Commit f674018a41409b829599dc0f2e320656652a6e1c

nijtmans 2017-09-20T16:59:43

constify remaining functions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
diff --git a/bn_fast_mp_invmod.c b/bn_fast_mp_invmod.c
index 7771136..08389dd 100644
--- a/bn_fast_mp_invmod.c
+++ b/bn_fast_mp_invmod.c
@@ -21,7 +21,7 @@
  * Based on slow invmod except this is optimized for the case where b is
  * odd as per HAC Note 14.64 on pp. 610
  */
-int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c)
+int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
 {
    mp_int  x, y, u, v, B, D;
    int     res, neg;
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index f2c38bf..54d9b0a 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -23,7 +23,7 @@
  *
  * Based on Algorithm 14.32 on pp.601 of HAC.
 */
-int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
+int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
 {
    int     ix, res, olduse;
    mp_word W[MP_WARRAY];
diff --git a/bn_fast_s_mp_mul_digs.c b/bn_fast_s_mp_mul_digs.c
index 763dbb1..558d151 100644
--- a/bn_fast_s_mp_mul_digs.c
+++ b/bn_fast_s_mp_mul_digs.c
@@ -31,7 +31,7 @@
  * Based on Algorithm 14.12 on pp.595 of HAC.
  *
  */
-int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
 {
    int     olduse, res, pa, ix, iz;
    mp_digit W[MP_WARRAY];
diff --git a/bn_fast_s_mp_mul_high_digs.c b/bn_fast_s_mp_mul_high_digs.c
index 588d80b..8b662ed 100644
--- a/bn_fast_s_mp_mul_high_digs.c
+++ b/bn_fast_s_mp_mul_high_digs.c
@@ -24,7 +24,7 @@
  *
  * Based on Algorithm 14.12 on pp.595 of HAC.
  */
-int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
 {
    int     olduse, res, pa, ix, iz;
    mp_digit W[MP_WARRAY];
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index ceed82b..161f785 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -25,7 +25,7 @@
 After that loop you do the squares and add them in.
 */
 
-int fast_s_mp_sqr(mp_int *a, mp_int *b)
+int fast_s_mp_sqr(const mp_int *a, mp_int *b)
 {
    int       olduse, res, pa, ix, iz;
    mp_digit   W[MP_WARRAY], *tmpx;
diff --git a/bn_mp_abs.c b/bn_mp_abs.c
index d5fc012..9b6bcec 100644
--- a/bn_mp_abs.c
+++ b/bn_mp_abs.c
@@ -19,7 +19,7 @@
  *
  * Simple function copies the input and fixes the sign to positive
  */
-int mp_abs(mp_int *a, mp_int *b)
+int mp_abs(const mp_int *a, mp_int *b)
 {
    int     res;
 
diff --git a/bn_mp_add.c b/bn_mp_add.c
index 4df4c81..d31d5a0 100644
--- a/bn_mp_add.c
+++ b/bn_mp_add.c
@@ -16,7 +16,7 @@
  */
 
 /* high level addition (handles signs) */
-int mp_add(mp_int *a, mp_int *b, mp_int *c)
+int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     sa, sb, res;
 
diff --git a/bn_mp_add_d.c b/bn_mp_add_d.c
index 1e6ff63..e5ede1f 100644
--- a/bn_mp_add_d.c
+++ b/bn_mp_add_d.c
@@ -16,7 +16,7 @@
  */
 
 /* single digit addition */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
 {
    int     res, ix, oldused;
    mp_digit *tmpa, *tmpc, mu;
@@ -30,14 +30,15 @@ int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
 
    /* if a is negative and |a| >= b, call c = |a| - b */
    if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
+      mp_int a_ = *a;
       /* temporarily fix sign of a */
-      a->sign = MP_ZPOS;
+      a_.sign = MP_ZPOS;
 
       /* c = |a| - b */
-      res = mp_sub_d(a, b, c);
+      res = mp_sub_d(&a_, b, c);
 
       /* fix sign  */
-      a->sign = c->sign = MP_NEG;
+      c->sign = MP_NEG;
 
       /* clamp */
       mp_clamp(c);
diff --git a/bn_mp_addmod.c b/bn_mp_addmod.c
index 229a716..0d612c3 100644
--- a/bn_mp_addmod.c
+++ b/bn_mp_addmod.c
@@ -16,7 +16,7 @@
  */
 
 /* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
 {
    int     res;
    mp_int  t;
diff --git a/bn_mp_and.c b/bn_mp_and.c
index 2f1472a..09ff772 100644
--- a/bn_mp_and.c
+++ b/bn_mp_and.c
@@ -16,10 +16,11 @@
  */
 
 /* AND two ints together */
-int mp_and(mp_int *a, mp_int *b, mp_int *c)
+int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     res, ix, px;
-   mp_int  t, *x;
+   mp_int  t;
+   const mp_int *x;
 
    if (a->used > b->used) {
       if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
diff --git a/bn_mp_div.c b/bn_mp_div.c
index fdb3453..dbfdc03 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -18,7 +18,7 @@
 #ifdef BN_MP_DIV_SMALL
 
 /* slower bit-bang division... also smaller */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
 {
    mp_int ta, tb, tq, q;
    int    res, n, n2;
@@ -100,7 +100,7 @@ LBL_ERR:
  * The overall algorithm is as described as
  * 14.20 from HAC but fixed to treat these cases.
 */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
 {
    mp_int  q, x, y, t1, t2;
    int     res, n, t, i, norm, neg;
diff --git a/bn_mp_div_2.c b/bn_mp_div_2.c
index b9d5339..edc8982 100644
--- a/bn_mp_div_2.c
+++ b/bn_mp_div_2.c
@@ -16,7 +16,7 @@
  */
 
