constify remaining functions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
diff --git a/bn_fast_mp_invmod.c b/bn_fast_mp_invmod.c
index 7771136..08389dd 100644
--- a/bn_fast_mp_invmod.c
+++ b/bn_fast_mp_invmod.c
@@ -21,7 +21,7 @@
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
-int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c)
+int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x, y, u, v, B, D;
int res, neg;
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index f2c38bf..54d9b0a 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -23,7 +23,7 @@
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
-int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
+int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
diff --git a/bn_fast_s_mp_mul_digs.c b/bn_fast_s_mp_mul_digs.c
index 763dbb1..558d151 100644
--- a/bn_fast_s_mp_mul_digs.c
+++ b/bn_fast_s_mp_mul_digs.c
@@ -31,7 +31,7 @@
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
-int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
diff --git a/bn_fast_s_mp_mul_high_digs.c b/bn_fast_s_mp_mul_high_digs.c
index 588d80b..8b662ed 100644
--- a/bn_fast_s_mp_mul_high_digs.c
+++ b/bn_fast_s_mp_mul_high_digs.c
@@ -24,7 +24,7 @@
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
-int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index ceed82b..161f785 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -25,7 +25,7 @@
After that loop you do the squares and add them in.
*/
-int fast_s_mp_sqr(mp_int *a, mp_int *b)
+int fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY], *tmpx;
diff --git a/bn_mp_abs.c b/bn_mp_abs.c
index d5fc012..9b6bcec 100644
--- a/bn_mp_abs.c
+++ b/bn_mp_abs.c
@@ -19,7 +19,7 @@
*
* Simple function copies the input and fixes the sign to positive
*/
-int mp_abs(mp_int *a, mp_int *b)
+int mp_abs(const mp_int *a, mp_int *b)
{
int res;
diff --git a/bn_mp_add.c b/bn_mp_add.c
index 4df4c81..d31d5a0 100644
--- a/bn_mp_add.c
+++ b/bn_mp_add.c
@@ -16,7 +16,7 @@
*/
/* high level addition (handles signs) */
-int mp_add(mp_int *a, mp_int *b, mp_int *c)
+int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
int sa, sb, res;
diff --git a/bn_mp_add_d.c b/bn_mp_add_d.c
index 1e6ff63..e5ede1f 100644
--- a/bn_mp_add_d.c
+++ b/bn_mp_add_d.c
@@ -16,7 +16,7 @@
*/
/* single digit addition */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{
int res, ix, oldused;
mp_digit *tmpa, *tmpc, mu;
@@ -30,14 +30,15 @@ int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
/* if a is negative and |a| >= b, call c = |a| - b */
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
+ mp_int a_ = *a;
/* temporarily fix sign of a */
- a->sign = MP_ZPOS;
+ a_.sign = MP_ZPOS;
/* c = |a| - b */
- res = mp_sub_d(a, b, c);
+ res = mp_sub_d(&a_, b, c);
/* fix sign */
- a->sign = c->sign = MP_NEG;
+ c->sign = MP_NEG;
/* clamp */
mp_clamp(c);
diff --git a/bn_mp_addmod.c b/bn_mp_addmod.c
index 229a716..0d612c3 100644
--- a/bn_mp_addmod.c
+++ b/bn_mp_addmod.c
@@ -16,7 +16,7 @@
*/
/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;
diff --git a/bn_mp_and.c b/bn_mp_and.c
index 2f1472a..09ff772 100644
--- a/bn_mp_and.c
+++ b/bn_mp_and.c
@@ -16,10 +16,11 @@
*/
/* AND two ints together */
-int mp_and(mp_int *a, mp_int *b, mp_int *c)
+int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
- mp_int t, *x;
+ mp_int t;
+ const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
diff --git a/bn_mp_div.c b/bn_mp_div.c
index fdb3453..dbfdc03 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -18,7 +18,7 @@
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int res, n, n2;
@@ -100,7 +100,7 @@ LBL_ERR:
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int q, x, y, t1, t2;
int res, n, t, i, norm, neg;
diff --git a/bn_mp_div_2.c b/bn_mp_div_2.c
index b9d5339..edc8982 100644
--- a/bn_mp_div_2.c
+++ b/bn_mp_div_2.c
@@ -16,7 +16,7 @@
*/
/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b)
+int mp_div_2(const mp_int *a, mp_int *b)
{
int x, res, oldused;
diff --git a/bn_mp_div_3.c b/bn_mp_div_3.c
index c3a023a..9cc8caa 100644
--- a/bn_mp_div_3.c
+++ b/bn_mp_div_3.c
