1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret)
{
int res;
mp_int t1,t2;
/* must be positive */
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* easy out */
if (mp_iszero(arg) == MP_YES) {
mp_zero(ret);
return MP_OKAY;
}
if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto E2;
}
/* First approx. (not very bad for large arg) */
mp_rshd (&t1,t1.used/2);
/* t1 > 0 */
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* And now t1 > sqrt(arg) */
do {
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
goto E1;
}
if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
goto E1;
}
/* t1 >= sqrt(arg) >= t2 at this point */
} while (mp_cmp_mag(&t1,&t2) == MP_GT);
mp_exch(&t1,ret);
E1: mp_clear(&t2);
E2: mp_clear(&t1);
return res;
}