 /* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b)
+int mp_div_2(const mp_int *a, mp_int *b)
 {
    int     x, res, oldused;
 
diff --git a/bn_mp_div_3.c b/bn_mp_div_3.c
index c3a023a..9cc8caa 100644
--- a/bn_mp_div_3.c
+++ b/bn_mp_div_3.c
@@ -16,7 +16,7 @@
  */
 
 /* divide by three (based on routine from MPI and the GMP manual) */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d)
+int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
 {
    mp_int   q;
    mp_word  w, t;
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index 141db1d..db4a0a2 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -34,7 +34,7 @@ static int s_is_power_of_two(mp_digit b, int *p)
 }
 
 /* single digit division (based on routine from MPI) */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
+int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
 {
    mp_int  q;
    mp_word w;
diff --git a/bn_mp_dr_is_modulus.c b/bn_mp_dr_is_modulus.c
index 4631daa..bf4ed8b 100644
--- a/bn_mp_dr_is_modulus.c
+++ b/bn_mp_dr_is_modulus.c
@@ -16,7 +16,7 @@
  */
 
 /* determines if a number is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a)
+int mp_dr_is_modulus(const mp_int *a)
 {
    int ix;
 
diff --git a/bn_mp_dr_reduce.c b/bn_mp_dr_reduce.c
index 25079be..1ccb669 100644
--- a/bn_mp_dr_reduce.c
+++ b/bn_mp_dr_reduce.c
@@ -29,7 +29,7 @@
  *
  * Input x must be in the range 0 <= x <= (n-1)**2
  */
-int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k)
+int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
 {
    int      err, i, m;
    mp_word  r;
diff --git a/bn_mp_dr_setup.c b/bn_mp_dr_setup.c
index 97f31ba..af0e213 100644
--- a/bn_mp_dr_setup.c
+++ b/bn_mp_dr_setup.c
@@ -16,7 +16,7 @@
  */
 
 /* determines the setup value */
-void mp_dr_setup(mp_int *a, mp_digit *d)
+void mp_dr_setup(const mp_int *a, mp_digit *d)
 {
    /* the casts are required if DIGIT_BIT is one less than
     * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
diff --git a/bn_mp_expt_d.c b/bn_mp_expt_d.c
index 38bf679..f5ce3c1 100644
--- a/bn_mp_expt_d.c
+++ b/bn_mp_expt_d.c
@@ -16,7 +16,7 @@
  */
 
 /* wrapper function for mp_expt_d_ex() */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
 {
    return mp_expt_d_ex(a, b, c, 0);
 }
diff --git a/bn_mp_expt_d_ex.c b/bn_mp_expt_d_ex.c
index bece77b..99319a5 100644
--- a/bn_mp_expt_d_ex.c
+++ b/bn_mp_expt_d_ex.c
@@ -16,7 +16,7 @@
  */
 
 /* calculate c = a**b  using a square-multiply algorithm */
-int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
+int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
 {
    int     res;
    unsigned int x;
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index c4f392b..934fd25 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -21,7 +21,7 @@
  * embedded in the normal function but that wasted alot of stack space
  * for nothing (since 99% of the time the Montgomery code would be called)
  */
-int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
+int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
 {
    int dr;
 
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index 38e0265..4a188d0 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -29,7 +29,7 @@
 #   define TAB_SIZE 256
 #endif
 
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
+int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
 {
    mp_int  M[TAB_SIZE], res;
    mp_digit buf, mp;
@@ -39,7 +39,7 @@ int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
     * one of many reduction algorithms without modding the guts of
     * the code with if statements everywhere.
     */
-   int (*redux)(mp_int *,mp_int *,mp_digit);
+   int (*redux)(mp_int *,const mp_int *,mp_digit);
 
    /* find window size */
    x = mp_count_bits(X);
diff --git a/bn_mp_exteuclid.c b/bn_mp_exteuclid.c
index 98eef76..08e5ff2 100644
--- a/bn_mp_exteuclid.c
+++ b/bn_mp_exteuclid.c
@@ -18,7 +18,7 @@
 /* Extended euclidean algorithm of (a, b) produces
    a*u1 + b*u2 = u3
  */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
+int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
 {
    mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
    int err;
diff --git a/bn_mp_fwrite.c b/bn_mp_fwrite.c
index 3641823..829dd4a 100644
--- a/bn_mp_fwrite.c
+++ b/bn_mp_fwrite.c
@@ -16,7 +16,7 @@
  */
 
 #ifndef LTM_NO_FILE
-int mp_fwrite(mp_int *a, int radix, FILE *stream)
+int mp_fwrite(const mp_int *a, int radix, FILE *stream)
 {
    char *buf;
    int err, len, x;
diff --git a/bn_mp_gcd.c b/bn_mp_gcd.c
index 18f6dc3..f5aa78b 100644
--- a/bn_mp_gcd.c
+++ b/bn_mp_gcd.c
@@ -16,7 +16,7 @@
  */
 
 /* Greatest Common Divisor using the binary method */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c)
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
 {
    mp_int  u, v;
    int     k, u_lsb, v_lsb, res;
diff --git a/bn_mp_get_int.c b/bn_mp_get_int.c
index a3d1602..f4a347f 100644
--- a/bn_mp_get_int.c
+++ b/bn_mp_get_int.c
@@ -16,7 +16,7 @@
  */
 
 /* get the lower 32-bits of an mp_int */
-unsigned long mp_get_int(mp_int *a)
+unsigned long mp_get_int(const mp_int *a)
 {
    int i;
    mp_min_u32 res;
diff --git a/bn_mp_get_long.c b/bn_mp_get_long.c
index 053930c..3fc7c35 100644
--- a/bn_mp_get_long.c
+++ b/bn_mp_get_long.c
@@ -16,7 +16,7 @@
  */
 
