suffix _u32 -> _n of mp_(expt|log|root) functions, use int for now
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
diff --git a/demo/test.c b/demo/test.c
index 3e432cf..f153509 100644
--- a/demo/test.c
+++ b/demo/test.c
@@ -729,7 +729,7 @@ static int test_mp_sqrt(void)
printf("\nmp_sqrt() error!");
goto LBL_ERR;
}
- DO(mp_root_u32(&a, 2u, &c));
+ DO(mp_root_n(&a, 2u, &c));
if (mp_cmp_mag(&b, &c) != MP_EQ) {
printf("mp_sqrt() bad result!\n");
goto LBL_ERR;
@@ -1396,10 +1396,10 @@ LBL_ERR:
/* stripped down version of mp_radix_size. The faster version can be off by up t
o +3 */
/* TODO: This function should be removed, replaced by mp_radix_size, mp_radix_size_overestimate in 2.0 */
-static mp_err s_rs(const mp_int *a, int radix, uint32_t *size)
+static mp_err s_rs(const mp_int *a, int radix, int *size)
{
mp_err res;
- uint32_t digs = 0u;
+ int digs = 0u;
mp_int t;
mp_digit d;
*size = 0u;
@@ -1408,7 +1408,7 @@ static mp_err s_rs(const mp_int *a, int radix, uint32_t *size)
return MP_OKAY;
}
if (radix == 2) {
- *size = (uint32_t)mp_count_bits(a) + 1u;
+ *size = mp_count_bits(a) + 1;
return MP_OKAY;
}
DOR(mp_init_copy(&t, a));
@@ -1424,12 +1424,12 @@ static mp_err s_rs(const mp_int *a, int radix, uint32_t *size)
*size = digs + 1;
return MP_OKAY;
}
-static int test_mp_log_u32(void)
+static int test_mp_log_n(void)
{
mp_int a;
mp_digit d;
- uint32_t base, lb, size;
- const uint32_t max_base = MP_MIN(UINT32_MAX, MP_DIGIT_MAX);
+ int base, lb, size;
+ const int max_base = MP_MIN(INT_MAX, MP_DIGIT_MAX);
DOR(mp_init(&a));
@@ -1440,11 +1440,11 @@ static int test_mp_log_u32(void)
*/
mp_set(&a, 42u);
base = 0u;
- if (mp_log_u32(&a, base, &lb) != MP_VAL) {
+ if (mp_log_n(&a, base, &lb) != MP_VAL) {
goto LBL_ERR;
}
base = 1u;
- if (mp_log_u32(&a, base, &lb) != MP_VAL) {
+ if (mp_log_n(&a, base, &lb) != MP_VAL) {
goto LBL_ERR;
}
/*
@@ -1456,14 +1456,14 @@ static int test_mp_log_u32(void)
*/
base = 2u;
mp_zero(&a);
- if (mp_log_u32(&a, base, &lb) != MP_VAL) {
+ if (mp_log_n(&a, base, &lb) != MP_VAL) {
goto LBL_ERR;
}
for (d = 1; d < 4; d++) {
mp_set(&a, d);
- DO(mp_log_u32(&a, base, &lb));
- if (lb != ((d == 1)?0uL:1uL)) {
+ DO(mp_log_n(&a, base, &lb));
+ if (lb != ((d == 1)?0:1)) {
goto LBL_ERR;
}
}
@@ -1476,13 +1476,13 @@ static int test_mp_log_u32(void)
*/
base = 3u;
mp_zero(&a);
- if (mp_log_u32(&a, base, &lb) != MP_VAL) {
+ if (mp_log_n(&a, base, &lb) != MP_VAL) {
goto LBL_ERR;
}
for (d = 1; d < 4; d++) {
mp_set(&a, d);
- DO(mp_log_u32(&a, base, &lb));
- if (lb != ((d < base)?0uL:1uL)) {
+ DO(mp_log_n(&a, base, &lb));
+ if (lb != (((int)d < base)?0:1)) {
goto LBL_ERR;
}
}
@@ -1493,8 +1493,8 @@ static int test_mp_log_u32(void)
radix_size.
*/
DO(mp_rand(&a, 10));
- for (base = 2u; base < 65u; base++) {
- DO(mp_log_u32(&a, base, &lb));
+ for (base = 2; base < 65; base++) {
+ DO(mp_log_n(&a, base, &lb));
DO(s_rs(&a,(int)base, &size));
/* radix_size includes the memory needed for '\0', too*/
size -= 2;
@@ -1508,8 +1508,8 @@ static int test_mp_log_u32(void)
test the part of mp_ilogb that uses native types.
