Hash :
5c335f84
Author :
Date :
2019-10-30T17:26:27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#include "tommath_private.h"
#ifdef S_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
*
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
* The value of k changes based on the size of the exponent.
*
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
*/
#ifdef MP_LOW_MEM
# define TAB_SIZE 32
# define MAX_WINSIZE 5
#else
# define TAB_SIZE 256
# define MAX_WINSIZE 0
#endif
mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
mp_err err;
/* use a pointer to the reduction algorithm. This allows us to use
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho);
/* find window size */
x = mp_count_bits(X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize;
/* init M array */
/* init first cell */
if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear(&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* determine and setup reduction code */
if (redmode == 0) {
if (MP_HAS(MP_MONTGOMERY_SETUP)) {
/* now setup montgomery */
if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) goto LBL_M;
} else {
err = MP_VAL;
goto LBL_M;
}
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
if (MP_HAS(S_MP_MONTGOMERY_REDUCE_COMBA) &&
(((P->used * 2) + 1) < MP_WARRAY) &&
(P->used < MP_MAXFAST)) {
redux = s_mp_montgomery_reduce_comba;
} else if (MP_HAS(MP_MONTGOMERY_REDUCE)) {
/* use slower baseline Montgomery method */
redux = mp_montgomery_reduce;
} else {
err = MP_VAL;
goto LBL_M;
}
} else if (redmode == 1) {
if (MP_HAS(MP_DR_SETUP) && MP_HAS(MP_DR_REDUCE)) {
/* setup DR reduction for moduli of the form B**k - b */
mp_dr_setup(P, &mp);
redux = mp_dr_reduce;
} else {
err = MP_VAL;
goto LBL_M;
}
} else if (MP_HAS(MP_REDUCE_2K_SETUP) && MP_HAS(MP_REDUCE_2K)) {
/* setup DR reduction for moduli of the form 2**k - b */
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) goto LBL_M;
redux = mp_reduce_2k;
} else {
err = MP_VAL;
goto LBL_M;
}
/* setup result */
if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) goto LBL_M;
/* create M table
*
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
if (redmode == 0) {
if (MP_HAS(MP_MONTGOMERY_CALC_NORMALIZATION)) {
/* now we need R mod m */
if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) goto LBL_RES;
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) goto LBL_RES;
} else {
err = MP_VAL;
goto LBL_RES;
}
} else {
mp_set(&res, 1uL);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) goto LBL_RES;
}
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES;
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES;
if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) goto LBL_RES;
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) goto LBL_RES;
if ((err = redux(&M[x], P, mp)) != MP_OKAY) goto LBL_RES;
}
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)MP_DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if ((mode == 0) && (y == 0)) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if ((mode == 1) && (y == 0)) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES;
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES;
}
/* then multiply */
if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES;
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if ((mode == 2) && (bitcpy > 0)) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES;
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES;
}
}
}
if (redmode == 0) {
/* fixup result if Montgomery reduction is used
* recall that any value in a Montgomery system is
* actually multiplied by R mod n. So we have
* to reduce one more time to cancel out the factor
* of R.
*/
if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES;
}
/* swap res with Y */
mp_exch(&res, Y);
err = MP_OKAY;
LBL_RES:
mp_clear(&res);
LBL_M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear(&M[x]);
}
return err;
}
#endif