@@ -16,7 +16,7 @@
*/
/* divide by three (based on routine from MPI and the GMP manual) */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d)
+int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w, t;
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index 141db1d..db4a0a2 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -34,7 +34,7 @@ static int s_is_power_of_two(mp_digit b, int *p)
}
/* single digit division (based on routine from MPI) */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
+int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w;
diff --git a/bn_mp_dr_is_modulus.c b/bn_mp_dr_is_modulus.c
index 4631daa..bf4ed8b 100644
--- a/bn_mp_dr_is_modulus.c
+++ b/bn_mp_dr_is_modulus.c
@@ -16,7 +16,7 @@
*/
/* determines if a number is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a)
+int mp_dr_is_modulus(const mp_int *a)
{
int ix;
diff --git a/bn_mp_dr_reduce.c b/bn_mp_dr_reduce.c
index 25079be..1ccb669 100644
--- a/bn_mp_dr_reduce.c
+++ b/bn_mp_dr_reduce.c
@@ -29,7 +29,7 @@
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
-int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k)
+int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
int err, i, m;
mp_word r;
diff --git a/bn_mp_dr_setup.c b/bn_mp_dr_setup.c
index 97f31ba..af0e213 100644
--- a/bn_mp_dr_setup.c
+++ b/bn_mp_dr_setup.c
@@ -16,7 +16,7 @@
*/
/* determines the setup value */
-void mp_dr_setup(mp_int *a, mp_digit *d)
+void mp_dr_setup(const mp_int *a, mp_digit *d)
{
/* the casts are required if DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
diff --git a/bn_mp_expt_d.c b/bn_mp_expt_d.c
index 38bf679..f5ce3c1 100644
--- a/bn_mp_expt_d.c
+++ b/bn_mp_expt_d.c
@@ -16,7 +16,7 @@
*/
/* wrapper function for mp_expt_d_ex() */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
{
return mp_expt_d_ex(a, b, c, 0);
}
diff --git a/bn_mp_expt_d_ex.c b/bn_mp_expt_d_ex.c
index bece77b..99319a5 100644
--- a/bn_mp_expt_d_ex.c
+++ b/bn_mp_expt_d_ex.c
@@ -16,7 +16,7 @@
*/
/* calculate c = a**b using a square-multiply algorithm */
-int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
+int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
int res;
unsigned int x;
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index c4f392b..934fd25 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -21,7 +21,7 @@
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
-int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
+int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
int dr;
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index 38e0265..4a188d0 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -29,7 +29,7 @@
# define TAB_SIZE 256
#endif
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
+int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
@@ -39,7 +39,7 @@ int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
- int (*redux)(mp_int *,mp_int *,mp_digit);
+ int (*redux)(mp_int *,const mp_int *,mp_digit);
/* find window size */
x = mp_count_bits(X);
diff --git a/bn_mp_exteuclid.c b/bn_mp_exteuclid.c
index 98eef76..08e5ff2 100644
--- a/bn_mp_exteuclid.c
+++ b/bn_mp_exteuclid.c
@@ -18,7 +18,7 @@
/* Extended euclidean algorithm of (a, b) produces
a*u1 + b*u2 = u3
*/
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
+int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
int err;
diff --git a/bn_mp_fwrite.c b/bn_mp_fwrite.c
index 3641823..829dd4a 100644
--- a/bn_mp_fwrite.c
+++ b/bn_mp_fwrite.c
@@ -16,7 +16,7 @@
*/
#ifndef LTM_NO_FILE
-int mp_fwrite(mp_int *a, int radix, FILE *stream)
+int mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
char *buf;
int err, len, x;
diff --git a/bn_mp_gcd.c b/bn_mp_gcd.c
index 18f6dc3..f5aa78b 100644
--- a/bn_mp_gcd.c
+++ b/bn_mp_gcd.c
@@ -16,7 +16,7 @@
*/
/* Greatest Common Divisor using the binary method */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c)
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int u, v;
int k, u_lsb, v_lsb, res;
diff --git a/bn_mp_get_int.c b/bn_mp_get_int.c
index a3d1602..f4a347f 100644
--- a/bn_mp_get_int.c
+++ b/bn_mp_get_int.c
@@ -16,7 +16,7 @@
*/