*/
DO(mp_rand(&a, 1));
- for (base = 2u; base < 65u; base++) {
- DO(mp_log_u32(&a, base, &lb));
+ for (base = 2; base < 65; base++) {
+ DO(mp_log_n(&a, base, &lb));
DO(s_rs(&a,(int)base, &size));
size -= 2;
if (lb != size) {
@@ -1519,9 +1519,9 @@ static int test_mp_log_u32(void)
/*Test upper edgecase with base UINT32_MAX and number (UINT32_MAX/2)*UINT32_MAX^10 */
mp_set(&a, max_base);
- DO(mp_expt_u32(&a, 10u, &a));
- DO(mp_add_d(&a, max_base / 2u, &a));
- DO(mp_log_u32(&a, max_base, &lb));
+ DO(mp_expt_n(&a, 10uL, &a));
+ DO(mp_add_d(&a, max_base / 2, &a));
+ DO(mp_log_n(&a, max_base, &lb));
if (lb != 10u) {
goto LBL_ERR;
}
@@ -1636,7 +1636,7 @@ LBL_ERR:
}
/*
- Cannot test mp_exp(_d) without mp_root and vice versa.
+ Cannot test mp_exp(_d) without mp_root_n and vice versa.
So one of the two has to be tested from scratch.
Numbers generated by
@@ -1658,7 +1658,7 @@ LBL_ERR:
low-mp branch.
*/
-static int test_mp_root_u32(void)
+static int test_mp_root_n(void)
{
mp_int a, c, r;
int i, j;
@@ -1850,10 +1850,10 @@ static int test_mp_root_u32(void)
for (i = 0; i < 10; i++) {
DO(mp_read_radix(&a, input[i], 64));
for (j = 3; j < 100; j++) {
- DO(mp_root_u32(&a, (uint32_t)j, &c));
+ DO(mp_root_n(&a, j, &c));
DO(mp_read_radix(&r, root[i][j-3], 10));
if (mp_cmp(&r, &c) != MP_EQ) {
- fprintf(stderr, "mp_root_u32 failed at input #%d, root #%d\n", i, j);
+ fprintf(stderr, "mp_root_n failed at input #%d, root #%d\n", i, j);
goto LBL_ERR;
}
}
@@ -2037,8 +2037,8 @@ static int test_mp_radix_size(void)
DOR(mp_init(&a));
/* number to result in a different size for every base: 67^(4 * 67) */
- mp_set(&a, 67u);
- DO(mp_expt_u32(&a, 268u, &a));
+ mp_set(&a, 67);
+ DO(mp_expt_n(&a, 268, &a));
for (radix = 2; radix < 65; radix++) {
DO(mp_radix_size(&a, radix, &size));
@@ -2304,13 +2304,13 @@ static int unit_tests(int argc, char **argv)
T1(mp_get_u32, MP_GET_I32),
T1(mp_get_u64, MP_GET_I64),
T1(mp_get_ul, MP_GET_L),
- T1(mp_log_u32, MP_LOG_U32),
+ T1(mp_log_n, MP_LOG_N),
T1(mp_incr, MP_ADD_D),
T1(mp_invmod, MP_INVMOD),
T1(mp_is_square, MP_IS_SQUARE),
T1(mp_kronecker, MP_KRONECKER),
T1(mp_montgomery_reduce, MP_MONTGOMERY_REDUCE),
- T1(mp_root_u32, MP_ROOT_U32),
+ T1(mp_root_n, MP_ROOT_N),
T1(mp_or, MP_OR),
T1(mp_prime_is_prime, MP_PRIME_IS_PRIME),
T1(mp_prime_next_prime, MP_PRIME_NEXT_PRIME),
@@ -2326,7 +2326,7 @@ static int unit_tests(int argc, char **argv)
T1(mp_set_double, MP_SET_DOUBLE),
#endif
T1(mp_signed_rsh, MP_SIGNED_RSH),
- T1(mp_sqrt, MP_SQRT),
+ T2(mp_sqrt, MP_SQRT, mp_root_n),
T1(mp_sqrtmod_prime, MP_SQRTMOD_PRIME),
T1(mp_xor, MP_XOR),
T2(s_mp_div_recursive, S_MP_DIV_RECURSIVE, S_MP_DIV_SCHOOL),
diff --git a/doc/bn.tex b/doc/bn.tex
index 64a07ff..1d6cf83 100644
--- a/doc/bn.tex
+++ b/doc/bn.tex
@@ -1911,9 +1911,9 @@ mp_err mp_sqrmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
\chapter{Exponentiation}
\section{Single Digit Exponentiation}
-\index{mp\_expt\_u32}
+\index{mp\_expt\_n}
\begin{alltt}
-mp_err mp_expt_u32 (const mp_int *a, uint32_t b, mp_int *c)
+mp_err mp_expt_n(const mp_int *a, int b, int *c)
\end{alltt}
This function computes $c = a^b$.
