1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifndef TOMMATH_H_
#define TOMMATH_H_
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifndef MP_NO_FILE
# include <stdio.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
#if (defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)) && !defined(MP_64BIT)
# define MP_32BIT
#endif
/* detect 64-bit mode if possible */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
# if !(defined(MP_64BIT) || defined(MP_32BIT) || defined(MP_16BIT))
# if defined(__GNUC__) && !defined(__hppa)
/* we support 128bit integers only via: __attribute__((mode(TI))) */
# define MP_64BIT
# else
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
# define MP_32BIT
# endif
# endif
#endif
#ifdef MP_DIGIT_BIT
# error Defining MP_DIGIT_BIT is disallowed, use MP_16/31/32/64BIT
#endif
/* some default configurations.
*
* A "mp_digit" must be able to hold MP_DIGIT_BIT + 1 bits
* A "mp_word" must be able to hold 2*MP_DIGIT_BIT + 1 bits
*
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
#if defined(MP_16BIT)
typedef uint16_t mp_digit;
# define MP_DIGIT_BIT 15
#elif defined(MP_64BIT)
typedef uint64_t mp_digit;
# define MP_DIGIT_BIT 60
#else
typedef uint32_t mp_digit;
# ifdef MP_31BIT
/*
* This is an extension that uses 31-bit digits.
* Please be aware that not all functions support this size, especially s_mp_mul_comba
* will be reduced to work on small numbers only:
* Up to 8 limbs, 248 bits instead of up to 512 limbs, 15872 bits with MP_28BIT.
*/
# define MP_DIGIT_BIT 31
# else
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
# define MP_DIGIT_BIT 28
# define MP_28BIT
# endif
#endif
#define MP_MASK ((((mp_digit)1)<<((mp_digit)MP_DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
/* Primality generation flags */
#define MP_PRIME_BBS 0x0001 /* BBS style prime */
#define MP_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define MP_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
typedef enum {
MP_ZPOS = 0, /* positive */
MP_NEG = 1 /* negative */
} mp_sign;
typedef enum {
MP_LT = -1, /* less than */
MP_EQ = 0, /* equal */
MP_GT = 1 /* greater than */
} mp_ord;
typedef enum {
MP_OKAY = 0, /* no error */
MP_ERR = -1, /* unknown error */
MP_MEM = -2, /* out of mem */
MP_VAL = -3, /* invalid input */
MP_ITER = -4, /* maximum iterations reached */
MP_BUF = -5 /* buffer overflow, supplied buffer too small */
} mp_err;
typedef enum {
MP_LSB_FIRST = -1,
MP_MSB_FIRST = 1
} mp_order;
typedef enum {
MP_LITTLE_ENDIAN = -1,
MP_NATIVE_ENDIAN = 0,
MP_BIG_ENDIAN = 1
} mp_endian;
/* tunable cutoffs */
#ifndef MP_FIXED_CUTOFFS
extern int
MP_MUL_KARATSUBA_CUTOFF,
MP_SQR_KARATSUBA_CUTOFF,
MP_MUL_TOOM_CUTOFF,
MP_SQR_TOOM_CUTOFF;
#endif
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
#if defined(__GNUC__) && __GNUC__ >= 4
# define MP_NULL_TERMINATED __attribute__((sentinel))
#else
# define MP_NULL_TERMINATED
#endif
/*
* MP_WUR - warn unused result
* ---------------------------
*
* The result of functions annotated with MP_WUR must be
* checked and cannot be ignored.
*
* Most functions in libtommath return an error code.
* This error code must be checked in order to prevent crashes or invalid
* results.