 /* get the lower unsigned long of an mp_int, platform dependent */
-unsigned long mp_get_long(mp_int *a)
+unsigned long mp_get_long(const mp_int *a)
 {
    int i;
    unsigned long res;
diff --git a/bn_mp_get_long_long.c b/bn_mp_get_long_long.c
index 131571a..838c3c3 100644
--- a/bn_mp_get_long_long.c
+++ b/bn_mp_get_long_long.c
@@ -16,7 +16,7 @@
  */
 
 /* get the lower unsigned long long of an mp_int, platform dependent */
-unsigned long long mp_get_long_long(mp_int *a)
+unsigned long long mp_get_long_long(const mp_int *a)
 {
    int i;
    unsigned long long res;
diff --git a/bn_mp_invmod.c b/bn_mp_invmod.c
index b70fe18..525493a 100644
--- a/bn_mp_invmod.c
+++ b/bn_mp_invmod.c
@@ -16,7 +16,7 @@
  */
 
 /* hac 14.61, pp608 */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
+int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
 {
    /* b cannot be negative */
    if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
diff --git a/bn_mp_invmod_slow.c b/bn_mp_invmod_slow.c
index 2bdd2b1..2bb5196 100644
--- a/bn_mp_invmod_slow.c
+++ b/bn_mp_invmod_slow.c
@@ -16,7 +16,7 @@
  */
 
 /* hac 14.61, pp608 */
-int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c)
+int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
 {
    mp_int  x, y, u, v, A, B, C, D;
    int     res;
diff --git a/bn_mp_is_square.c b/bn_mp_is_square.c
index 303fab6..dd5150e 100644
--- a/bn_mp_is_square.c
+++ b/bn_mp_is_square.c
@@ -38,7 +38,7 @@ static const char rem_105[105] = {
 };
 
 /* Store non-zero to ret if arg is square, and zero if not */
-int mp_is_square(mp_int *arg, int *ret)
+int mp_is_square(const mp_int *arg, int *ret)
 {
    int           res;
    mp_digit      c;
diff --git a/bn_mp_jacobi.c b/bn_mp_jacobi.c
index 8981393..c314c82 100644
--- a/bn_mp_jacobi.c
+++ b/bn_mp_jacobi.c
@@ -20,7 +20,7 @@
  * HAC is wrong here, as the special case of (0 | 1) is not
  * handled correctly.
  */
-int mp_jacobi(mp_int *a, mp_int *n, int *c)
+int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
 {
    mp_int  a1, p1;
    int     k, s, r, res;
diff --git a/bn_mp_karatsuba_mul.c b/bn_mp_karatsuba_mul.c
index 353c37c..1a84211 100644
--- a/bn_mp_karatsuba_mul.c
+++ b/bn_mp_karatsuba_mul.c
@@ -44,7 +44,7 @@
  * Generally though the overhead of this method doesn't pay off
  * until a certain size (N ~ 80) is reached.
  */
-int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
+int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
 {
    mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
    int     B, err;
diff --git a/bn_mp_karatsuba_sqr.c b/bn_mp_karatsuba_sqr.c
index fe39a33..c566b06 100644
--- a/bn_mp_karatsuba_sqr.c
+++ b/bn_mp_karatsuba_sqr.c
@@ -22,7 +22,7 @@
  * is essentially the same algorithm but merely
  * tuned to perform recursive squarings.
  */
-int mp_karatsuba_sqr(mp_int *a, mp_int *b)
+int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
 {
    mp_int  x0, x1, t1, t2, x0x0, x1x1;
    int     B, err;
diff --git a/bn_mp_lcm.c b/bn_mp_lcm.c
index dc661f3..24b621c 100644
--- a/bn_mp_lcm.c
+++ b/bn_mp_lcm.c
@@ -16,7 +16,7 @@
  */
 
 /* computes least common multiple as |a*b|/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c)
+int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     res;
    mp_int  t1, t2;
diff --git a/bn_mp_mod.c b/bn_mp_mod.c
index 267688c..64e73ea 100644
--- a/bn_mp_mod.c
+++ b/bn_mp_mod.c
@@ -16,7 +16,7 @@
  */
 
 /* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c)
+int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
 {
    mp_int  t;
    int     res;
diff --git a/bn_mp_mod_d.c b/bn_mp_mod_d.c
index ff77346..9a24e78 100644
--- a/bn_mp_mod_d.c
+++ b/bn_mp_mod_d.c
@@ -15,7 +15,7 @@
  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
  */
 
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c)
+int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
 {
    return mp_div_d(a, b, NULL, c);
 }
diff --git a/bn_mp_montgomery_calc_normalization.c b/bn_mp_montgomery_calc_normalization.c
index 2d95140..f2b0856 100644
--- a/bn_mp_montgomery_calc_normalization.c
+++ b/bn_mp_montgomery_calc_normalization.c
@@ -21,7 +21,7 @@
  * The method is slightly modified to shift B unconditionally upto just under
  * the leading bit of b.  This saves alot of multiple precision shifting.
  */
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
+int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
 {
    int     x, bits, res;
 
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index 1909997..a38173e 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -16,7 +16,7 @@
  */
 
 /* computes xR**-1 == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
+int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
 {
    int     ix, res, digs;
    mp_digit mu;
diff --git a/bn_mp_montgomery_setup.c b/bn_mp_montgomery_setup.c
index 46f560d..685ba51 100644
--- a/bn_mp_montgomery_setup.c
+++ b/bn_mp_montgomery_setup.c
@@ -16,7 +16,7 @@
  */
 