@@ -1940,9 +1940,9 @@ mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c)
It calculates $c = a \mod 2^b$.
\section{Root Finding}
-\index{mp\_root\_u32}
+\index{mp\_root\_n}
\begin{alltt}
-mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c)
+mp_err mp_root_n(const mp_int *a, int b, mp_int *c)
\end{alltt}
This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$. Will return a positive root
only for even roots and return a root with the sign of the input for odd roots. For example,
@@ -1964,9 +1964,9 @@ mp_err mp_sqrt(const mp_int *arg, mp_int *ret)
A logarithm function for positive integer input \texttt{a, base} computing $\floor{\log_bx}$ such
that $(\log_b x)^b \le x$.
-\index{mp\_log\_u32}
+\index{mp\_log\_n}
\begin{alltt}
-mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c)
+mp_err mp_log_n(const mp_int *a, int base, int *c)
\end{alltt}
\subsection{Example}
@@ -1981,7 +1981,7 @@ mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c)
int main(int argc, char **argv)
{
mp_int x, output;
- uint32_t base;
+ int base;
mp_err e;
if (argc != 3) {
@@ -1994,12 +1994,8 @@ int main(int argc, char **argv)
exit(EXIT_FAILURE);
}
errno = 0;
-#ifdef MP_64BIT
- /* Check for overflow skipped */
- base = (uint32_t)strtoull(argv[1], NULL, 10);
-#else
- base = (uint32_t)strtoul(argv[1], NULL, 10);
-#endif
+ base = (int)strtoul(argv[1], NULL, 10);
+
if (errno == ERANGE) {
fprintf(stderr,"strtoul(l) failed: input out of range\textbackslash{}n");
exit(EXIT_FAILURE);
@@ -2009,8 +2005,8 @@ int main(int argc, char **argv)
mp_error_to_string(e));
exit(EXIT_FAILURE);
}
- if ((e = mp_log_u32(&x, base, &output)) != MP_OKAY) {
- fprintf(stderr,"mp_ilogb failed: \textbackslash{}"%s\textbackslash{}"\textbackslash{}n",
+ if ((e = mp_log_n(&x, base, &output)) != MP_OKAY) {
+ fprintf(stderr,"mp_log_n failed: \textbackslash{}"%s\textbackslash{}"\textbackslash{}n",
mp_error_to_string(e));
exit(EXIT_FAILURE);
}
diff --git a/mp_expt_n.c b/mp_expt_n.c
new file mode 100644
index 0000000..93f9249
--- /dev/null
+++ b/mp_expt_n.c
@@ -0,0 +1,43 @@
+#include "tommath_private.h"
+#ifdef MP_EXPT_N_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* calculate c = a**b using a square-multiply algorithm */
+mp_err mp_expt_n(const mp_int *a, int b, mp_int *c)
+{
+ mp_err err;
+ mp_int g;
+
+ if ((err = mp_init_copy(&g, a)) != MP_OKAY) {
+ return err;
+ }
+
+ /* set initial result */
+ mp_set(c, 1uL);
+
+ while (b > 0) {
+ /* if the bit is set multiply */
+ if ((b & 1) != 0) {
+ if ((err = mp_mul(c, &g, c)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* square */
+ if (b > 1) {
+ if ((err = mp_sqr(&g, &g)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* shift to next bit */
+ b >>= 1;
+ }
+
+LBL_ERR:
+ mp_clear(&g);
+ return err;
+}
+
+#endif
diff --git a/mp_expt_u32.c b/mp_expt_u32.c
deleted file mode 100644
index a580fbf..0000000
--- a/mp_expt_u32.c
+++ /dev/null
@@ -1,46 +0,0 @@
-#include "tommath_private.h"
-#ifdef MP_EXPT_U32_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis */
-/* SPDX-License-Identifier: Unlicense */
-
-/* calculate c = a**b using a square-multiply algorithm */
-mp_err mp_expt_u32(const mp_int *a, uint32_t b, mp_int *c)
-{
- mp_err err;
-
- mp_int g;
-