*/
#if defined(__GNUC__) && __GNUC__ >= 4
# define MP_WUR __attribute__((warn_unused_result))
#else
# define MP_WUR
#endif
#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 405)
# define MP_DEPRECATED(x) __attribute__((deprecated("replaced by " #x)))
#elif defined(_MSC_VER) && _MSC_VER >= 1500
# define MP_DEPRECATED(x) __declspec(deprecated("replaced by " #x))
#else
# define MP_DEPRECATED(x)
#endif
#ifndef MP_NO_DEPRECATED_PRAGMA
#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301)
# define PRIVATE_MP_DEPRECATED_PRAGMA(s) _Pragma(#s)
# define MP_DEPRECATED_PRAGMA(s) PRIVATE_MP_DEPRECATED_PRAGMA(GCC warning s)
#elif defined(_MSC_VER) && _MSC_VER >= 1500
# define MP_DEPRECATED_PRAGMA(s) __pragma(message(s))
#endif
#endif
#ifndef MP_DEPRECATED_PRAGMA
# define MP_DEPRECATED_PRAGMA(s)
#endif
/* the infamous mp_int structure */
typedef struct {
int used, alloc;
mp_sign sign;
mp_digit *dp;
} mp_int;
/* error code to char* string */
const char *mp_error_to_string(mp_err code) MP_WUR;
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
mp_err mp_init(mp_int *a) MP_WUR;
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
mp_err mp_init_multi(mp_int *mp, ...) MP_NULL_TERMINATED MP_WUR;
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
mp_err mp_shrink(mp_int *a) MP_WUR;
/* grow an int to a given size */
mp_err mp_grow(mp_int *a, int size) MP_WUR;
/* init to a given number of digits */
mp_err mp_init_size(mp_int *a, int size) MP_WUR;
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) ((a)->used == 0)
#define mp_isneg(a) ((a)->sign == MP_NEG)
#define mp_iseven(a) (((a)->used == 0) || (((a)->dp[0] & 1u) == 0u))
#define mp_isodd(a) (!mp_iseven(a))
/* set to zero */
void mp_zero(mp_int *a);
/* get and set doubles */
double mp_get_double(const mp_int *a) MP_WUR;
mp_err mp_set_double(mp_int *a, double b) MP_WUR;
/* get integer, set integer and init with integer (int32_t) */
int32_t mp_get_i32(const mp_int *a) MP_WUR;
void mp_set_i32(mp_int *a, int32_t b);
mp_err mp_init_i32(mp_int *a, int32_t b) MP_WUR;
/* get integer, set integer and init with integer, behaves like two complement for negative numbers (uint32_t) */
#define mp_get_u32(a) ((uint32_t)mp_get_i32(a))
void mp_set_u32(mp_int *a, uint32_t b);
mp_err mp_init_u32(mp_int *a, uint32_t b) MP_WUR;
/* get integer, set integer and init with integer (int64_t) */
int64_t mp_get_i64(const mp_int *a) MP_WUR;
void mp_set_i64(mp_int *a, int64_t b);
mp_err mp_init_i64(mp_int *a, int64_t b) MP_WUR;
/* get integer, set integer and init with integer, behaves like two complement for negative numbers (uint64_t) */
#define mp_get_u64(a) ((uint64_t)mp_get_i64(a))
void mp_set_u64(mp_int *a, uint64_t b);
mp_err mp_init_u64(mp_int *a, uint64_t b) MP_WUR;
/* get magnitude */
uint32_t mp_get_mag_u32(const mp_int *a) MP_WUR;
uint64_t mp_get_mag_u64(const mp_int *a) MP_WUR;
unsigned long mp_get_mag_ul(const mp_int *a) MP_WUR;
unsigned long long mp_get_mag_ull(const mp_int *a) MP_WUR;
/* get integer, set integer (long) */
long mp_get_l(const mp_int *a) MP_WUR;
void mp_set_l(mp_int *a, long b);
mp_err mp_init_l(mp_int *a, long b) MP_WUR;
/* get integer, set integer (unsigned long) */
#define mp_get_ul(a) ((unsigned long)mp_get_l(a))
void mp_set_ul(mp_int *a, unsigned long b);
mp_err mp_init_ul(mp_int *a, unsigned long b) MP_WUR;
/* get integer, set integer (long long) */
long long mp_get_ll(const mp_int *a) MP_WUR;
void mp_set_ll(mp_int *a, long long b);
mp_err mp_init_ll(mp_int *a, long long b) MP_WUR;
/* get integer, set integer (unsigned long long) */
#define mp_get_ull(a) ((unsigned long long)mp_get_ll(a))
void mp_set_ull(mp_int *a, unsigned long long b);
mp_err mp_init_ull(mp_int *a, unsigned long long b) MP_WUR;
/* set to single unsigned digit, up to MP_DIGIT_MAX */
void mp_set(mp_int *a, mp_digit b);
mp_err mp_init_set(mp_int *a, mp_digit b) MP_WUR;
/* copy, b = a */
mp_err mp_copy(const mp_int *a, mp_int *b) MP_WUR;
/* inits and copies, a = b */
mp_err mp_init_copy(mp_int *a, const mp_int *b) MP_WUR;
/* trim unused digits */
void mp_clamp(mp_int *a);
/* unpack binary data */
mp_err mp_unpack(mp_int *rop, size_t count, mp_order order, size_t size, mp_endian endian,
size_t nails, const void *op) MP_WUR;
/* pack binary data */
size_t mp_pack_count(const mp_int *a, size_t nails, size_t size) MP_WUR;
mp_err mp_pack(void *rop, size_t maxcount, size_t *written, mp_order order, size_t size,
mp_endian endian, size_t nails, const mp_int *op) MP_WUR;
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
mp_err mp_lshd(mp_int *a, int b) MP_WUR;
/* c = a / 2**b, implemented as c = a >> b */
mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d) MP_WUR;
/* b = a/2 */
mp_err mp_div_2(const mp_int *a, mp_int *b) MP_WUR;
/* a/3 => 3c + d == a */
mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) MP_WUR;
/* c = a * 2**b, implemented as c = a << b */
mp_err mp_mul_2d(const mp_int *a, int b, mp_int *c) MP_WUR;
/* b = a*2 */
mp_err mp_mul_2(const mp_int *a, mp_int *b) MP_WUR;
/* c = a mod 2**b */
mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c) MP_WUR;
/* computes a = 2**b */
mp_err mp_2expt(mp_int *a, int b) MP_WUR;
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a) MP_WUR;
/* I Love Earth! */
/* makes a pseudo-random mp_int of a given size */
