Hash :
7365442a
Author :
Date :
2019-05-10T23:59:46
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifndef BN_H_
#define BN_H_
#include <stdint.h>
#include <limits.h>
#ifdef LTM_NO_FILE
# warning LTM_NO_FILE has been deprecated, use MP_NO_FILE.
# define MP_NO_FILE
#endif
#ifndef MP_NO_FILE
# include <stdio.h>
#endif
#include "tommath_class.h"
#ifdef __cplusplus
extern "C" {
#endif
/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)
# define MP_32BIT
#endif
/* detect 64-bit mode if possible */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
# if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
# if defined(__GNUC__)
/* we support 128bit integers only via: __attribute__((mode(TI))) */
# define MP_64BIT
# else
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
# define MP_32BIT
# endif
# endif
#endif
/* some default configurations.
*
* A "mp_digit" must be able to hold MP_DIGIT_BIT + 1 bits
* A "mp_word" must be able to hold 2*MP_DIGIT_BIT + 1 bits
*
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
#ifdef MP_8BIT
typedef uint8_t mp_digit;
typedef uint16_t mp_word;
# define MP_SIZEOF_MP_DIGIT 1
# ifdef MP_DIGIT_BIT
# error You must not define MP_DIGIT_BIT when using MP_8BIT
# endif
#elif defined(MP_16BIT)
typedef uint16_t mp_digit;
typedef uint32_t mp_word;
# define MP_SIZEOF_MP_DIGIT 2
# ifdef MP_DIGIT_BIT
# error You must not define MP_DIGIT_BIT when using MP_16BIT
# endif
#elif defined(MP_64BIT)
/* for GCC only on supported platforms */
typedef uint64_t mp_digit;
typedef unsigned long mp_word __attribute__((mode(TI)));
# define MP_DIGIT_BIT 60
#else
/* this is the default case, 28-bit digits */
/* this is to make porting into LibTomCrypt easier :-) */
typedef uint32_t mp_digit;
typedef uint64_t mp_word;
# ifdef MP_31BIT
/* this is an extension that uses 31-bit digits */
# define MP_DIGIT_BIT 31
# else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
# define MP_DIGIT_BIT 28
# define MP_28BIT
# endif
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef MP_DIGIT_BIT
# define MP_DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */
#endif
#define MP_MASK ((((mp_digit)1)<<((mp_digit)MP_DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
/* equalities */
#define MP_LT -1 /* less than */
#define MP_EQ 0 /* equal to */
#define MP_GT 1 /* greater than */
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
#define MP_OKAY 0 /* ok result */
#define MP_ERR -1 /* unknown error */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
#define MP_ITER -4 /* Max. iterations reached */
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
/* Primality generation flags */
#define MP_PRIME_BBS 0x0001 /* BBS style prime */
#define MP_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define MP_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
#define LTM_PRIME_BBS (MP_DEPRECATED_PRAGMA("LTM_PRIME_BBS has been deprecated, use MP_PRIME_BBS") MP_PRIME_BBS)
#define LTM_PRIME_SAFE (MP_DEPRECATED_PRAGMA("LTM_PRIME_SAFE has been deprecated, use MP_PRIME_SAFE") MP_PRIME_SAFE)
#define LTM_PRIME_2MSB_ON (MP_DEPRECATED_PRAGMA("LTM_PRIME_2MSB_ON has been deprecated, use MP_PRIME_2MSB_ON") MP_PRIME_2MSB_ON)
typedef int mp_err;
/* tunable cutoffs */
#ifndef MP_FIXED_CUTOFFS
extern int
KARATSUBA_MUL_CUTOFF,
KARATSUBA_SQR_CUTOFF,
TOOM_MUL_CUTOFF,
TOOM_SQR_CUTOFF;
#endif
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
/* default precision */
#ifndef MP_PREC
# ifndef MP_LOW_MEM
# define MP_PREC 32 /* default digits of precision */
# elif defined(MP_8BIT)
# define MP_PREC 16 /* default digits of precision */
# else
# define MP_PREC 8 /* default digits of precision */
# endif
#endif
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define PRIVATE_MP_WARRAY (1u << (((CHAR_BIT * sizeof(mp_word)) - (2 * MP_DIGIT_BIT)) + 1))
#define MP_WARRAY (MP_DEPRECATED_PRAGMA("MP_WARRAY is an internal macro") PRIVATE_MP_WARRAY)
#if defined(__GNUC__) && __GNUC__ >= 4
# define MP_NULL_TERMINATED __attribute__((sentinel))
#else
# define MP_NULL_TERMINATED
#endif
/*
* MP_WUR - warn unused result
* ---------------------------
*
* The result of functions annotated with MP_WUR must be
* checked and cannot be ignored.