- if ((err = mp_init_copy(&g, a)) != MP_OKAY) {
- return err;
- }
-
- /* set initial result */
- mp_set(c, 1uL);
-
- while (b > 0u) {
- /* if the bit is set multiply */
- if ((b & 1u) != 0u) {
- if ((err = mp_mul(c, &g, c)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* square */
- if (b > 1u) {
- if ((err = mp_sqr(&g, &g)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* shift to next bit */
- b >>= 1;
- }
-
- err = MP_OKAY;
-
-LBL_ERR:
- mp_clear(&g);
- return err;
-}
-
-#endif
diff --git a/mp_log_n.c b/mp_log_n.c
new file mode 100644
index 0000000..4de1e39
--- /dev/null
+++ b/mp_log_n.c
@@ -0,0 +1,29 @@
+#include "tommath_private.h"
+#ifdef MP_LOG_N_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+mp_err mp_log_n(const mp_int *a, int base, int *c)
+{
+ if (mp_isneg(a) || mp_iszero(a) || (base < 2) || (unsigned)base > (unsigned)MP_DIGIT_MAX) {
+ return MP_VAL;
+ }
+
+ if (MP_HAS(S_MP_LOG_2EXPT) && MP_IS_2EXPT((mp_digit)base)) {
+ *c = s_mp_log_2expt(a, (mp_digit)base);
+ return MP_OKAY;
+ }
+
+ if (MP_HAS(S_MP_LOG_D) && (a->used == 1)) {
+ *c = s_mp_log_d((mp_digit)base, a->dp[0]);
+ return MP_OKAY;
+ }
+
+ if (MP_HAS(S_MP_LOG)) {
+ return s_mp_log(a, (mp_digit)base, c);
+ }
+
+ return MP_VAL;
+}
+
+#endif
diff --git a/mp_log_u32.c b/mp_log_u32.c
deleted file mode 100644
index 1450d3a..0000000
--- a/mp_log_u32.c
+++ /dev/null
@@ -1,29 +0,0 @@
-#include "tommath_private.h"
-#ifdef MP_LOG_U32_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis */
-/* SPDX-License-Identifier: Unlicense */
-
-mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c)
-{
- if (mp_isneg(a) || mp_iszero(a) || (base < 2u)) {
- return MP_VAL;
- }
-
- if (MP_HAS(S_MP_LOG_POW2) && MP_IS_2EXPT(base)) {
- *c = s_mp_log_pow2(a, base);
- return MP_OKAY;
- }
-
- if (MP_HAS(S_MP_LOG_D) && (a->used == 1)) {
- *c = (uint32_t)s_mp_log_d(base, a->dp[0]);
- return MP_OKAY;
- }
-
- if (MP_HAS(S_MP_LOG)) {
- return s_mp_log(a, base, c);
- }
-
- return MP_VAL;
-}
-
-#endif
diff --git a/mp_radix_size.c b/mp_radix_size.c
index 7f7cbc2..ca08438 100644
--- a/mp_radix_size.c
+++ b/mp_radix_size.c
@@ -8,7 +8,7 @@ mp_err mp_radix_size(const mp_int *a, int radix, size_t *size)
{
mp_err err;
mp_int a_;
- uint32_t b;
+ int b;
/* make sure the radix is in range */
if ((radix < 2) || (radix > 64)) {
@@ -22,14 +22,13 @@ mp_err mp_radix_size(const mp_int *a, int radix, size_t *size)
a_ = *a;
a_.sign = MP_ZPOS;
- if ((err = mp_log_u32(&a_, (uint32_t)radix, &b)) != MP_OKAY) {
- goto LBL_ERR;
+ if ((err = mp_log_n(&a_, radix, &b)) != MP_OKAY) {
+ return err;
}
/* mp_ilogb truncates to zero, hence we need one extra put on top and one for `\0`. */
*size = (size_t)b + 2U + (mp_isneg(a) ? 1U : 0U);
-LBL_ERR:
- return err;
+ return MP_OKAY;
}
#endif
diff --git a/mp_root_n.c b/mp_root_n.c
new file mode 100644
index 0000000..d904df8
--- /dev/null
+++ b/mp_root_n.c
@@ -0,0 +1,141 @@
+#include "tommath_private.h"
+#ifdef MP_ROOT_N_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+/* find the n'th root of an integer
+ *
+ * Result found such that (c)**b <= a and (c+1)**b > a
+ *
+ * This algorithm uses Newton's approximation
+ * x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where
+ * each step involves a fair bit.
