Hash :
4534056c
Author :
Date :
2019-05-13T00:22:18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit.
*/
mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
mp_int t1, t2, t3, a_;
int cmp;
int ilog2;
mp_err res;
/* input must be positive if b is even */
if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
return MP_VAL;
}
if ((res = mp_init(&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init(&t3)) != MP_OKAY) {
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
a_ = *a;
a_.sign = MP_ZPOS;
/* Compute seed: 2^(log_2(n)/b + 2)*/
ilog2 = mp_count_bits(a);
/*
GCC and clang do not understand the sizeof tests and complain,
icc (the Intel compiler) seems to understand, at least it doesn't complain.
2 of 3 say these macros are necessary, so there they are.
*/
#if ( !(defined MP_8BIT) && !(defined MP_16BIT) )
/*
The type of mp_digit might be larger than an int.
If "b" is larger than INT_MAX it is also larger than
log_2(n) because the bit-length of the "n" is measured
with an int and hence the root is always < 2 (two).
*/
if (sizeof(mp_digit) >= sizeof(int)) {
if (b > (mp_digit)(INT_MAX/2)) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
}
#endif
/* "b" is smaller than INT_MAX, we can cast safely */
if (ilog2 < (int)b) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
ilog2 = ilog2 / ((int)b);
if (ilog2 == 0) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
/* Start value must be larger than root */
ilog2 += 2;
if ((res = mp_2expt(&t2,ilog2)) != MP_OKAY) {
goto LBL_T3;
}
do {
/* t1 = t2 */
if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/*
Number of rounds is at most log_2(root). If it is more it
got stuck, so break out of the loop and do the rest manually.
*/
if (ilog2-- == 0) {
break;
}
} while (mp_cmp(&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
/* Loop beneath can overshoot by one if found root is smaller than actual root */
for (;;) {
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
cmp = mp_cmp(&t2, &a_);
if (cmp == MP_EQ) {
res = MP_OKAY;
goto LBL_T3;
}
if (cmp == MP_LT) {
if ((res = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* correct overshoot from above or from recurrence */
for (;;) {
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
if (mp_cmp(&t2, &a_) == MP_GT) {
if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
c->sign = a->sign;
res = MP_OKAY;
LBL_T3:
mp_clear(&t3);
LBL_T2:
mp_clear(&t2);
LBL_T1:
mp_clear(&t1);
return res;
}
#endif