Hash :
a8239c24
Author :
Date :
2019-05-13T11:32:42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
*/
#ifndef LTM_USE_FIPS_ONLY
#ifdef MP_8BIT
/*
* floor of positive solution of
* (2^16)-1 = (a+4)*(2*a+5)
* TODO: Both values are smaller than N^(1/4), would have to use a bigint
* for a instead but any a biger than about 120 are already so rare that
* it is possible to ignore them and still get enough pseudoprimes.
* But it is still a restriction of the set of available pseudoprimes
* which makes this implementation less secure if used stand-alone.
*/
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result)
{
mp_int T1z, T2z, Np1z, sz, tz;
int a, ap2, length, i, j;
mp_err e;
*result = MP_NO;
if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
return e;
}
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
/* TODO: That's ugly! No, really, it is! */
if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
(a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
continue;
}
/* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
mp_set_long(&T1z, (unsigned long)a);
if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (j == -1) {
break;
}
if (j == 0) {
/* composite */
goto LBL_FU_ERR;
}
}
/* Tell it a composite and set return value accordingly */
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
e = MP_ITER;
goto LBL_FU_ERR;
}
/* Composite if N and (a+4)*(2*a+5) are not coprime */
mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)));
if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
goto LBL_FU_ERR;
}
ap2 = a + 2;
if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_set(&sz, 1uL);
mp_set(&tz, 2uL);
length = mp_count_bits(&Np1z);
for (i = length - 2; i >= 0; i--) {
/*
* temp = (sz*(a*sz+2*tz))%N;
* tz = ((tz-sz)*(tz+sz))%N;
* sz = temp;
*/
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
/* a = 0 at about 50% of the cases (non-square and odd input) */
if (a != 0) {
if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (s_mp_get_bit(&Np1z, (unsigned int)i) == MP_YES) {
/*
* temp = (a+2) * sz + tz
* tz = 2 * tz - sz
* sz = temp
*/
if (a == 0) {
if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
} else {
if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_exch(&sz, &T1z);
}
}
mp_set_long(&T1z, (unsigned long)((2 * a) + 5));
if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (MP_IS_ZERO(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
*result = MP_YES;
goto LBL_FU_ERR;
}
LBL_FU_ERR:
mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
return e;
}
#endif
#endif