+ */
+mp_err mp_root_n(const mp_int *a, int b, mp_int *c)
+{
+ mp_int t1, t2, t3, a_;
+ int ilog2;
+ mp_err err;
+
+ if (b < 0 || (unsigned)b > (unsigned)MP_DIGIT_MAX) {
+ return MP_VAL;
+ }
+
+ /* input must be positive if b is even */
+ if (((b & 1) == 0) && mp_isneg(a)) {
+ return MP_VAL;
+ }
+
+ if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) {
+ return err;
+ }
+
+ /* if a is negative fudge the sign but keep track */
+ a_ = *a;
+ a_.sign = MP_ZPOS;
+
+ /* Compute seed: 2^(log_2(n)/b + 2)*/
+ ilog2 = mp_count_bits(a);
+
+ /*
+ If "b" is larger than INT_MAX it is also larger than
+ log_2(n) because the bit-length of the "n" is measured
+ with an int and hence the root is always < 2 (two).
+ */
+ if (b > INT_MAX/2) {
+ mp_set(c, 1uL);
+ c->sign = a->sign;
+ err = MP_OKAY;
+ goto LBL_ERR;
+ }
+
+ /* "b" is smaller than INT_MAX, we can cast safely */
+ if (ilog2 < b) {
+ mp_set(c, 1uL);
+ c->sign = a->sign;
+ err = MP_OKAY;
+ goto LBL_ERR;
+ }
+ ilog2 = ilog2 / b;
+ if (ilog2 == 0) {
+ mp_set(c, 1uL);
+ c->sign = a->sign;
+ err = MP_OKAY;
+ goto LBL_ERR;
+ }
+ /* Start value must be larger than root */
+ ilog2 += 2;
+ if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) goto LBL_ERR;
+ do {
+ /* t1 = t2 */
+ if ((err = mp_copy(&t2, &t1)) != MP_OKAY) goto LBL_ERR;
+
+ /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
+
+ /* t3 = t1**(b-1) */
+ if ((err = mp_expt_n(&t1, b - 1, &t3)) != MP_OKAY) goto LBL_ERR;
+
+ /* numerator */
+ /* t2 = t1**b */
+ if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) goto LBL_ERR;
+
+ /* t2 = t1**b - a */
+ if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) goto LBL_ERR;
+
+ /* denominator */
+ /* t3 = t1**(b-1) * b */
+ if ((err = mp_mul_d(&t3, (mp_digit)b, &t3)) != MP_OKAY) goto LBL_ERR;
+
+ /* t3 = (t1**b - a)/(b * t1**(b-1)) */
+ if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) goto LBL_ERR;
+
+ if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) goto LBL_ERR;
+
+ /*
+ Number of rounds is at most log_2(root). If it is more it
+ got stuck, so break out of the loop and do the rest manually.
+ */
+ if (ilog2-- == 0) {
+ break;
+ }
+ } while (mp_cmp(&t1, &t2) != MP_EQ);
+
+ /* result can be off by a few so check */
+ /* Loop beneath can overshoot by one if found root is smaller than actual root */
+ for (;;) {
+ mp_ord cmp;
+ if ((err = mp_expt_n(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
+ cmp = mp_cmp(&t2, &a_);
+ if (cmp == MP_EQ) {
+ err = MP_OKAY;
+ goto LBL_ERR;
+ }
+ if (cmp == MP_LT) {
+ if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
+ } else {
+ break;
+ }
+ }
+ /* correct overshoot from above or from recurrence */
+ for (;;) {
+ if ((err = mp_expt_n(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
+ if (mp_cmp(&t2, &a_) == MP_GT) {
+ if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
+ } else {
+ break;
+ }
+ }
+
+ /* set the result */
+ mp_exch(&t1, c);
+
+ /* set the sign of the result */
+ c->sign = a->sign;
+
+LBL_ERR:
+ mp_clear_multi(&t1, &t2, &t3, NULL);
+ return err;
+}
+
+#endif
diff --git a/mp_root_u32.c b/mp_root_u32.c
deleted file mode 100644
index 1f972d9..0000000
--- a/mp_root_u32.c
+++ /dev/null
@@ -1,139 +0,0 @@
-#include "tommath_private.h"
-#ifdef MP_ROOT_U32_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis */
-/* SPDX-License-Identifier: Unlicense */
-
-/* find the n'th root of an integer
- *
- * Result found such that (c)**b <= a and (c+1)**b > a
- *
- * This algorithm uses Newton's approximation
- * x[i+1] = x[i] - f(x[i])/f'(x[i])
- * which will find the root in log(N) time where
- * each step involves a fair bit.