 /* setups the montgomery reduction stuff */
-int mp_montgomery_setup(mp_int *n, mp_digit *rho)
+int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
 {
    mp_digit x, b;
 
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index 315a520..71d523d 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -16,7 +16,7 @@
  */
 
 /* high level multiplication (handles sign) */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c)
+int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     res, neg;
    neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
diff --git a/bn_mp_mul_2.c b/bn_mp_mul_2.c
index 33bdc4c..1744681 100644
--- a/bn_mp_mul_2.c
+++ b/bn_mp_mul_2.c
@@ -16,7 +16,7 @@
  */
 
 /* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b)
+int mp_mul_2(const mp_int *a, mp_int *b)
 {
    int     x, res, oldused;
 
diff --git a/bn_mp_mul_d.c b/bn_mp_mul_d.c
index 1aa448c..0f6d03e 100644
--- a/bn_mp_mul_d.c
+++ b/bn_mp_mul_d.c
@@ -16,7 +16,7 @@
  */
 
 /* multiply by a digit */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
 {
    mp_digit u, *tmpa, *tmpc;
    mp_word  r;
diff --git a/bn_mp_mulmod.c b/bn_mp_mulmod.c
index b1e6a33..aeee4ee 100644
--- a/bn_mp_mulmod.c
+++ b/bn_mp_mulmod.c
@@ -16,7 +16,7 @@
  */
 
 /* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
 {
    int     res;
    mp_int  t;
diff --git a/bn_mp_n_root.c b/bn_mp_n_root.c
index 8211c0a..a09804f 100644
--- a/bn_mp_n_root.c
+++ b/bn_mp_n_root.c
@@ -18,7 +18,7 @@
 /* wrapper function for mp_n_root_ex()
  * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
  */
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c)
+int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
 {
    return mp_n_root_ex(a, b, c, 0);
 }
diff --git a/bn_mp_n_root_ex.c b/bn_mp_n_root_ex.c
index 9546745..ca50649 100644
--- a/bn_mp_n_root_ex.c
+++ b/bn_mp_n_root_ex.c
@@ -25,10 +25,10 @@
  * each step involves a fair bit.  This is not meant to
  * find huge roots [square and cube, etc].
  */
-int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
+int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
 {
-   mp_int  t1, t2, t3;
-   int     res, neg;
+   mp_int  t1, t2, t3, a_;
+   int     res;
 
    /* input must be positive if b is even */
    if (((b & 1) == 0) && (a->sign == MP_NEG)) {
@@ -48,8 +48,8 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
    }
 
    /* if a is negative fudge the sign but keep track */
-   neg     = a->sign;
-   a->sign = MP_ZPOS;
+   a_ = *a;
+   a_.sign = MP_ZPOS;
 
    /* t2 = 2 */
    mp_set(&t2, 2);
@@ -74,7 +74,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
       }
 
       /* t2 = t1**b - a */
-      if ((res = mp_sub(&t2, a, &t2)) != MP_OKAY) {
+      if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
          goto LBL_T3;
       }
 
@@ -100,7 +100,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
          goto LBL_T3;
       }
 
-      if (mp_cmp(&t2, a) == MP_GT) {
+      if (mp_cmp(&t2, &a_) == MP_GT) {
          if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) {
             goto LBL_T3;
          }
@@ -109,14 +109,11 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
       }
    }
 
-   /* reset the sign of a first */
-   a->sign = neg;
-
    /* set the result */
    mp_exch(&t1, c);
 
    /* set the sign of the result */
-   c->sign = neg;
+   c->sign = a->sign;
 
    res = MP_OKAY;
 
diff --git a/bn_mp_or.c b/bn_mp_or.c
index 2318c79..f411509 100644
--- a/bn_mp_or.c
+++ b/bn_mp_or.c
@@ -16,10 +16,11 @@
  */
 
 /* OR two ints together */
-int mp_or(mp_int *a, mp_int *b, mp_int *c)
+int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     res, ix, px;
-   mp_int  t, *x;
+   mp_int  t;
+   const mp_int *x;
 
    if (a->used > b->used) {
       if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c
index 37ad6ec..9c15435 100644
--- a/bn_mp_prime_fermat.c
+++ b/bn_mp_prime_fermat.c
@@ -23,7 +23,7 @@
  *
  * Sets result to 1 if the congruence holds, or zero otherwise.
  */
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result)
+int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
 {
    mp_int  t;
    int     err;
diff --git a/bn_mp_prime_is_divisible.c b/bn_mp_prime_is_divisible.c
index 92af330..c1e1158 100644
--- a/bn_mp_prime_is_divisible.c
+++ b/bn_mp_prime_is_divisible.c
@@ -20,7 +20,7 @@
  *
  * sets result to 0 if not, 1 if yes
  */
-int mp_prime_is_divisible(mp_int *a, int *result)
+int mp_prime_is_divisible(const mp_int *a, int *result)
 {
    int     err, ix;
    mp_digit res;
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
index 20a7d1f..e97712d 100644
--- a/bn_mp_prime_is_prime.c
+++ b/bn_mp_prime_is_prime.c
@@ -22,7 +22,7 @@
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
-int mp_prime_is_prime(mp_int *a, int t, int *result)
+int mp_prime_is_prime(const mp_int *a, int t, int *result)
 {
    mp_int  b;
    int     ix, err, res;
diff --git a/bn_mp_prime_miller_rabin.c b/bn_mp_prime_miller_rabin.c
index 917dc01..5de5f05 100644
--- a/bn_mp_prime_miller_rabin.c
+++ b/bn_mp_prime_miller_rabin.c
@@ -22,7 +22,7 @@
  * Randomly the chance of error is no more than 1/4 and often
  * very much lower.
  */
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
+int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
 {
    mp_int  n1, y, r;
    int     s, j, err;
diff --git a/bn_mp_reduce.c b/bn_mp_reduce.c
index a2b9bf7..6665acb 100644
--- a/bn_mp_reduce.c
+++ b/bn_mp_reduce.c
@@ -19,7 +19,7 @@
  * precomputed via mp_reduce_setup.
  * From HAC pp.604 Algorithm 14.42
  */
-int mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
+int mp_reduce(mp_int *x, const mp_int *m, mp_int *mu)
 {
    mp_int  q;
    int     res, um = m->used;
diff --git a/bn_mp_reduce_2k.c b/bn_mp_reduce_2k.c
index 6bc96d1..2922cad 100644
--- a/bn_mp_reduce_2k.c
+++ b/bn_mp_reduce_2k.c
@@ -16,7 +16,7 @@
  */
 