*
* Most functions in libtommath return an error code.
* This error code must be checked in order to prevent crashes or invalid
* results.
*
* If you still want to avoid the error checks for quick and dirty programs
* without robustness guarantees, you can `#define MP_WUR` before including
* tommath.h, disabling the warnings.
*/
#ifndef MP_WUR
# if defined(__GNUC__) && __GNUC__ >= 4
# define MP_WUR __attribute__((warn_unused_result))
# else
# define MP_WUR
# endif
#endif
#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301)
# define MP_DEPRECATED(x) __attribute__((deprecated("replaced by " #x)))
# define PRIVATE_MP_DEPRECATED_PRAGMA(s) _Pragma(#s)
# define MP_DEPRECATED_PRAGMA(s) PRIVATE_MP_DEPRECATED_PRAGMA(GCC warning s)
#elif defined(_MSC_VER) && _MSC_VER >= 1500
# define MP_DEPRECATED(x) __declspec(deprecated("replaced by " #x))
# define MP_DEPRECATED_PRAGMA(s) __pragma(message(s))
#else
# define MP_DEPRECATED
# define MP_DEPRECATED_PRAGMA(s)
#endif
#define DIGIT_BIT (MP_DEPRECATED_PRAGMA("DIGIT_BIT macro is deprecated, MP_DIGIT_BIT instead") MP_DIGIT_BIT)
#define USED(m) (MP_DEPRECATED_PRAGMA("USED macro is deprecated, use z->used instead") (m)->used)
#define DIGIT(m, k) (MP_DEPRECATED_PRAGMA("DIGIT macro is deprecated, use z->dp instead") (m)->dp[(k)])
#define SIGN(m) (MP_DEPRECATED_PRAGMA("SIGN macro is deprecated, use z->sign instead") (m)->sign)
/* the infamous mp_int structure */
typedef struct {
int used, alloc, sign;
mp_digit *dp;
} mp_int;
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int private_mp_prime_callback(unsigned char *dst, int len, void *dat);
typedef private_mp_prime_callback ltm_prime_callback MP_DEPRECATED(mp_rand_source);
/* error code to char* string */
const char *mp_error_to_string(int code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
MP_WUR int mp_init(mp_int *a);
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
MP_WUR int mp_init_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
MP_WUR int mp_shrink(mp_int *a);
/* grow an int to a given size */
MP_WUR int mp_grow(mp_int *a, int size);
/* init to a given number of digits */
MP_WUR int mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
MP_WUR int mp_iseven(const mp_int *a);
MP_WUR int mp_isodd(const mp_int *a);
#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
/* set to zero */
void mp_zero(mp_int *a);
/* set to a digit */
void mp_set(mp_int *a, mp_digit b);
/* set a double */
MP_WUR int mp_set_double(mp_int *a, double b);
/* set a 32-bit const */
/* TODO void - never fails */ int mp_set_int(mp_int *a, unsigned long b);
/* set a platform dependent unsigned long value */
/* TODO void - never fails */ int mp_set_long(mp_int *a, unsigned long b);
/* set a platform dependent unsigned long long value */
/* TODO void - never fails */ int mp_set_long_long(mp_int *a, unsigned long long b);
/* get a double */
MP_WUR double mp_get_double(const mp_int *a);
/* get a 32-bit value */
MP_WUR unsigned long mp_get_int(const mp_int *a);
/* get a platform dependent unsigned long value */
MP_WUR unsigned long mp_get_long(const mp_int *a);
/* get a platform dependent unsigned long long value */
MP_WUR unsigned long long mp_get_long_long(const mp_int *a);
/* initialize and set a digit */
MP_WUR int mp_init_set(mp_int *a, mp_digit b);
/* initialize and set 32-bit value */
MP_WUR int mp_init_set_int(mp_int *a, unsigned long b);
/* copy, b = a */
MP_WUR int mp_copy(const mp_int *a, mp_int *b);
/* inits and copies, a = b */
MP_WUR int mp_init_copy(mp_int *a, const mp_int *b);
/* trim unused digits */
void mp_clamp(mp_int *a);
/* import binary data */
MP_WUR int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
/* export binary data */
MP_WUR int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
MP_WUR int mp_lshd(mp_int *a, int b);
/* c = a / 2**b, implemented as c = a >> b */
MP_WUR int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
MP_WUR int mp_div_2(const mp_int *a, mp_int *b);
/* c = a * 2**b, implemented as c = a << b */
MP_WUR int mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
MP_WUR int mp_mul_2(const mp_int *a, mp_int *b);
/* c = a mod 2**b */
MP_WUR int mp_mod_2d(const mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
MP_WUR int mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
MP_WUR int mp_cnt_lsb(const mp_int *a);
/* I Love Earth! */
/* makes a pseudo-random mp_int of a given size */
MP_WUR int mp_rand(mp_int *a, int digits);
/* makes a pseudo-random small int of a given size */
MP_WUR MP_DEPRECATED(mp_rand) int mp_rand_digit(mp_digit *r);
/* use custom random data source instead of source provided the platform */
void mp_rand_source(int source(void *out, size_t size));