- */
-mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c)
-{
- mp_int t1, t2, t3, a_;
- mp_ord cmp;
- int ilog2;
- mp_err err;
-
- /* input must be positive if b is even */
- if (((b & 1u) == 0u) && mp_isneg(a)) {
- return MP_VAL;
- }
-
- if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) {
- return err;
- }
-
- /* if a is negative fudge the sign but keep track */
- a_ = *a;
- a_.sign = MP_ZPOS;
-
- /* Compute seed: 2^(log_2(n)/b + 2)*/
- ilog2 = mp_count_bits(a);
-
- /*
- If "b" is larger than INT_MAX it is also larger than
- log_2(n) because the bit-length of the "n" is measured
- with an int and hence the root is always < 2 (two).
- */
- if (b > (uint32_t)(INT_MAX/2)) {
- mp_set(c, 1uL);
- c->sign = a->sign;
- err = MP_OKAY;
- goto LBL_ERR;
- }
-
- /* "b" is smaller than INT_MAX, we can cast safely */
- if (ilog2 < (int)b) {
- mp_set(c, 1uL);
- c->sign = a->sign;
- err = MP_OKAY;
- goto LBL_ERR;
- }
- ilog2 = ilog2 / ((int)b);
- if (ilog2 == 0) {
- mp_set(c, 1uL);
- c->sign = a->sign;
- err = MP_OKAY;
- goto LBL_ERR;
- }
- /* Start value must be larger than root */
- ilog2 += 2;
- if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) goto LBL_ERR;
- do {
- /* t1 = t2 */
- if ((err = mp_copy(&t2, &t1)) != MP_OKAY) goto LBL_ERR;
-
- /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
-
- /* t3 = t1**(b-1) */
- if ((err = mp_expt_u32(&t1, b - 1u, &t3)) != MP_OKAY) goto LBL_ERR;
-
- /* numerator */
- /* t2 = t1**b */
- if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) goto LBL_ERR;
-
- /* t2 = t1**b - a */
- if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) goto LBL_ERR;
-
- /* denominator */
- /* t3 = t1**(b-1) * b */
- if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) goto LBL_ERR;
-
- /* t3 = (t1**b - a)/(b * t1**(b-1)) */
- if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) goto LBL_ERR;
-
- if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) goto LBL_ERR;
-
- /*
- Number of rounds is at most log_2(root). If it is more it
- got stuck, so break out of the loop and do the rest manually.