/* get the lower 32-bits of an mp_int */
-unsigned long mp_get_int(mp_int *a)
+unsigned long mp_get_int(const mp_int *a)
{
int i;
mp_min_u32 res;
diff --git a/bn_mp_get_long.c b/bn_mp_get_long.c
index 053930c..3fc7c35 100644
--- a/bn_mp_get_long.c
+++ b/bn_mp_get_long.c
@@ -16,7 +16,7 @@
*/
/* get the lower unsigned long of an mp_int, platform dependent */
-unsigned long mp_get_long(mp_int *a)
+unsigned long mp_get_long(const mp_int *a)
{
int i;
unsigned long res;
diff --git a/bn_mp_get_long_long.c b/bn_mp_get_long_long.c
index 131571a..838c3c3 100644
--- a/bn_mp_get_long_long.c
+++ b/bn_mp_get_long_long.c
@@ -16,7 +16,7 @@
*/
/* get the lower unsigned long long of an mp_int, platform dependent */
-unsigned long long mp_get_long_long(mp_int *a)
+unsigned long long mp_get_long_long(const mp_int *a)
{
int i;
unsigned long long res;
diff --git a/bn_mp_invmod.c b/bn_mp_invmod.c
index b70fe18..525493a 100644
--- a/bn_mp_invmod.c
+++ b/bn_mp_invmod.c
@@ -16,7 +16,7 @@
*/
/* hac 14.61, pp608 */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
+int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
/* b cannot be negative */
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
diff --git a/bn_mp_invmod_slow.c b/bn_mp_invmod_slow.c
index 2bdd2b1..2bb5196 100644
--- a/bn_mp_invmod_slow.c
+++ b/bn_mp_invmod_slow.c
@@ -16,7 +16,7 @@
*/
/* hac 14.61, pp608 */
-int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c)
+int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x, y, u, v, A, B, C, D;
int res;
diff --git a/bn_mp_is_square.c b/bn_mp_is_square.c
index 303fab6..dd5150e 100644
--- a/bn_mp_is_square.c
+++ b/bn_mp_is_square.c
@@ -38,7 +38,7 @@ static const char rem_105[105] = {
};
/* Store non-zero to ret if arg is square, and zero if not */
-int mp_is_square(mp_int *arg, int *ret)
+int mp_is_square(const mp_int *arg, int *ret)
{
int res;
mp_digit c;
diff --git a/bn_mp_jacobi.c b/bn_mp_jacobi.c
index 8981393..c314c82 100644
--- a/bn_mp_jacobi.c
+++ b/bn_mp_jacobi.c
@@ -20,7 +20,7 @@
* HAC is wrong here, as the special case of (0 | 1) is not
* handled correctly.
*/
-int mp_jacobi(mp_int *a, mp_int *n, int *c)
+int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
mp_int a1, p1;
int k, s, r, res;
diff --git a/bn_mp_karatsuba_mul.c b/bn_mp_karatsuba_mul.c
index 353c37c..1a84211 100644
--- a/bn_mp_karatsuba_mul.c
+++ b/bn_mp_karatsuba_mul.c
@@ -44,7 +44,7 @@
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
-int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
+int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;
diff --git a/bn_mp_karatsuba_sqr.c b/bn_mp_karatsuba_sqr.c
index fe39a33..c566b06 100644
--- a/bn_mp_karatsuba_sqr.c
+++ b/bn_mp_karatsuba_sqr.c
@@ -22,7 +22,7 @@
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
-int mp_karatsuba_sqr(mp_int *a, mp_int *b)
+int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
diff --git a/bn_mp_lcm.c b/bn_mp_lcm.c
index dc661f3..24b621c 100644
--- a/bn_mp_lcm.c
+++ b/bn_mp_lcm.c
@@ -16,7 +16,7 @@
*/
/* computes least common multiple as |a*b|/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c)
+int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
{
int res;
mp_int t1, t2;
diff --git a/bn_mp_mod.c b/bn_mp_mod.c
index 267688c..64e73ea 100644
--- a/bn_mp_mod.c
+++ b/bn_mp_mod.c
@@ -16,7 +16,7 @@
*/
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c)
+int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int t;
int res;
diff --git a/bn_mp_mod_d.c b/bn_mp_mod_d.c
index ff77346..9a24e78 100644
--- a/bn_mp_mod_d.c
+++ b/bn_mp_mod_d.c
@@ -15,7 +15,7 @@
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c)
+int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
{
return mp_div_d(a, b, NULL, c);
}
diff --git a/bn_mp_montgomery_calc_normalization.c b/bn_mp_montgomery_calc_normalization.c
index 2d95140..f2b0856 100644
--- a/bn_mp_montgomery_calc_normalization.c
+++ b/bn_mp_montgomery_calc_normalization.c
@@ -21,7 +21,7 @@
* The method is slightly modified to shift B unconditionally upto just under
* the leading bit of b. This saves alot of multiple precision shifting.
