * TODO: Both values are smaller than N^(1/4), would have to use a bigint
+ *       for a instead but any a biger than about 120 are already so rare that
+ *       it is possible to ignore them and still get enough pseudoprimes.
+ *       But it is still a restriction of the set of available pseudoprimes
+ *       which makes this implementation less secure if used stand-alone.
  */
 #define LTM_FROBENIUS_UNDERWOOD_A 177
-/*
- * Commented out to allow Travis's tests to run
- * Don't forget to switch it back on in production or we'll find it at TDWTF.com!
- */
- /* #warning "Frobenius test not fully usable with MP_8BIT!" */
 #else
-/*
- * floor of positive solution of
- * (2^31)-1 = (a+4)*(2*a+5)
- * TODO: that might be too small
- */
 #define LTM_FROBENIUS_UNDERWOOD_A 32764
 #endif
 int mp_prime_frobenius_underwood(const mp_int *N, int *result)
@@ -78,8 +77,9 @@ int mp_prime_frobenius_underwood(const mp_int *N, int *result)
          goto LBL_FU_ERR;
       }
    }
+   /* Tell it a composite and set return value accordingly */
    if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
-      e = MP_VAL;
+      e = MP_ITER;
       goto LBL_FU_ERR;
    }
    /* Composite if N and (a+4)*(2*a+5) are not coprime */
@@ -113,6 +113,7 @@ int mp_prime_frobenius_underwood(const mp_int *N, int *result)
       if ((e = mp_mul_2(&tz,&T2z)) != MP_OKAY) {
          goto LBL_FU_ERR;
       }
+
       /* a = 0 at about 50% of the cases (non-square and odd input) */
       if (a != 0) {
          if ((e = mp_mul_d(&sz,(mp_digit)a,&T1z)) != MP_OKAY) {
@@ -122,6 +123,7 @@ int mp_prime_frobenius_underwood(const mp_int *N, int *result)
             goto LBL_FU_ERR;
          }
       }
+
       if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
          goto LBL_FU_ERR;
       }
@@ -151,9 +153,7 @@ int mp_prime_frobenius_underwood(const mp_int *N, int *result)
           *  sz   = temp
           */
          if (a == 0) {
-            if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) {
-               goto LBL_FU_ERR;
-            }
+            if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) {               goto LBL_FU_ERR;            }
          } else {
             if ((e = mp_mul_d(&sz, (mp_digit) ap2, &T1z)) != MP_OKAY) {
                goto LBL_FU_ERR;
@@ -189,3 +189,4 @@ LBL_FU_ERR:
 }
 
 #endif
+#endif
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
index b8385b5..d05cd87 100644
--- a/bn_mp_prime_is_prime.c
+++ b/bn_mp_prime_is_prime.c
@@ -13,7 +13,7 @@
  * guarantee it works.
  */
 
-// portable integer log of two with small footprint
+/* portable integer log of two with small footprint */
 static unsigned int floor_ilog2(int value)
 {
    unsigned int r = 0;
@@ -71,7 +71,7 @@ int mp_prime_is_prime(const mp_int *a, int t, int *result)
       }
    }
 #ifdef MP_8BIT
-   // The search in the loop above was exhaustive in this case
+   /* The search in the loop above was exhaustive in this case */
    if (a->used == 1 && PRIME_SIZE >= 31) {
       return MP_OKAY;
    }
@@ -113,32 +113,42 @@ int mp_prime_is_prime(const mp_int *a, int t, int *result)
       goto LBL_B;
    }
 
-
-#ifdef MP_8BIT
-   if(t >= 0 && t < 8) {
-      t = 8;
-   }
+/*
+ * Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite
+ * slow so if speed is an issue, define LTM_USE_FIPS_ONLY to use M-R tests with
+ * bases 2, 3 and t random bases.
+ */
+#ifndef LTM_USE_FIPS_ONLY
+   if (t >= 0) {
+      /*
+       * Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for
+       * MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit
+       * integers but the necesssary analysis is on the todo-list).
+       */
+#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST)
+      err = mp_prime_frobenius_underwood(a, &res);
+      if (err != MP_OKAY && err != MP_ITER) {
+         goto LBL_B;
+      }
+      if (res == MP_NO) {
+         goto LBL_B;
+      }
 #else
-/* commented out for testing purposes */
-/* #ifdef LTM_USE_STRONG_LUCAS_SELFRIDGE_TEST */
-   if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
-      goto LBL_B;
-   }
-   if (res == MP_NO) {
-      goto LBL_B;
-   }
-/* #endif */
-/* commented out for testing purposes */
-#ifdef LTM_USE_FROBENIUS_UNDERWOOD_TEST
-   if ((err = mp_prime_frobenius_underwood(a, &res)) != MP_OKAY) {
-      goto LBL_B;
-   }
-   if (res == MP_NO) {
-      goto LBL_B;
-   }
+      if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
+         goto LBL_B;
+      }
+      if (res == MP_NO) {
+         goto LBL_B;
+      }
 #endif
+   }
 #endif
 
+   /* run at least one Miller-Rabin test with a random base */
+   if(t == 0) {
+      t = 1;
+   }
+
    /*
       abs(t) extra rounds of M-R to extend the range of primes it can find if t < 0.
       Only recommended if the input range is known to be < 3317044064679887385961981
@@ -147,7 +157,7 @@ int mp_prime_is_prime(const mp_int *a, int t, int *result)
       The caller has to check the size.
 
       Not for cryptographic use because with known bases strong M-R pseudoprimes can
-      be constructed. Use at least one MM-R test with a random base (t >= 1).
+      be constructed. Use at least one M-R test with a random base (t >= 1).
 