 /* reduces a modulo n where n is of the form 2**p - d */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
 {
    mp_int q;
    int    p, res;
diff --git a/bn_mp_reduce_2k_l.c b/bn_mp_reduce_2k_l.c
index 8e6eeb0..3b23a37 100644
--- a/bn_mp_reduce_2k_l.c
+++ b/bn_mp_reduce_2k_l.c
@@ -19,7 +19,7 @@
    This differs from reduce_2k since "d" can be larger
    than a single digit.
 */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
+int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d)
 {
    mp_int q;
    int    p, res;
diff --git a/bn_mp_reduce_2k_setup.c b/bn_mp_reduce_2k_setup.c
index 802a5ba..e6ae839 100644
--- a/bn_mp_reduce_2k_setup.c
+++ b/bn_mp_reduce_2k_setup.c
@@ -16,7 +16,7 @@
  */
 
 /* determines the setup value */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
 {
    int res, p;
    mp_int tmp;
diff --git a/bn_mp_reduce_2k_setup_l.c b/bn_mp_reduce_2k_setup_l.c
index 34367ed..af81b5b 100644
--- a/bn_mp_reduce_2k_setup_l.c
+++ b/bn_mp_reduce_2k_setup_l.c
@@ -16,7 +16,7 @@
  */
 
 /* determines the setup value */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
+int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
 {
    int    res;
    mp_int tmp;
diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c
index c733ca9..932521e 100644
--- a/bn_mp_reduce_is_2k.c
+++ b/bn_mp_reduce_is_2k.c
@@ -16,7 +16,7 @@
  */
 
 /* determines if mp_reduce_2k can be used */
-int mp_reduce_is_2k(mp_int *a)
+int mp_reduce_is_2k(const mp_int *a)
 {
    int ix, iy, iw;
    mp_digit iz;
diff --git a/bn_mp_reduce_is_2k_l.c b/bn_mp_reduce_is_2k_l.c
index d4804d5..22c7582 100644
--- a/bn_mp_reduce_is_2k_l.c
+++ b/bn_mp_reduce_is_2k_l.c
@@ -16,7 +16,7 @@
  */
 
 /* determines if reduce_2k_l can be used */
-int mp_reduce_is_2k_l(mp_int *a)
+int mp_reduce_is_2k_l(const mp_int *a)
 {
    int ix, iy;
 
diff --git a/bn_mp_reduce_setup.c b/bn_mp_reduce_setup.c
index 00ff61c..70e193a 100644
--- a/bn_mp_reduce_setup.c
+++ b/bn_mp_reduce_setup.c
@@ -18,7 +18,7 @@
 /* pre-calculate the value required for Barrett reduction
  * For a given modulus "b" it calulates the value required in "a"
  */
-int mp_reduce_setup(mp_int *a, mp_int *b)
+int mp_reduce_setup(mp_int *a, const mp_int *b)
 {
    int     res;
 
diff --git a/bn_mp_signed_bin_size.c b/bn_mp_signed_bin_size.c
index 082aeca..1fdfd85 100644
--- a/bn_mp_signed_bin_size.c
+++ b/bn_mp_signed_bin_size.c
@@ -16,7 +16,7 @@
  */
 
 /* get the size for an signed equivalent */
-int mp_signed_bin_size(mp_int *a)
+int mp_signed_bin_size(const mp_int *a)
 {
    return 1 + mp_unsigned_bin_size(a);
 }
diff --git a/bn_mp_sqr.c b/bn_mp_sqr.c
index e2e8641..2b71097 100644
--- a/bn_mp_sqr.c
+++ b/bn_mp_sqr.c
@@ -16,7 +16,7 @@
  */
 
 /* computes b = a*a */
-int mp_sqr(mp_int *a, mp_int *b)
+int mp_sqr(const mp_int *a, mp_int *b)
 {
    int     res;
 
diff --git a/bn_mp_sqrmod.c b/bn_mp_sqrmod.c
index 96a7574..c3c7ec9 100644
--- a/bn_mp_sqrmod.c
+++ b/bn_mp_sqrmod.c
@@ -16,7 +16,7 @@
  */
 
 /* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
+int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     res;
    mp_int  t;
diff --git a/bn_mp_sqrt.c b/bn_mp_sqrt.c
index 95a6892..d70c523 100644
--- a/bn_mp_sqrt.c
+++ b/bn_mp_sqrt.c
@@ -16,7 +16,7 @@
  */
 