*/
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
+int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
{
int x, bits, res;
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index 1909997..a38173e 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -16,7 +16,7 @@
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
+int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
int ix, res, digs;
mp_digit mu;
diff --git a/bn_mp_montgomery_setup.c b/bn_mp_montgomery_setup.c
index 46f560d..685ba51 100644
--- a/bn_mp_montgomery_setup.c
+++ b/bn_mp_montgomery_setup.c
@@ -16,7 +16,7 @@
*/
/* setups the montgomery reduction stuff */
-int mp_montgomery_setup(mp_int *n, mp_digit *rho)
+int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
{
mp_digit x, b;
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index 315a520..71d523d 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -16,7 +16,7 @@
*/
/* high level multiplication (handles sign) */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c)
+int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
diff --git a/bn_mp_mul_2.c b/bn_mp_mul_2.c
index 33bdc4c..1744681 100644
--- a/bn_mp_mul_2.c
+++ b/bn_mp_mul_2.c
@@ -16,7 +16,7 @@
*/
/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b)
+int mp_mul_2(const mp_int *a, mp_int *b)
{
int x, res, oldused;
diff --git a/bn_mp_mul_d.c b/bn_mp_mul_d.c
index 1aa448c..0f6d03e 100644
--- a/bn_mp_mul_d.c
+++ b/bn_mp_mul_d.c
@@ -16,7 +16,7 @@
*/
/* multiply by a digit */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
{
mp_digit u, *tmpa, *tmpc;
mp_word r;
diff --git a/bn_mp_mulmod.c b/bn_mp_mulmod.c
index b1e6a33..aeee4ee 100644
--- a/bn_mp_mulmod.c
+++ b/bn_mp_mulmod.c
@@ -16,7 +16,7 @@
*/
/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;
diff --git a/bn_mp_n_root.c b/bn_mp_n_root.c
index 8211c0a..a09804f 100644
--- a/bn_mp_n_root.c
+++ b/bn_mp_n_root.c
@@ -18,7 +18,7 @@
/* wrapper function for mp_n_root_ex()
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
*/
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c)
+int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
{
return mp_n_root_ex(a, b, c, 0);
}
diff --git a/bn_mp_n_root_ex.c b/bn_mp_n_root_ex.c
index 9546745..ca50649 100644
--- a/bn_mp_n_root_ex.c
+++ b/bn_mp_n_root_ex.c
@@ -25,10 +25,10 @@
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
-int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
+int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
- mp_int t1, t2, t3;
- int res, neg;
+ mp_int t1, t2, t3, a_;
+ int res;
/* input must be positive if b is even */
if (((b & 1) == 0) && (a->sign == MP_NEG)) {
@@ -48,8 +48,8 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
/* if a is negative fudge the sign but keep track */
- neg = a->sign;
- a->sign = MP_ZPOS;
+ a_ = *a;
+ a_.sign = MP_ZPOS;
/* t2 = 2 */
mp_set(&t2, 2);
@@ -74,7 +74,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
/* t2 = t1**b - a */
- if ((res = mp_sub(&t2, a, &t2)) != MP_OKAY) {
+ if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
goto LBL_T3;
}
@@ -100,7 +100,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
goto LBL_T3;
}
- if (mp_cmp(&t2, a) == MP_GT) {
+ if (mp_cmp(&t2, &a_) == MP_GT) {
if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) {
goto LBL_T3;
}
@@ -109,14 +109,11 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
}
- /* reset the sign of a first */
- a->sign = neg;
-
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
- c->sign = neg;
+ c->sign = a->sign;
res = MP_OKAY;
diff --git a/bn_mp_or.c b/bn_mp_or.c
index 2318c79..f411509 100644
--- a/bn_mp_or.c
+++ b/bn_mp_or.c
@@ -16,10 +16,11 @@
*/
/* OR two ints together */
-int mp_or(mp_int *a, mp_int *b, mp_int *c)
+int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
- mp_int t, *x;
+ mp_int t;
+ const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c
index 37ad6ec..9c15435 100644
--- a/bn_mp_prime_fermat.c