#ifdef MP_PRNG_ENABLE_LTM_RNG
# warning MP_PRNG_ENABLE_LTM_RNG has been deprecated, use mp_rand_source instead.
/* A last resort to provide random data on systems without any of the other
* implemented ways to gather entropy.
* It is compatible with `rng_get_bytes()` from libtomcrypt so you could
* provide that one and then set `ltm_rng = rng_get_bytes;` */
extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
extern void (*ltm_rng_callback)(void);
#endif
/* ---> binary operations <--- */
/* c = a XOR b */
MP_WUR int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b */
MP_WUR int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b */
MP_WUR int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
/* Checks the bit at position b and returns MP_YES
if the bit is 1, MP_NO if it is 0 and MP_VAL
in case of error */
MP_WUR int mp_get_bit(const mp_int *a, int b);
/* c = a XOR b (two complement) */
MP_WUR int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b (two complement) */
MP_WUR int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b (two complement) */
MP_WUR int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
/* right shift (two complement) */
MP_WUR int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
/* ---> Basic arithmetic <--- */
/* b = ~a */
MP_WUR int mp_complement(const mp_int *a, mp_int *b);
/* b = -a */
MP_WUR int mp_neg(const mp_int *a, mp_int *b);
/* b = |a| */
MP_WUR int mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
MP_WUR int mp_cmp(const mp_int *a, const mp_int *b);
/* compare |a| to |b| */
MP_WUR int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
MP_WUR int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a - b */
MP_WUR int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a * b */
MP_WUR int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
MP_WUR int mp_sqr(const mp_int *a, mp_int *b);
/* a/b => cb + d == a */
MP_WUR int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
MP_WUR int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
/* compare against a single digit */
MP_WUR int mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
MP_WUR int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
/* Increment "a" by one like "a++". Changes input! */
MP_WUR int mp_incr(mp_int *a);
/* c = a - b */
MP_WUR int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
/* Decrement "a" by one like "a--". Changes input! */
MP_WUR int mp_decr(mp_int *a);
/* c = a * b */
MP_WUR int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
MP_WUR int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
MP_WUR int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
MP_WUR int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
MP_WUR int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* c = a mod b, 0 <= c < b */
MP_WUR int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
MP_WUR int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a - b (mod c) */
MP_WUR int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a * b (mod c) */
MP_WUR int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* c = a * a (mod b) */
MP_WUR int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
MP_WUR int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = (a, b) */
MP_WUR int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
MP_WUR int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
MP_WUR int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
MP_WUR int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
MP_WUR int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* special sqrt algo */
MP_WUR int mp_sqrt(const mp_int *arg, mp_int *ret);
/* special sqrt (mod prime) */
MP_WUR int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
/* is number a square? */
MP_WUR int mp_is_square(const mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
MP_WUR int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
MP_WUR int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
/* used to setup the Barrett reduction for a given modulus b */
MP_WUR int mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
*/
MP_WUR int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* setups the montgomery reduction */
MP_WUR int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
MP_WUR int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
MP_WUR int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
/* returns 1 if a is a valid DR modulus */
MP_WUR int mp_dr_is_modulus(const mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo n using the Diminished Radix method */
MP_WUR int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
/* returns true if a can be reduced with mp_reduce_2k */
MP_WUR int mp_reduce_is_2k(const mp_int *a);
/* determines k value for 2k reduction */
MP_WUR int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
MP_WUR int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
MP_WUR int mp_reduce_is_2k_l(const mp_int *a);
/* determines k value for 2k reduction */
MP_WUR int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
MP_WUR int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
/* Y = G**X (mod P) */
MP_WUR int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
/* ---> Primes <--- */
/* number of primes */
#ifdef MP_8BIT
# define MP_PRIME_SIZE 31
#else
# define MP_PRIME_SIZE 256
#endif
#define PRIME_SIZE (MP_DEPRECATED_PRAGMA("PRIME_SIZE has been deprecated, use MP_PRIME_SIZE") MP_PRIME_SIZE)
/* table of first MP_PRIME_SIZE primes */
extern const mp_digit ltm_prime_tab[MP_PRIME_SIZE];
/* result=1 if a is divisible by one of the first MP_PRIME_SIZE primes */
MP_WUR int mp_prime_is_divisible(const mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
MP_WUR int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
MP_WUR int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
MP_WUR int mp_prime_rabin_miller_trials(int size);
/* performs one strong Lucas-Selfridge test of "a".