 /* this function is less generic than mp_n_root, simpler and faster */
-int mp_sqrt(mp_int *arg, mp_int *ret)
+int mp_sqrt(const mp_int *arg, mp_int *ret)
 {
    int res;
    mp_int t1, t2;
diff --git a/bn_mp_sqrtmod_prime.c b/bn_mp_sqrtmod_prime.c
index 12b427c..261723e 100644
--- a/bn_mp_sqrtmod_prime.c
+++ b/bn_mp_sqrtmod_prime.c
@@ -15,7 +15,7 @@
  *
  */
 
-int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
+int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
 {
    int res, legendre;
    mp_int t1, C, Q, S, Z, M, T, R, two;
diff --git a/bn_mp_sub.c b/bn_mp_sub.c
index 75c7c2d..19cb65e 100644
--- a/bn_mp_sub.c
+++ b/bn_mp_sub.c
@@ -16,7 +16,7 @@
  */
 
 /* high level subtraction (handles signs) */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c)
+int mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     sa, sb, res;
 
diff --git a/bn_mp_sub_d.c b/bn_mp_sub_d.c
index 7016abc..4d66a90 100644
--- a/bn_mp_sub_d.c
+++ b/bn_mp_sub_d.c
@@ -16,7 +16,7 @@
  */
 
 /* single digit subtraction */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
+int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
 {
    mp_digit *tmpa, *tmpc, mu;
    int       res, ix, oldused;
@@ -32,9 +32,10 @@ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
     * addition [with fudged signs]
     */
    if (a->sign == MP_NEG) {
-      a->sign = MP_ZPOS;
-      res     = mp_add_d(a, b, c);
-      a->sign = c->sign = MP_NEG;
+      mp_int a_ = *a;
+      a_.sign = MP_ZPOS;
+      res     = mp_add_d(&a_, b, c);
+      c->sign = MP_NEG;
 
       /* clamp */
       mp_clamp(c);
diff --git a/bn_mp_submod.c b/bn_mp_submod.c
index 510fb19..c4db397 100644
--- a/bn_mp_submod.c
+++ b/bn_mp_submod.c
@@ -16,7 +16,7 @@
  */
 
 /* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
 {
    int     res;
    mp_int  t;
diff --git a/bn_mp_to_signed_bin.c b/bn_mp_to_signed_bin.c
index 615bf32..4d4be88 100644
--- a/bn_mp_to_signed_bin.c
+++ b/bn_mp_to_signed_bin.c
@@ -16,7 +16,7 @@
  */
 
 /* store in signed [big endian] format */
-int mp_to_signed_bin(mp_int *a, unsigned char *b)
+int mp_to_signed_bin(const mp_int *a, unsigned char *b)
 {
    int     res;
 
diff --git a/bn_mp_to_signed_bin_n.c b/bn_mp_to_signed_bin_n.c
index 501f849..1447624 100644
--- a/bn_mp_to_signed_bin_n.c
+++ b/bn_mp_to_signed_bin_n.c
@@ -16,7 +16,7 @@
  */
 
 /* store in signed [big endian] format */
-int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
+int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
 {
    if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
       return MP_VAL;
diff --git a/bn_mp_to_unsigned_bin.c b/bn_mp_to_unsigned_bin.c
index e103383..9339cce 100644
--- a/bn_mp_to_unsigned_bin.c
+++ b/bn_mp_to_unsigned_bin.c
@@ -16,7 +16,7 @@
  */
 
 /* store in unsigned [big endian] format */
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b)
+int mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
 {
    int     x, res;
    mp_int  t;
diff --git a/bn_mp_to_unsigned_bin_n.c b/bn_mp_to_unsigned_bin_n.c
index 5ee28f1..707dc82 100644
--- a/bn_mp_to_unsigned_bin_n.c
+++ b/bn_mp_to_unsigned_bin_n.c
@@ -16,7 +16,7 @@
  */
 
 /* store in unsigned [big endian] format */
-int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
+int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
 {
    if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
       return MP_VAL;
diff --git a/bn_mp_toom_mul.c b/bn_mp_toom_mul.c
index 8b771bc..3554ea8 100644
--- a/bn_mp_toom_mul.c
+++ b/bn_mp_toom_mul.c
@@ -22,7 +22,7 @@
  * only particularly useful on VERY large inputs
  * (we're talking 1000s of digits here...).
 */
-int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
 {
    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
    int res, B;
diff --git a/bn_mp_toom_sqr.c b/bn_mp_toom_sqr.c
index 5e1e452..b985435 100644
--- a/bn_mp_toom_sqr.c
+++ b/bn_mp_toom_sqr.c
@@ -16,7 +16,7 @@
  */
 
 /* squaring using Toom-Cook 3-way algorithm */
-int mp_toom_sqr(mp_int *a, mp_int *b)
+int mp_toom_sqr(const mp_int *a, mp_int *b)
 {
    mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
    int res, B;
diff --git a/bn_mp_toradix.c b/bn_mp_toradix.c
index 5016219..7dd6e4f 100644
--- a/bn_mp_toradix.c
+++ b/bn_mp_toradix.c
@@ -16,7 +16,7 @@
  */
 
 /* stores a bignum as a ASCII string in a given radix (2..64) */
-int mp_toradix(mp_int *a, char *str, int radix)
+int mp_toradix(const mp_int *a, char *str, int radix)
 {
    int     res, digs;
    mp_int  t;
diff --git a/bn_mp_toradix_n.c b/bn_mp_toradix_n.c
index 287d3f8..ef885fc 100644
--- a/bn_mp_toradix_n.c
+++ b/bn_mp_toradix_n.c
@@ -19,7 +19,7 @@
  *
  * Stores upto maxlen-1 chars and always a NULL byte
  */
-int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
+int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
 {
    int     res, digs;
    mp_int  t;
diff --git a/bn_mp_unsigned_bin_size.c b/bn_mp_unsigned_bin_size.c
index 174cdc1..04107fe 100644
--- a/bn_mp_unsigned_bin_size.c
+++ b/bn_mp_unsigned_bin_size.c
@@ -16,7 +16,7 @@
  */
 