+++ b/bn_mp_prime_fermat.c
@@ -23,7 +23,7 @@
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result)
+int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
{
mp_int t;
int err;
diff --git a/bn_mp_prime_is_divisible.c b/bn_mp_prime_is_divisible.c
index 92af330..c1e1158 100644
--- a/bn_mp_prime_is_divisible.c
+++ b/bn_mp_prime_is_divisible.c
@@ -20,7 +20,7 @@
*
* sets result to 0 if not, 1 if yes
*/
-int mp_prime_is_divisible(mp_int *a, int *result)
+int mp_prime_is_divisible(const mp_int *a, int *result)
{
int err, ix;
mp_digit res;
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
index 20a7d1f..e97712d 100644
--- a/bn_mp_prime_is_prime.c
+++ b/bn_mp_prime_is_prime.c
@@ -22,7 +22,7 @@
*
* Sets result to 1 if probably prime, 0 otherwise
*/
-int mp_prime_is_prime(mp_int *a, int t, int *result)
+int mp_prime_is_prime(const mp_int *a, int t, int *result)
{
mp_int b;
int ix, err, res;
diff --git a/bn_mp_prime_miller_rabin.c b/bn_mp_prime_miller_rabin.c
index 917dc01..5de5f05 100644
--- a/bn_mp_prime_miller_rabin.c
+++ b/bn_mp_prime_miller_rabin.c
@@ -22,7 +22,7 @@
* Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
+int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
mp_int n1, y, r;
int s, j, err;
diff --git a/bn_mp_reduce.c b/bn_mp_reduce.c
index a2b9bf7..6665acb 100644
--- a/bn_mp_reduce.c
+++ b/bn_mp_reduce.c
@@ -19,7 +19,7 @@
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
-int mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
+int mp_reduce(mp_int *x, const mp_int *m, mp_int *mu)
{
mp_int q;
int res, um = m->used;
diff --git a/bn_mp_reduce_2k.c b/bn_mp_reduce_2k.c
index 6bc96d1..2922cad 100644
--- a/bn_mp_reduce_2k.c
+++ b/bn_mp_reduce_2k.c
@@ -16,7 +16,7 @@
*/
/* reduces a modulo n where n is of the form 2**p - d */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
diff --git a/bn_mp_reduce_2k_l.c b/bn_mp_reduce_2k_l.c
index 8e6eeb0..3b23a37 100644
--- a/bn_mp_reduce_2k_l.c
+++ b/bn_mp_reduce_2k_l.c
@@ -19,7 +19,7 @@
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
+int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d)
{
mp_int q;
int p, res;
diff --git a/bn_mp_reduce_2k_setup.c b/bn_mp_reduce_2k_setup.c
index 802a5ba..e6ae839 100644
--- a/bn_mp_reduce_2k_setup.c
+++ b/bn_mp_reduce_2k_setup.c
@@ -16,7 +16,7 @@
*/
/* determines the setup value */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;
diff --git a/bn_mp_reduce_2k_setup_l.c b/bn_mp_reduce_2k_setup_l.c
index 34367ed..af81b5b 100644
--- a/bn_mp_reduce_2k_setup_l.c
+++ b/bn_mp_reduce_2k_setup_l.c
@@ -16,7 +16,7 @@
*/
/* determines the setup value */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
+int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c
index c733ca9..932521e 100644
--- a/bn_mp_reduce_is_2k.c
+++ b/bn_mp_reduce_is_2k.c
@@ -16,7 +16,7 @@
*/
/* determines if mp_reduce_2k can be used */
-int mp_reduce_is_2k(mp_int *a)
+int mp_reduce_is_2k(const mp_int *a)
{
int ix, iy, iw;
mp_digit iz;
diff --git a/bn_mp_reduce_is_2k_l.c b/bn_mp_reduce_is_2k_l.c
index d4804d5..22c7582 100644
--- a/bn_mp_reduce_is_2k_l.c
+++ b/bn_mp_reduce_is_2k_l.c
@@ -16,7 +16,7 @@
*/
/* determines if reduce_2k_l can be used */
-int mp_reduce_is_2k_l(mp_int *a)
+int mp_reduce_is_2k_l(const mp_int *a)
{
int ix, iy;
diff --git a/bn_mp_reduce_setup.c b/bn_mp_reduce_setup.c
index 00ff61c..70e193a 100644
--- a/bn_mp_reduce_setup.c
+++ b/bn_mp_reduce_setup.c
@@ -18,7 +18,7 @@
/* pre-calculate the value required for Barrett reduction
* For a given modulus "b" it calulates the value required in "a"
*/
-int mp_reduce_setup(mp_int *a, mp_int *b)
+int mp_reduce_setup(mp_int *a, const mp_int *b)
{
int res;
diff --git a/bn_mp_signed_bin_size.c b/bn_mp_signed_bin_size.c
index 082aeca..1fdfd85 100644
--- a/bn_mp_signed_bin_size.c
+++ b/bn_mp_signed_bin_size.c
@@ -16,7 +16,7 @@
*/
/* get the size for an signed equivalent */
-int mp_signed_bin_size(mp_int *a)