- */
- if (ilog2-- == 0) {
- break;
- }
- } while (mp_cmp(&t1, &t2) != MP_EQ);
-
- /* result can be off by a few so check */
- /* Loop beneath can overshoot by one if found root is smaller than actual root */
- for (;;) {
- if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
- cmp = mp_cmp(&t2, &a_);
- if (cmp == MP_EQ) {
- err = MP_OKAY;
- goto LBL_ERR;
- }
- if (cmp == MP_LT) {
- if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
- } else {
- break;
- }
- }
- /* correct overshoot from above or from recurrence */
- for (;;) {
- if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
- if (mp_cmp(&t2, &a_) == MP_GT) {
- if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
- } else {
- break;
- }
- }
-
- /* set the result */
- mp_exch(&t1, c);
-
- /* set the sign of the result */
- c->sign = a->sign;
-
- err = MP_OKAY;
-
-LBL_ERR:
- mp_clear_multi(&t1, &t2, &t3, NULL);
- return err;
-}
-
-#endif
diff --git a/s_mp_log.c b/s_mp_log.c
index eba279e..d1ac73b 100644
--- a/s_mp_log.c
+++ b/s_mp_log.c
@@ -3,14 +3,13 @@
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
-mp_err s_mp_log(const mp_int *a, uint32_t base, uint32_t *c)
+mp_err s_mp_log(const mp_int *a, mp_digit base, int *c)
{
mp_err err;
- mp_ord cmp;
- uint32_t high, low, mid;
+ int high, low;
mp_int bracket_low, bracket_high, bracket_mid, t, bi_base;
- cmp = mp_cmp_d(a, base);
+ mp_ord cmp = mp_cmp_d(a, base);
if ((cmp == MP_LT) || (cmp == MP_EQ)) {
*c = cmp == MP_EQ;
return MP_OKAY;
@@ -22,9 +21,9 @@ mp_err s_mp_log(const mp_int *a, uint32_t base, uint32_t *c)
return err;
}
- low = 0u;
+ low = 0;
mp_set(&bracket_low, 1uL);
- high = 1u;
+ high = 1;
mp_set(&bracket_high, base);
@@ -46,10 +45,10 @@ mp_err s_mp_log(const mp_int *a, uint32_t base, uint32_t *c)
}
mp_set(&bi_base, base);
- while ((high - low) > 1u) {
- mid = (high + low) >> 1;
+ while ((high - low) > 1) {
+ int mid = (high + low) >> 1;
- if ((err = mp_expt_u32(&bi_base, (uint32_t)(mid - low), &t)) != MP_OKAY) {
+ if ((err = mp_expt_n(&bi_base, mid - low, &t)) != MP_OKAY) {
goto LBL_END;
}
if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) {
diff --git a/s_mp_log_2expt.c b/s_mp_log_2expt.c
new file mode 100644
index 0000000..ec0fda3
--- /dev/null
+++ b/s_mp_log_2expt.c
@@ -0,0 +1,12 @@
+#include "tommath_private.h"
+#ifdef S_MP_LOG_2EXPT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis */
+/* SPDX-License-Identifier: Unlicense */
+
+int s_mp_log_2expt(const mp_int *a, mp_digit base)
+{
+ int y;
+ for (y = 0; (base & 1) == 0; y++, base >>= 1) {}
+ return (mp_count_bits(a) - 1) / y;
+}
+#endif
diff --git a/s_mp_log_d.c b/s_mp_log_d.c
index c9c8df2..5ff6c1f 100644
--- a/s_mp_log_d.c
+++ b/s_mp_log_d.c
@@ -17,21 +17,18 @@ static mp_word s_pow(mp_word base, mp_word exponent)
return result;
}
-mp_digit s_mp_log_d(mp_digit base, mp_digit n)
+int s_mp_log_d(mp_digit base, mp_digit n)
{
- mp_word bracket_low = 1u, bracket_mid, bracket_high, N;
- mp_digit ret, high = 1uL, low = 0uL, mid;
+ mp_word bracket_low = 1uLL, bracket_high = base, N = n;
+ int ret, high = 1, low = 0;
if (n < base) {
- return 0uL;
+ return 0;
}
if (n == base) {
- return 1uL;
+ return 1;
}
- bracket_high = (mp_word) base ;
- N = (mp_word) n;
-
while (bracket_high < N) {
low = high;
bracket_low = bracket_high;
@@ -40,8 +37,8 @@ mp_digit s_mp_log_d(mp_digit base, mp_digit n)
}
while (((mp_digit)(high - low)) > 1uL) {
- mid = (low + high) >> 1;
- bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low));
+ int mid = (low + high) >> 1;
+ mp_word bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low));
if (N < bracket_mid) {
high = mid ;
@@ -52,7 +49,7 @@ mp_digit s_mp_log_d(mp_digit base, mp_digit n)
bracket_low = bracket_mid ;
}
if (N == bracket_mid) {
- return (mp_digit) mid;
+ return mid;
}
}
diff --git a/s_mp_log_pow2.c b/s_mp_log_pow2.c
deleted file mode 100644
index 74271c6..0000000
--- a/s_mp_log_pow2.c
+++ /dev/null
@@ -1,12 +0,0 @@