* Sets result to 0 if composite or 1 if probable prime
*/
MP_WUR int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
/* performs one Frobenius test of "a" as described by Paul Underwood.
* Sets result to 0 if composite or 1 if probable prime
*/
MP_WUR int mp_prime_frobenius_underwood(const mp_int *N, int *result);
/* performs t random rounds of Miller-Rabin on "a" additional to
* bases 2 and 3. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
* Both a strong Lucas-Selfridge to complete the BPSW test
* and a separate Frobenius test are available at compile time.
* With t<0 a deterministic test is run for primes up to
* 318665857834031151167461. With t<13 (abs(t)-13) additional
* tests with sequential small primes are run starting at 43.
* Is Fips 186.4 compliant if called with t as computed by
* mp_prime_rabin_miller_trials();
*
* Sets result to 1 if probably prime, 0 otherwise
*/
MP_WUR int mp_prime_is_prime(const mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
MP_WUR int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
#define mp_prime_random(a, t, size, bbs, cb, dat) (MP_DEPRECATED_PRAGMA("mp_prime_random has been deprecated, use mp_prime_rand instead") mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?MP_PRIME_BBS:0, cb, dat))
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* MP_PRIME_BBS - make prime congruent to 3 mod 4
* MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS)
* MP_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
MP_WUR MP_DEPRECATED(mp_prime_rand) int mp_prime_random_ex(mp_int *a, int t, int size, int flags,
private_mp_prime_callback cb, void *dat);
MP_WUR int mp_prime_rand(mp_int *a, int t, int size, int flags);
/* Integer logarithm to integer base */
MP_WUR int mp_ilogb(mp_int *a, mp_digit base, mp_int *c);
/* ---> radix conversion <--- */
MP_WUR int mp_count_bits(const mp_int *a);
MP_WUR int mp_unsigned_bin_size(const mp_int *a);
MP_WUR int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
MP_WUR int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
MP_WUR int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
MP_WUR int mp_signed_bin_size(const mp_int *a);
MP_WUR int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
MP_WUR int mp_to_signed_bin(const mp_int *a, unsigned char *b);
MP_WUR int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
MP_WUR int mp_read_radix(mp_int *a, const char *str, int radix);
MP_WUR int mp_toradix(const mp_int *a, char *str, int radix);
MP_WUR int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
MP_WUR int mp_radix_size(const mp_int *a, int radix, int *size);
#ifndef MP_NO_FILE
MP_WUR int mp_fread(mp_int *a, int radix, FILE *stream);
MP_WUR int mp_fwrite(const mp_int *a, int radix, FILE *stream);
#endif
#define mp_read_raw(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_signed_bin") mp_read_signed_bin((mp), (str), (len)))
#define mp_raw_size(mp) (MP_DEPRECATED_PRAGMA("replaced by mp_signed_bin_size") mp_signed_bin_size(mp))
#define mp_toraw(mp, str) (MP_DEPRECATED_PRAGMA("replaced by mp_to_signed_bin") mp_to_signed_bin((mp), (str)))
#define mp_read_mag(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_unsigned_bin") mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp) (MP_DEPRECATED_PRAGMA("replaced by mp_unsigned_bin_size") mp_unsigned_bin_size(mp))
#define mp_tomag(mp, str) (MP_DEPRECATED_PRAGMA("replaced by mp_to_unsigned_bin") mp_to_unsigned_bin((mp), (str)))
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
#ifdef __cplusplus
}
#endif
#endif