+int mp_signed_bin_size(const mp_int *a)
{
return 1 + mp_unsigned_bin_size(a);
}
diff --git a/bn_mp_sqr.c b/bn_mp_sqr.c
index e2e8641..2b71097 100644
--- a/bn_mp_sqr.c
+++ b/bn_mp_sqr.c
@@ -16,7 +16,7 @@
*/
/* computes b = a*a */
-int mp_sqr(mp_int *a, mp_int *b)
+int mp_sqr(const mp_int *a, mp_int *b)
{
int res;
diff --git a/bn_mp_sqrmod.c b/bn_mp_sqrmod.c
index 96a7574..c3c7ec9 100644
--- a/bn_mp_sqrmod.c
+++ b/bn_mp_sqrmod.c
@@ -16,7 +16,7 @@
*/
/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
+int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
{
int res;
mp_int t;
diff --git a/bn_mp_sqrt.c b/bn_mp_sqrt.c
index 95a6892..d70c523 100644
--- a/bn_mp_sqrt.c
+++ b/bn_mp_sqrt.c
@@ -16,7 +16,7 @@
*/
/* this function is less generic than mp_n_root, simpler and faster */
-int mp_sqrt(mp_int *arg, mp_int *ret)
+int mp_sqrt(const mp_int *arg, mp_int *ret)
{
int res;
mp_int t1, t2;
diff --git a/bn_mp_sqrtmod_prime.c b/bn_mp_sqrtmod_prime.c
index 12b427c..261723e 100644
--- a/bn_mp_sqrtmod_prime.c
+++ b/bn_mp_sqrtmod_prime.c
@@ -15,7 +15,7 @@
*
*/
-int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
+int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{
int res, legendre;
mp_int t1, C, Q, S, Z, M, T, R, two;
diff --git a/bn_mp_sub.c b/bn_mp_sub.c
index 75c7c2d..19cb65e 100644
--- a/bn_mp_sub.c
+++ b/bn_mp_sub.c
@@ -16,7 +16,7 @@
*/
/* high level subtraction (handles signs) */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c)
+int mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
int sa, sb, res;
diff --git a/bn_mp_sub_d.c b/bn_mp_sub_d.c
index 7016abc..4d66a90 100644
--- a/bn_mp_sub_d.c
+++ b/bn_mp_sub_d.c
@@ -16,7 +16,7 @@
*/
/* single digit subtraction */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
{
mp_digit *tmpa, *tmpc, mu;
int res, ix, oldused;
@@ -32,9 +32,10 @@ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
* addition [with fudged signs]
*/
if (a->sign == MP_NEG) {
- a->sign = MP_ZPOS;
- res = mp_add_d(a, b, c);
- a->sign = c->sign = MP_NEG;
+ mp_int a_ = *a;
+ a_.sign = MP_ZPOS;
+ res = mp_add_d(&a_, b, c);
+ c->sign = MP_NEG;
/* clamp */
mp_clamp(c);
diff --git a/bn_mp_submod.c b/bn_mp_submod.c
index 510fb19..c4db397 100644
--- a/bn_mp_submod.c
+++ b/bn_mp_submod.c
@@ -16,7 +16,7 @@
*/
/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;
diff --git a/bn_mp_to_signed_bin.c b/bn_mp_to_signed_bin.c
index 615bf32..4d4be88 100644
--- a/bn_mp_to_signed_bin.c
+++ b/bn_mp_to_signed_bin.c
@@ -16,7 +16,7 @@
*/
/* store in signed [big endian] format */
-int mp_to_signed_bin(mp_int *a, unsigned char *b)
+int mp_to_signed_bin(const mp_int *a, unsigned char *b)
{
int res;
diff --git a/bn_mp_to_signed_bin_n.c b/bn_mp_to_signed_bin_n.c
index 501f849..1447624 100644
--- a/bn_mp_to_signed_bin_n.c
+++ b/bn_mp_to_signed_bin_n.c
@@ -16,7 +16,7 @@
*/
/* store in signed [big endian] format */
-int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
+int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
return MP_VAL;
diff --git a/bn_mp_to_unsigned_bin.c b/bn_mp_to_unsigned_bin.c
index e103383..9339cce 100644
--- a/bn_mp_to_unsigned_bin.c
+++ b/bn_mp_to_unsigned_bin.c
@@ -16,7 +16,7 @@
*/
/* store in unsigned [big endian] format */
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b)
+int mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
{
int x, res;
mp_int t;
diff --git a/bn_mp_to_unsigned_bin_n.c b/bn_mp_to_unsigned_bin_n.c
index 5ee28f1..707dc82 100644
--- a/bn_mp_to_unsigned_bin_n.c
+++ b/bn_mp_to_unsigned_bin_n.c
@@ -16,7 +16,7 @@
*/
/* store in unsigned [big endian] format */
-int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
+int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;
diff --git a/bn_mp_toom_mul.c b/bn_mp_toom_mul.c
index 8b771bc..3554ea8 100644
--- a/bn_mp_toom_mul.c
+++ b/bn_mp_toom_mul.c
@@ -22,7 +22,7 @@
* only particularly useful on VERY large inputs
* (we're talking 1000s of digits here...).