mp_err mp_rand(mp_int *a, int digits) MP_WUR;
/* use custom random data source instead of source provided the platform */
void mp_rand_source(mp_err(*source)(void *out, size_t size));
/* ---> binary operations <--- */
/* c = a XOR b (two complement) */
mp_err mp_xor(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* c = a OR b (two complement) */
mp_err mp_or(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* c = a AND b (two complement) */
mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* b = ~a (bitwise not, two complement) */
mp_err mp_complement(const mp_int *a, mp_int *b) MP_WUR;
/* right shift with sign extension */
mp_err mp_signed_rsh(const mp_int *a, int b, mp_int *c) MP_WUR;
/* ---> Basic arithmetic <--- */
/* b = -a */
mp_err mp_neg(const mp_int *a, mp_int *b) MP_WUR;
/* b = |a| */
mp_err mp_abs(const mp_int *a, mp_int *b) MP_WUR;
/* compare a to b */
mp_ord mp_cmp(const mp_int *a, const mp_int *b) MP_WUR;
/* compare |a| to |b| */
mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b) MP_WUR;
/* c = a + b */
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* c = a - b */
mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* c = a * b */
mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* b = a*a */
mp_err mp_sqr(const mp_int *a, mp_int *b) MP_WUR;
/* a/b => cb + d == a */
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR;
/* c = a mod b, 0 <= c < b */
mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* Increment "a" by one like "a++". Changes input! */
#define mp_incr(a) mp_add_d((a), 1u, (a))
/* Decrement "a" by one like "a--". Changes input! */
#define mp_decr(a) mp_sub_d((a), 1u, (a))
/* ---> single digit functions <--- */
/* compare against a single digit */
mp_ord mp_cmp_d(const mp_int *a, mp_digit b) MP_WUR;
/* c = a + b */
mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;
/* c = a - b */
mp_err mp_sub_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;
/* c = a * b */
mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) MP_WUR;
/* a/b => cb + d == a */
mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) MP_WUR;
/* c = a mod b, 0 <= c < b */
#define mp_mod_d(a, b, c) mp_div_d((a), (b), NULL, (c))
/* ---> number theory <--- */
/* d = a + b (mod c) */
mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR;
/* d = a - b (mod c) */
mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR;
/* d = a * b (mod c) */
mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d) MP_WUR;
/* c = a * a (mod b) */
mp_err mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* c = 1/a (mod b) */
mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* c = (a, b) */
mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* produces value such that U1*a + U2*b = U3 */
mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) MP_WUR;
/* c = [a, b] or (a*b)/(a, b) */
mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR;
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c) MP_WUR;
/* special sqrt algo */
mp_err mp_sqrt(const mp_int *arg, mp_int *ret) MP_WUR;
/* special sqrt (mod prime) */
mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) MP_WUR;
/* is number a square? */
mp_err mp_is_square(const mp_int *arg, bool *ret) MP_WUR;
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c) MP_WUR;
/* used to setup the Barrett reduction for a given modulus b */
mp_err mp_reduce_setup(mp_int *a, const mp_int *b) MP_WUR;
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
*/
mp_err mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) MP_WUR;
/* setups the montgomery reduction */
mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho) MP_WUR;
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b) MP_WUR;
/* computes x/R == x (mod N) via Montgomery Reduction */
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR;
/* returns 1 if a is a valid DR modulus */
bool mp_dr_is_modulus(const mp_int *a) MP_WUR;
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo n using the Diminished Radix method */
mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k) MP_WUR;
/* returns true if a can be reduced with mp_reduce_2k */
bool mp_reduce_is_2k(const mp_int *a) MP_WUR;
/* determines k value for 2k reduction */
mp_err mp_reduce_2k_setup(const mp_int *a, mp_digit *d) MP_WUR;
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
mp_err mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d) MP_WUR;
/* returns true if a can be reduced with mp_reduce_2k_l */
bool mp_reduce_is_2k_l(const mp_int *a) MP_WUR;
/* determines k value for 2k reduction */
mp_err mp_reduce_2k_setup_l(const mp_int *a, mp_int *d) MP_WUR;
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
mp_err mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d) MP_WUR;
/* Y = G**X (mod P) */
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) MP_WUR;
/* ---> Primes <--- */
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, bool *result) MP_WUR;
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
mp_err mp_prime_miller_rabin(const mp_int *a, const mp_int *b, bool *result) MP_WUR;
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
int mp_prime_rabin_miller_trials(int size) MP_WUR;
/* performs one strong Lucas-Selfridge test of "a".
