Tag
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library is designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
int
mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, A, B, C, D;
int res;
/* b cannot be negative */
if (b->sign == MP_NEG) {
return MP_VAL;
}
/* if the modulus is odd we can use a faster routine instead */
if (mp_iseven (b) == 0) {
return fast_mp_invmod (a, b, c);
}
if ((res = mp_init (&x)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_init (&y)) != MP_OKAY) {
goto __X;
}
if ((res = mp_init (&u)) != MP_OKAY) {
goto __Y;
}
if ((res = mp_init (&v)) != MP_OKAY) {
goto __U;
}
if ((res = mp_init (&A)) != MP_OKAY) {
goto __V;
}
if ((res = mp_init (&B)) != MP_OKAY) {
goto __A;
}
if ((res = mp_init (&C)) != MP_OKAY) {
goto __B;
}
if ((res = mp_init (&D)) != MP_OKAY) {
goto __C;
}
/* x = a, y = b */
if ((res = mp_copy (a, &x)) != MP_OKAY) {
goto __D;
}
if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto __D;
}
if ((res = mp_abs (&x, &x)) != MP_OKAY) {
goto __D;
}
/* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
goto __D;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __D;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __D;
}
mp_set (&A, 1);
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __D;
}
/* 4.2 if A or B is odd then */
if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto __D;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __D;
}
}
/* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto __D;
}
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __D;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __D;
}
/* 5.2 if C,D are even then */
if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto __D;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __D;
}
}
/* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto __D;
}
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __D;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __D;
}
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto __D;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __D;
}
} else {
/* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __D;
}
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto __D;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __D;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == 0)
goto top;
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto __D;
}
/* a is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
__D:mp_clear (&D);
__C:mp_clear (&C);
__B:mp_clear (&B);
__A:mp_clear (&A);
__V:mp_clear (&v);
__U:mp_clear (&u);
__Y:mp_clear (&y);
__X:mp_clear (&x);
__ERR:
return res;
}