*/
-int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;
diff --git a/bn_mp_toom_sqr.c b/bn_mp_toom_sqr.c
index 5e1e452..b985435 100644
--- a/bn_mp_toom_sqr.c
+++ b/bn_mp_toom_sqr.c
@@ -16,7 +16,7 @@
*/
/* squaring using Toom-Cook 3-way algorithm */
-int mp_toom_sqr(mp_int *a, mp_int *b)
+int mp_toom_sqr(const mp_int *a, mp_int *b)
{
mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
int res, B;
diff --git a/bn_mp_toradix.c b/bn_mp_toradix.c
index 5016219..7dd6e4f 100644
--- a/bn_mp_toradix.c
+++ b/bn_mp_toradix.c
@@ -16,7 +16,7 @@
*/
/* stores a bignum as a ASCII string in a given radix (2..64) */
-int mp_toradix(mp_int *a, char *str, int radix)
+int mp_toradix(const mp_int *a, char *str, int radix)
{
int res, digs;
mp_int t;
diff --git a/bn_mp_toradix_n.c b/bn_mp_toradix_n.c
index 287d3f8..ef885fc 100644
--- a/bn_mp_toradix_n.c
+++ b/bn_mp_toradix_n.c
@@ -19,7 +19,7 @@
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
-int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
+int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;
diff --git a/bn_mp_unsigned_bin_size.c b/bn_mp_unsigned_bin_size.c
index 174cdc1..04107fe 100644
--- a/bn_mp_unsigned_bin_size.c
+++ b/bn_mp_unsigned_bin_size.c
@@ -16,7 +16,7 @@
*/
/* get the size for an unsigned equivalent */
-int mp_unsigned_bin_size(mp_int *a)
+int mp_unsigned_bin_size(const mp_int *a)
{
int size = mp_count_bits(a);
return (size / 8) + (((size & 7) != 0) ? 1 : 0);
diff --git a/bn_mp_xor.c b/bn_mp_xor.c
index 4224a7f..9ebc53a 100644
--- a/bn_mp_xor.c
+++ b/bn_mp_xor.c
@@ -16,10 +16,11 @@
*/
/* XOR two ints together */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c)
+int mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
- mp_int t, *x;
+ mp_int t;
+ const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
diff --git a/bn_s_mp_add.c b/bn_s_mp_add.c
index 6ba65da..2046722 100644
--- a/bn_s_mp_add.c
+++ b/bn_s_mp_add.c
@@ -16,9 +16,9 @@
*/
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
-int s_mp_add(mp_int *a, mp_int *b, mp_int *c)
+int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
- mp_int *x;
+ const mp_int *x;
int olduse, res, min, max;
/* find sizes, we let |a| <= |b| which means we have to sort
diff --git a/bn_s_mp_exptmod.c b/bn_s_mp_exptmod.c
index f8e6b3b..0d0145d 100644
--- a/bn_s_mp_exptmod.c
+++ b/bn_s_mp_exptmod.c
@@ -20,12 +20,12 @@
# define TAB_SIZE 256
#endif
-int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
+int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
- int (*redux)(mp_int *,mp_int *,mp_int *);
+ int (*redux)(mp_int *,const mp_int *,mp_int *);
/* find window size */
x = mp_count_bits(X);
diff --git a/bn_s_mp_mul_digs.c b/bn_s_mp_mul_digs.c
index c72c2a8..af13a02 100644
--- a/bn_s_mp_mul_digs.c
+++ b/bn_s_mp_mul_digs.c
@@ -19,7 +19,7 @@
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
-int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;
diff --git a/bn_s_mp_mul_high_digs.c b/bn_s_mp_mul_high_digs.c
index 0e12f3b..37c108e 100644
--- a/bn_s_mp_mul_high_digs.c
+++ b/bn_s_mp_mul_high_digs.c
@@ -18,7 +18,7 @@
/* multiplies |a| * |b| and does not compute the lower digs digits
* [meant to get the higher part of the product]
*/
-int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index 2910f24..aae06eb 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -16,7 +16,7 @@
*/
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
-int s_mp_sqr(mp_int *a, mp_int *b)
+int s_mp_sqr(const mp_int *a, mp_int *b)
{
mp_int t;
int res, ix, iy, pa;
diff --git a/bn_s_mp_sub.c b/bn_s_mp_sub.c
index f61aa83..52b8096 100644
--- a/bn_s_mp_sub.c
+++ b/bn_s_mp_sub.c
@@ -16,7 +16,7 @@
*/
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
-int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
+int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
int olduse, res, min, max;
diff --git a/tommath.h b/tommath.h
index 3f49767..fb5fa0b 100644
--- a/tommath.h
+++ b/tommath.h
@@ -223,13 +223,13 @@ int mp_set_long(mp_int *a, unsigned long b);
int mp_set_long_long(mp_int *a, unsigned long long b);
/* get a 32-bit value */
-unsigned long mp_get_int(mp_int *a);
+unsigned long mp_get_int(const mp_int *a);
/* get a platform dependent unsigned long value */
-unsigned long mp_get_long(mp_int *a);
+unsigned long mp_get_long(const mp_int *a);
/* get a platform dependent unsigned long long value */
-unsigned long long mp_get_long_long(mp_int *a);
+unsigned long long mp_get_long_long(const mp_int *a);
/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b);
@@ -264,13 +264,13 @@ int mp_lshd(mp_int *a, int b);
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
+int mp_div_2(const mp_int *a, mp_int *b);
/* c = a * 2**b, implemented as c = a << b */
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
+int mp_mul_2(const mp_int *a, mp_int *b);
/* c = a mod 2**b */
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
@@ -288,13 +288,13 @@ int mp_rand(mp_int *a, int digits);
/* ---> binary operations <--- */
/* c = a XOR b */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
+int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
+int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> Basic arithmetic <--- */
@@ -302,7 +302,7 @@ int mp_and(mp_int *a, mp_int *b, mp_int *c);
int mp_neg(const mp_int *a, mp_int *b);
/* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