 /* get the size for an unsigned equivalent */
-int mp_unsigned_bin_size(mp_int *a)
+int mp_unsigned_bin_size(const mp_int *a)
 {
    int     size = mp_count_bits(a);
    return (size / 8) + (((size & 7) != 0) ? 1 : 0);
diff --git a/bn_mp_xor.c b/bn_mp_xor.c
index 4224a7f..9ebc53a 100644
--- a/bn_mp_xor.c
+++ b/bn_mp_xor.c
@@ -16,10 +16,11 @@
  */
 
 /* XOR two ints together */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c)
+int mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     res, ix, px;
-   mp_int  t, *x;
+   mp_int  t;
+   const mp_int *x;
 
    if (a->used > b->used) {
       if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
diff --git a/bn_s_mp_add.c b/bn_s_mp_add.c
index 6ba65da..2046722 100644
--- a/bn_s_mp_add.c
+++ b/bn_s_mp_add.c
@@ -16,9 +16,9 @@
  */
 
 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
-int s_mp_add(mp_int *a, mp_int *b, mp_int *c)
+int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
 {
-   mp_int *x;
+   const mp_int *x;
    int     olduse, res, min, max;
 
    /* find sizes, we let |a| <= |b| which means we have to sort
diff --git a/bn_s_mp_exptmod.c b/bn_s_mp_exptmod.c
index f8e6b3b..0d0145d 100644
--- a/bn_s_mp_exptmod.c
+++ b/bn_s_mp_exptmod.c
@@ -20,12 +20,12 @@
 #   define TAB_SIZE 256
 #endif
 
-int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
+int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
 {
    mp_int  M[TAB_SIZE], res, mu;
    mp_digit buf;
    int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-   int (*redux)(mp_int *,mp_int *,mp_int *);
+   int (*redux)(mp_int *,const mp_int *,mp_int *);
 
    /* find window size */
    x = mp_count_bits(X);
diff --git a/bn_s_mp_mul_digs.c b/bn_s_mp_mul_digs.c
index c72c2a8..af13a02 100644
--- a/bn_s_mp_mul_digs.c
+++ b/bn_s_mp_mul_digs.c
@@ -19,7 +19,7 @@
  * HAC pp. 595, Algorithm 14.12  Modified so you can control how
  * many digits of output are created.
  */
-int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
 {
    mp_int  t;
    int     res, pa, pb, ix, iy;
diff --git a/bn_s_mp_mul_high_digs.c b/bn_s_mp_mul_high_digs.c
index 0e12f3b..37c108e 100644
--- a/bn_s_mp_mul_high_digs.c
+++ b/bn_s_mp_mul_high_digs.c
@@ -18,7 +18,7 @@
 /* multiplies |a| * |b| and does not compute the lower digs digits
  * [meant to get the higher part of the product]
  */
-int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
+int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
 {
    mp_int  t;
    int     res, pa, pb, ix, iy;
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index 2910f24..aae06eb 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -16,7 +16,7 @@
  */
 
 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
-int s_mp_sqr(mp_int *a, mp_int *b)
+int s_mp_sqr(const mp_int *a, mp_int *b)
 {
    mp_int  t;
    int     res, ix, iy, pa;
diff --git a/bn_s_mp_sub.c b/bn_s_mp_sub.c
index f61aa83..52b8096 100644
--- a/bn_s_mp_sub.c
+++ b/bn_s_mp_sub.c
@@ -16,7 +16,7 @@
  */
 
 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
-int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
+int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
 {
    int     olduse, res, min, max;
 
diff --git a/tommath.h b/tommath.h
index 3f49767..fb5fa0b 100644
--- a/tommath.h
+++ b/tommath.h
@@ -223,13 +223,13 @@ int mp_set_long(mp_int *a, unsigned long b);
 int mp_set_long_long(mp_int *a, unsigned long long b);
 
 /* get a 32-bit value */
-unsigned long mp_get_int(mp_int *a);
+unsigned long mp_get_int(const mp_int *a);
 
 /* get a platform dependent unsigned long value */
-unsigned long mp_get_long(mp_int *a);
+unsigned long mp_get_long(const mp_int *a);
 
 /* get a platform dependent unsigned long long value */
-unsigned long long mp_get_long_long(mp_int *a);
+unsigned long long mp_get_long_long(const mp_int *a);
 
 /* initialize and set a digit */
 int mp_init_set(mp_int *a, mp_digit b);
@@ -264,13 +264,13 @@ int mp_lshd(mp_int *a, int b);
 int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
 
 /* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
+int mp_div_2(const mp_int *a, mp_int *b);
 
 /* c = a * 2**b, implemented as c = a << b */
 int mp_mul_2d(const mp_int *a, int b, mp_int *c);
 
 /* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
+int mp_mul_2(const mp_int *a, mp_int *b);
 
 /* c = a mod 2**b */
 int mp_mod_2d(const mp_int *a, int b, mp_int *c);
@@ -288,13 +288,13 @@ int mp_rand(mp_int *a, int digits);
 
 /* ---> binary operations <--- */
 /* c = a XOR b  */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
+int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
+int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* ---> Basic arithmetic <--- */
 
@@ -302,7 +302,7 @@ int mp_and(mp_int *a, mp_int *b, mp_int *c);
 int mp_neg(const mp_int *a, mp_int *b);
 
 /* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
+int mp_abs(const mp_int *a, mp_int *b);
 
