1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#include "tommath_private.h"
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* multiplies |a| * |b| and does not compute the lower digs digits
* [meant to get the higher part of the product]
*/
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;
mp_digit u;
mp_word r;
mp_digit tmpx, *tmpt, *tmpy;
/* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
if (((a->used + b->used + 1) < (int)MP_WARRAY)
&& (MIN(a->used, b->used) < (int)(1u << ((CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)DIGIT_BIT))))) {
return fast_s_mp_mul_high_digs(a, b, c, digs);
}
#endif
if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
return res;
}
t.used = a->used + b->used + 1;
pa = a->used;
pb = b->used;
for (ix = 0; ix < pa; ix++) {
/* clear the carry */
u = 0;
/* left hand side of A[ix] * B[iy] */
tmpx = a->dp[ix];
/* alias to the address of where the digits will be stored */
tmpt = &(t.dp[digs]);
/* alias for where to read the right hand side from */
tmpy = b->dp + (digs - ix);
for (iy = digs - ix; iy < pb; iy++) {
/* calculate the double precision result */
r = (mp_word)*tmpt +
((mp_word)tmpx * (mp_word)*tmpy++) +
(mp_word)u;
/* get the lower part */
*tmpt++ = (mp_digit)(r & (mp_word)MP_MASK);
/* carry the carry */
u = (mp_digit)(r >> (mp_word)DIGIT_BIT);
}
*tmpt = u;
}
mp_clamp(&t);
mp_exch(&t, c);
mp_clear(&t);
return MP_OKAY;
}
#endif