+int mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
int mp_cmp(const mp_int *a, const mp_int *b);
@@ -311,22 +311,22 @@ int mp_cmp(const mp_int *a, const mp_int *b);
int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
+int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
-int mp_sqr(mp_int *a, mp_int *b);
+int mp_sqr(const mp_int *a, mp_int *b);
/* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
@@ -334,122 +334,122 @@ int mp_mod(mp_int *a, mp_int *b, mp_int *c);
int mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
+int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
+int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* c = a mod b, 0 <= c < b */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
+int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
+int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* special sqrt algo */
-int mp_sqrt(mp_int *arg, mp_int *ret);
+int mp_sqrt(const mp_int *arg, mp_int *ret);
/* special sqrt (mod prime) */
-int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
+int mp_sqrtmod_prime(const mp_int *arg, const mp_int *prime, mp_int *ret);
/* is number a square? */
-int mp_is_square(mp_int *arg, int *ret);
+int mp_is_square(const mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
+int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
+int mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+int mp_reduce(mp_int *a, const mp_int *b, mp_int *c);
/* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
/* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
+int mp_dr_is_modulus(const mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
+void mp_dr_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
/* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(mp_int *a);
+int mp_reduce_is_2k(const mp_int *a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(mp_int *a);
+int mp_reduce_is_2k_l(const mp_int *a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
+int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
+int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d);
/* d = a**b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* ---> Primes <--- */
@@ -464,17 +464,17 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
extern const mp_digit ltm_prime_tab[PRIME_SIZE];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
+int mp_prime_is_divisible(const mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
@@ -488,7 +488,7 @@ int mp_prime_rabin_miller_trials(int size);
*
* Sets result to 1 if probably prime, 0 otherwise
*/
-int mp_prime_is_prime(mp_int *a, int t, int *result);
+int mp_prime_is_prime(const mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
@@ -526,24 +526,24 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a);
-int mp_unsigned_bin_size(mp_int *a);
+int mp_unsigned_bin_size(const mp_int *a);
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
+int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
+int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
-int mp_signed_bin_size(mp_int *a);
+int mp_signed_bin_size(const mp_int *a);
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
+int mp_to_signed_bin(const mp_int *a, unsigned char *b);
+int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(mp_int *a, char *str, int radix);
-int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen);
+int mp_toradix(const mp_int *a, char *str, int radix);
+int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
int mp_radix_size(const mp_int *a, int radix, int *size);
#ifndef LTM_NO_FILE
int mp_fread(mp_int *a, int radix, FILE *stream);
-int mp_fwrite(mp_int *a, int radix, FILE *stream);
+int mp_fwrite(const mp_int *a, int radix, FILE *stream);
#endif
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
diff --git a/tommath_private.h b/tommath_private.h
index ee39694..087ddcd 100644
--- a/tommath_private.h
+++ b/tommath_private.h
@@ -55,24 +55,24 @@ extern void XFREE(void *p);
#endif
/* lowlevel functions, do not call! */
-int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
-int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
+int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
-int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_sqr(mp_int *a, mp_int *b);
-int s_mp_sqr(mp_int *a, mp_int *b);
-int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_karatsuba_sqr(mp_int *a, mp_int *b);
-int mp_toom_sqr(mp_int *a, mp_int *b);
-int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c);
-int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho);
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
-int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
+int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int fast_s_mp_sqr(const mp_int *a, mp_int *b);
+int s_mp_sqr(const mp_int *a, mp_int *b);
+int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
+int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
+int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
+int mp_toom_sqr(const mp_int *a, mp_int *b);
+int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
+int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
+int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
+int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
+int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
void bn_reverse(unsigned char *s, int len);
extern const char *mp_s_rmap;