* Sets result to 0 if composite or 1 if probable prime
*/
mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, bool *result) MP_WUR;
/* performs one Frobenius test of "a" as described by Paul Underwood.
* Sets result to 0 if composite or 1 if probable prime
*/
mp_err mp_prime_frobenius_underwood(const mp_int *N, bool *result) MP_WUR;
/* performs t random rounds of Miller-Rabin on "a" additional to
* bases 2 and 3. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
* Both a strong Lucas-Selfridge to complete the BPSW test
* and a separate Frobenius test are available at compile time.
* With t<0 a deterministic test is run for primes up to
* 318665857834031151167461. With t<13 (abs(t)-13) additional
* tests with sequential small primes are run starting at 43.
* Is Fips 186.4 compliant if called with t as computed by
* mp_prime_rabin_miller_trials();
*
* Sets result to 1 if probably prime, 0 otherwise
*/
mp_err mp_prime_is_prime(const mp_int *a, int t, bool *result) MP_WUR;
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = true means the prime must be congruent to 3 mod 4
*/
mp_err mp_prime_next_prime(mp_int *a, int t, bool bbs_style) MP_WUR;
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* MP_PRIME_BBS - make prime congruent to 3 mod 4
* MP_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies MP_PRIME_BBS)
* MP_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
mp_err mp_prime_rand(mp_int *a, int t, int size, int flags) MP_WUR;
/* Integer logarithm to integer base */
mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c) MP_WUR;
/* c = a**b */
mp_err mp_expt_u32(const mp_int *a, uint32_t b, mp_int *c) MP_WUR;
/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a) MP_WUR;
size_t mp_ubin_size(const mp_int *a) MP_WUR;
mp_err mp_from_ubin(mp_int *a, const uint8_t *buf, size_t size) MP_WUR;
mp_err mp_to_ubin(const mp_int *a, uint8_t *buf, size_t maxlen, size_t *written) MP_WUR;
size_t mp_sbin_size(const mp_int *a) MP_WUR;
mp_err mp_from_sbin(mp_int *a, const uint8_t *buf, size_t size) MP_WUR;
mp_err mp_to_sbin(const mp_int *a, uint8_t *buf, size_t maxlen, size_t *written) MP_WUR;
mp_err mp_read_radix(mp_int *a, const char *str, int radix) MP_WUR;
mp_err mp_to_radix(const mp_int *a, char *str, size_t maxlen, size_t *written, int radix) MP_WUR;
mp_err mp_radix_size(const mp_int *a, int radix, size_t *size) MP_WUR;
#ifndef MP_NO_FILE
mp_err mp_fread(mp_int *a, int radix, FILE *stream) MP_WUR;
mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream) MP_WUR;
#endif
#define mp_to_binary(M, S, N) mp_to_radix((M), (S), (N), NULL, 2)
#define mp_to_octal(M, S, N) mp_to_radix((M), (S), (N), NULL, 8)
#define mp_to_decimal(M, S, N) mp_to_radix((M), (S), (N), NULL, 10)
#define mp_to_hex(M, S, N) mp_to_radix((M), (S), (N), NULL, 16)
#ifdef __cplusplus
}
#endif
#endif