-#include "tommath_private.h"
-#ifdef S_MP_LOG_POW2_C
-/* LibTomMath, multiple-precision integer library -- Tom St Denis */
-/* SPDX-License-Identifier: Unlicense */
-
-uint32_t s_mp_log_pow2(const mp_int *a, uint32_t base)
-{
- int y;
- for (y = 0; (base & 1u) == 0u; y++, base >>= 1) {}
- return (uint32_t)((mp_count_bits(a) - 1) / y);
-}
-#endif
diff --git a/tommath.h b/tommath.h
index 5e75c98..4b2bc04 100644
--- a/tommath.h
+++ b/tommath.h
@@ -423,11 +423,17 @@ mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp
/* c = [a, b] or (a*b)/(a, b) */
mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
+/* Integer logarithm to integer base */
+mp_err mp_log_n(const mp_int *a, int base, int *c) MP_WUR;
+
+/* c = a**b */
+mp_err mp_expt_n(const mp_int *a, int b, mp_int *c) MP_WUR;
+
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
-mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c) MP_WUR;
+mp_err mp_root_n(const mp_int *a, int b, mp_int *c) MP_WUR;
/* special sqrt algo */
mp_err mp_sqrt(const mp_int *arg, mp_int *ret) MP_WUR;
@@ -557,12 +563,6 @@ mp_err mp_prime_next_prime(mp_int *a, int t, bool bbs_style) MP_WUR;
*/
mp_err mp_prime_rand(mp_int *a, int t, int size, int flags) MP_WUR;
-/* Integer logarithm to integer base */
-mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c) MP_WUR;
-
-/* c = a**b */
-mp_err mp_expt_u32(const mp_int *a, uint32_t b, mp_int *c) MP_WUR;
-
/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a) MP_WUR;
diff --git a/tommath_private.h b/tommath_private.h
index 938865f..60b3336 100644
--- a/tommath_private.h
+++ b/tommath_private.h
@@ -161,7 +161,8 @@ extern MP_PRIVATE mp_err(*s_mp_rand_source)(void *out, size_t size);
/* lowlevel functions, do not call! */
MP_PRIVATE bool s_mp_get_bit(const mp_int *a, int b) MP_WUR;
-MP_PRIVATE mp_digit s_mp_log_d(mp_digit base, mp_digit n) MP_WUR;
+MP_PRIVATE int s_mp_log_2expt(const mp_int *a, mp_digit base) MP_WUR;
+MP_PRIVATE int s_mp_log_d(mp_digit base, mp_digit n) MP_WUR;
MP_PRIVATE mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) MP_WUR;
MP_PRIVATE mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) MP_WUR;
@@ -171,7 +172,7 @@ MP_PRIVATE mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P
MP_PRIVATE mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR;
MP_PRIVATE mp_err s_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_invmod_odd(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
-MP_PRIVATE mp_err s_mp_log(const mp_int *a, uint32_t base, uint32_t *c) MP_WUR;
+MP_PRIVATE mp_err s_mp_log(const mp_int *a, mp_digit base, int *c) MP_WUR;
MP_PRIVATE mp_err s_mp_montgomery_reduce_comba(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR;
MP_PRIVATE mp_err s_mp_mul(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR;
MP_PRIVATE mp_err s_mp_mul_balance(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
@@ -187,7 +188,6 @@ MP_PRIVATE mp_err s_mp_sqr_comba(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_sqr_karatsuba(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_sqr_toom(const mp_int *a, mp_int *b) MP_WUR;
MP_PRIVATE mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
-MP_PRIVATE uint32_t s_mp_log_pow2(const mp_int *a, uint32_t base) MP_WUR;
MP_PRIVATE void s_mp_copy_digs(mp_digit *d, const mp_digit *s, int digits);
MP_PRIVATE void s_mp_zero_buf(void *mem, size_t size);
MP_PRIVATE void s_mp_zero_digs(mp_digit *d, int digits);
diff --git a/tommath_superclass.h b/tommath_superclass.h
index dd83cad..9e85d98 100644
--- a/tommath_superclass.h
+++ b/tommath_superclass.h
@@ -28,12 +28,12 @@
# define MP_NEG_C
# define MP_PRIME_FROBENIUS_UNDERWOOD_C
# define MP_RADIX_SIZE_C
-# define MP_LOG_U32_C
+# define MP_LOG_N_C
# define MP_RAND_C
# define MP_REDUCE_C
# define MP_REDUCE_2K_L_C
# define MP_FROM_SBIN_C
-# define MP_ROOT_U32_C
+# define MP_ROOT_N_C
# define MP_SET_L_C
# define MP_SET_UL_C
# define MP_SBIN_SIZE_C