       The 1119 bit large number
 
diff --git a/bn_mp_prime_strong_lucas_selfridge.c b/bn_mp_prime_strong_lucas_selfridge.c
index 1fcbbd5..8789139 100644
--- a/bn_mp_prime_strong_lucas_selfridge.c
+++ b/bn_mp_prime_strong_lucas_selfridge.c
@@ -15,6 +15,11 @@
  */
 
 /*
+ *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
+ */
+#ifndef LTM_USE_FIPS_ONLY
+
+/*
  *  8-bit is just too small. You can try the Frobenius test
  *  but that frobenius test can fail, too, for the same reason.
  */
@@ -401,3 +406,4 @@ LBL_LS_ERR:
 }
 #endif
 #endif
+#endif
diff --git a/doc/bn.tex b/doc/bn.tex
index 65e5268..2c4d36a 100644
--- a/doc/bn.tex
+++ b/doc/bn.tex
@@ -1829,7 +1829,7 @@ You should always still perform a trial division before a Miller-Rabin test thou
 \begin{alltt}
 int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
 \end{alltt}
-Performs a strong Lucas-Selfridge test. The strong Lucas-Selfridge test together with the Rabin-Miler test with bases $2$ and $3$ resemble the BPSW test. The single internal use is as a compile-time option in \texttt{mp\_prime\_is\_prime} and can be excluded
+Performs a strong Lucas-Selfridge test. The strong Lucas-Selfridge test together with the Rabin-Miler test with bases $2$ and $3$ resemble the BPSW test. The single internal use is a compile-time option in \texttt{mp\_prime\_is\_prime} and can be excluded
 from the Libtommath build if not needed.
 
 \section{Frobenius (Underwood)  Test}
@@ -1837,8 +1837,11 @@ from the Libtommath build if not needed.
 \begin{alltt}
 int mp_prime_frobenius_underwood(const mp_int *N, int *result)
 \end{alltt}
-Performs the variant of the Frobenius test as described by Paul Underwood. The single internal use is as a compile-time option in
-\texttt{mp\_prime\_is\_prime} and can be excluded from the Libtommath build if not needed.
+Performs the variant of the Frobenius test as described by Paul Underwood. The single internal use is in
+\texttt{mp\_prime\_is\_prime} for \texttt{MP\_8BIT} only but can be included at build-time for all other sizes
+if the preprocessor macro \texttt{LTM\_USE\_FROBENIUS\_TEST} is defined.
+
+It returns \texttt{MP\_ITER} if the number of iterations is exhausted, assumes a composite as the input and sets \texttt{result} accordingly. This will reduce the set of available pseudoprimes by a very small amount: test with large datasets (more than $10^{10}$ numbers, both randomly chosen and sequences of odd numbers with a random start point) found only 31 (thirty-one) numbers with $a > 120$ and none at all with just an additional simple check for divisors $d < 2^8$.
 
 \section{Primality Testing}
 Testing if a number is a square can be done a bit faster than just by calculating the square root. It is used by the primality testing function described below.
@@ -1852,13 +1855,14 @@ int mp_is_square(const mp_int *arg, int *ret);
 \begin{alltt}
 int mp_prime_is_prime (mp_int * a, int t, int *result)
 \end{alltt}
-This will perform a trial division followed by two rounds of Miller-Rabin with bases 2 and 3. It is possible, although only at
-the compile time of this library for now, to include a strong Lucas-Selfridge test and/or a Frobenius test. See file
+This will perform a trial division followed by two rounds of Miller-Rabin with bases 2 and 3 and a Lucas-Selfridge test. The Lucas-Selfridge test is replaced with a Frobenius-Underwood for \texttt{MP\_8BIT}. The Frobenius-Underwood test for all other sizes is available as a compile-time option with the preprocessor macro \texttt{LTM\_USE\_FROBENIUS\_TEST}. See file
 \texttt{bn\_mp\_prime\_is\_prime.c} for the necessary details. It shall be noted that both functions are much slower than
-the Miller-Rabin test.
+the Miller-Rabin test and if speed is an essential issue, the macro \texttt{LTM\_USE\_FIPS\_ONLY} switches both functions, the Frobenius-Underwood test and the Lucas-Selfridge test off and their code will not even be compiled into the library.
 
 If $t$ is set to a positive value $t$ additional rounds of the Miller-Rabin test with random bases will be performed to allow for Fips 186.4 (vid.~p.~126ff) compliance. The function \texttt{mp\_prime\_rabin\_miller\_trials} can be used to determine the number of rounds. It is vital that the function \texttt{mp\_rand()} has a cryptographically strong random number generator available.
 
+One Miller-Rabin tests with a random base will be run automatically, so by setting $t$ to a positive value this function will run $t + 1$ Miller-Rabin tests with random bases.
+
 If  $t$ is set to a negative value the test will run the deterministic Miller-Rabin test for the primes up to
 $3317044064679887385961981$. That limit has to be checked by the caller. If $-t > 13$ than $-t - 13$ additional rounds of the
 Miller-Rabin test will be performed but note that $-t$ is bounded by $1 \le -t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number
diff --git a/tommath.h b/tommath.h
index 80ab7b9..6323c1f 100644
--- a/tommath.h
+++ b/tommath.h
@@ -115,6 +115,7 @@ typedef mp_digit mp_min_u32;
 #define MP_MEM        -2  /* out of mem */
 #define MP_VAL        -3  /* invalid input */
 #define MP_RANGE      MP_VAL
+#define MP_ITER       -4  /* Max. iterations reached */
 
 #define MP_YES        1   /* yes response */
 #define MP_NO         0   /* no response */