 /* compare a to b */
 int mp_cmp(const mp_int *a, const mp_int *b);
@@ -311,22 +311,22 @@ int mp_cmp(const mp_int *a, const mp_int *b);
 int mp_cmp_mag(const mp_int *a, const mp_int *b);
 
 /* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
+int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* b = a*a  */
-int mp_sqr(mp_int *a, mp_int *b);
+int mp_sqr(const mp_int *a, mp_int *b);
 
 /* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
 
 /* c = a mod b, 0 <= c < b  */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* ---> single digit functions <--- */
 
@@ -334,122 +334,122 @@ int mp_mod(mp_int *a, mp_int *b, mp_int *c);
 int mp_cmp_d(const mp_int *a, mp_digit b);
 
 /* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
 
 /* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
 
 /* a/3 => 3c + d == a */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
 
 /* c = a**b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
+int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
+int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
 
 /* c = a mod b, 0 <= c < b  */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
 
 /* ---> number theory <--- */
 
 /* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
 
 /* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* finds one of the b'th root of a, such that |c|**b <= |a|
  *
  * returns error if a < 0 and b is even
  */
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
+int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
+int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
 
 /* special sqrt algo */
-int mp_sqrt(mp_int *arg, mp_int *ret);
+int mp_sqrt(const mp_int *arg, mp_int *ret);
 
 /* special sqrt (mod prime) */
-int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
+int mp_sqrtmod_prime(const mp_int *arg, const mp_int *prime, mp_int *ret);
 
 /* is number a square? */
-int mp_is_square(mp_int *arg, int *ret);
+int mp_is_square(const mp_int *arg, int *ret);
 
 /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
+int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
 
 /* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
+int mp_reduce_setup(mp_int *a, const mp_int *b);
 
 /* Barrett Reduction, computes a (mod b) with a precomputed value c
  *
  * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
  * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
  */
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+int mp_reduce(mp_int *a, const mp_int *b, mp_int *c);
 
 /* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
 
 /* computes a = B**n mod b without division or multiplication useful for
  * normalizing numbers in a Montgomery system.
  */
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
 
 /* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
 
 /* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
+int mp_dr_is_modulus(const mp_int *a);
 
 /* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
+void mp_dr_setup(const mp_int *a, mp_digit *d);
 
 /* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
 
 /* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(mp_int *a);
+int mp_reduce_is_2k(const mp_int *a);
 
 /* determines k value for 2k reduction */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
 
 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
 
 /* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(mp_int *a);
+int mp_reduce_is_2k_l(const mp_int *a);
 
 /* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
+int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
 
 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
+int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d);
 
 /* d = a**b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* ---> Primes <--- */
 
@@ -464,17 +464,17 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 extern const mp_digit ltm_prime_tab[PRIME_SIZE];
 
 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
+int mp_prime_is_divisible(const mp_int *a, int *result);
 
 /* performs one Fermat test of "a" using base "b".
  * Sets result to 0 if composite or 1 if probable prime
  */
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
 
 /* performs one Miller-Rabin test of "a" using base "b".
  * Sets result to 0 if composite or 1 if probable prime
  */
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
 
 /* This gives [for a given bit size] the number of trials required
  * such that Miller-Rabin gives a prob of failure lower than 2^-96
@@ -488,7 +488,7 @@ int mp_prime_rabin_miller_trials(int size);
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
-int mp_prime_is_prime(mp_int *a, int t, int *result);
+int mp_prime_is_prime(const mp_int *a, int t, int *result);
 
 /* finds the next prime after the number "a" using "t" trials
  * of Miller-Rabin.
@@ -526,24 +526,24 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
 /* ---> radix conversion <--- */
 int mp_count_bits(const mp_int *a);
 
-int mp_unsigned_bin_size(mp_int *a);
+int mp_unsigned_bin_size(const mp_int *a);
 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
+int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
+int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
 
-int mp_signed_bin_size(mp_int *a);
+int mp_signed_bin_size(const mp_int *a);
 int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a,  unsigned char *b);
-int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
+int mp_to_signed_bin(const mp_int *a,  unsigned char *b);
+int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
 
 int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(mp_int *a, char *str, int radix);
-int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen);
+int mp_toradix(const mp_int *a, char *str, int radix);
+int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
 int mp_radix_size(const mp_int *a, int radix, int *size);
 
 #ifndef LTM_NO_FILE
 int mp_fread(mp_int *a, int radix, FILE *stream);
-int mp_fwrite(mp_int *a, int radix, FILE *stream);
+int mp_fwrite(const mp_int *a, int radix, FILE *stream);
 #endif
 
 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
diff --git a/tommath_private.h b/tommath_private.h
index ee39694..087ddcd 100644
--- a/tommath_private.h
+++ b/tommath_private.h
@@ -55,24 +55,24 @@ extern void XFREE(void *p);
 #endif
 
 /* lowlevel functions, do not call! */
-int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
-int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
+int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
-int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-int fast_s_mp_sqr(mp_int *a, mp_int *b);
-int s_mp_sqr(mp_int *a, mp_int *b);
-int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
-int mp_karatsuba_sqr(mp_int *a, mp_int *b);
-int mp_toom_sqr(mp_int *a, mp_int *b);
-int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c);
-int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho);
-int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
-int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
+int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+int fast_s_mp_sqr(const mp_int *a, mp_int *b);
+int s_mp_sqr(const mp_int *a, mp_int *b);
+int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
+int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
+int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
+int mp_toom_sqr(const mp_int *a, mp_int *b);
+int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
+int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
+int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
+int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
+int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
 void bn_reverse(unsigned char *s, int len);
 
 extern const char *mp_s_rmap;