Hash :
a8239c24
Author :
Date :
2019-05-13T11:32:42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
#include "tommath_private.h"
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
*/
#ifndef LTM_USE_FIPS_ONLY
/*
* 8-bit is just too small. You can try the Frobenius test
* but that frobenius test can fail, too, for the same reason.
*/
#ifndef MP_8BIT
/*
* multiply bigint a with int d and put the result in c
* Like mp_mul_d() but with a signed long as the small input
*/
static mp_err s_mp_mul_si(const mp_int *a, long d, mp_int *c)
{
mp_int t;
mp_err err;
int neg = 0;
if ((err = mp_init(&t)) != MP_OKAY) {
return err;
}
if (d < 0) {
neg = 1;
d = -d;
}
/*
* mp_digit might be smaller than a long, which excludes
* the use of mp_mul_d() here.
*/
mp_set_long(&t, (unsigned long) d);
if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
goto LBL_MPMULSI_ERR;
}
if (neg == 1) {
c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
}
LBL_MPMULSI_ERR:
mp_clear(&t);
return err;
}
/*
Strong Lucas-Selfridge test.
returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
Code ported from Thomas Ray Nicely's implementation of the BPSW test
at http://www.trnicely.net/misc/bpsw.html
Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
Released into the public domain by the author, who disclaims any legal
liability arising from its use
The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
Additional comments marked "CZ" (without the quotes) are by the code-portist.
(If that name sounds familiar, he is the guy who found the fdiv bug in the
Pentium (P5x, I think) Intel processor)
*/
mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result)
{
/* CZ TODO: choose better variable names! */
mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
/* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
mp_err e;
int oddness;
*result = MP_NO;
/*
Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
indicates that, if N is not a perfect square, D will "nearly
always" be "small." Just in case, an overflow trap for D is
included.
*/
if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
NULL)) != MP_OKAY) {
return e;
}
D = 5;
sign = 1;
for (;;) {
Ds = sign * D;
sign = -sign;
mp_set_long(&Dz, (unsigned long)D);
if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* if 1 < GCD < N then N is composite with factor "D", and
Jacobi(D,N) is technically undefined (but often returned
as zero). */
if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
goto LBL_LS_ERR;
}
if (Ds < 0) {
Dz.sign = MP_NEG;
}
if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (J == -1) {
break;
}
D += 2;
if (D > (INT_MAX - 2)) {
e = MP_VAL;
goto LBL_LS_ERR;
}
}
P = 1; /* Selfridge's choice */
Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
/* NOTE: The conditions (a) N does not divide Q, and
(b) D is square-free or not a perfect square, are included by
some authors; e.g., "Prime numbers and computer methods for
factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
p. 130. For this particular application of Lucas sequences,
these conditions were found to be immaterial. */
/* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
odd positive integer d and positive integer s for which
N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
The strong Lucas-Selfridge test then returns N as a strong
Lucas probable prime (slprp) if any of the following
conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
(all equalities mod N). Thus d is the highest index of U that
must be computed (since V_2m is independent of U), compared
to U_{N+1} for the standard Lucas-Selfridge test; and no
index of V beyond (N+1)/2 is required, just as in the
standard Lucas-Selfridge test. However, the quantity Q^d must
be computed for use (if necessary) in the latter stages of
the test. The result is that the strong Lucas-Selfridge test
has a running time only slightly greater (order of 10 %) than
that of the standard Lucas-Selfridge test, while producing
only (roughly) 30 % as many pseudoprimes (and every strong
Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
the evidence indicates that the strong Lucas-Selfridge test is
more effective than the standard Lucas-Selfridge test, and a
Baillie-PSW test based on the strong Lucas-Selfridge test
should be more reliable. */
if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
goto LBL_LS_ERR;
}
s = mp_cnt_lsb(&Np1);
/* CZ
* This should round towards zero because
* Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
* and mp_div_2d() is equivalent. Additionally:
* dividing an even number by two does not produce
* any leftovers.
*/
if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* We must now compute U_d and V_d. Since d is odd, the accumulated
values U and V are initialized to U_1 and V_1 (if the target
index were even, U and V would be initialized instead to U_0=0
and V_0=2). The values of U_2m and V_2m are also initialized to
U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
(1, 2, 3, ...) of t are on (the zero bit having been accounted
for in the initialization of U and V), these values are then
combined with the previous totals for U and V, using the
composition formulas for addition of indices. */
mp_set(&Uz, 1uL); /* U=U_1 */
mp_set(&Vz, (mp_digit)P); /* V=V_1 */
mp_set(&U2mz, 1uL); /* U_1 */
mp_set(&V2mz, (mp_digit)P); /* V_1 */
if (Q < 0) {
Q = -Q;
mp_set_long(&Qmz, (unsigned long)Q);
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Initializes calculation of Q^d */
mp_set_long(&Qkdz, (unsigned long)Q);
Qmz.sign = MP_NEG;
Q2mz.sign = MP_NEG;
Qkdz.sign = MP_NEG;
Q = -Q;
} else {
mp_set_long(&Qmz, (unsigned long)Q);
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Initializes calculation of Q^d */
mp_set_long(&Qkdz, (unsigned long)Q);
}
Nbits = mp_count_bits(&Dz);
for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
/* Formulas for doubling of indices (carried out mod N). Note that
* the indices denoted as "2m" are actually powers of 2, specifically
* 2^(ul-1) beginning each loop and 2^ul ending each loop.
*
* U_2m = U_m*V_m
* V_2m = V_m*V_m - 2*Q^m
*/
if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Must calculate powers of Q for use in V_2m, also for Q^d later */
if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */
if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (s_mp_get_bit(&Dz, (unsigned int)u) == MP_YES) {
/* Formulas for addition of indices (carried out mod N);
*
* U_(m+n) = (U_m*V_n + U_n*V_m)/2
* V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
*
* Be careful with division by 2 (mod N)!
*/
if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (MP_IS_ODD(&Uz)) {
if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
/* CZ
* This should round towards negative infinity because
* Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
* But mp_div_2() does not do so, it is truncating instead.
*/
oddness = MP_IS_ODD(&Uz) ? MP_YES : MP_NO;
if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) {
if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (MP_IS_ODD(&Vz)) {
if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
oddness = MP_IS_ODD(&Vz) ? MP_YES : MP_NO;
if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) {
if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Calculating Q^d for later use */
if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
}
/* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
strong Lucas pseudoprime. */
if (MP_IS_ZERO(&Uz) || MP_IS_ZERO(&Vz)) {
*result = MP_YES;
goto LBL_LS_ERR;
}
/* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
1995/6) omits the condition V0 on p.142, but includes it on
p. 130. The condition is NECESSARY; otherwise the test will
return false negatives---e.g., the primes 29 and 2000029 will be
returned as composite. */
/* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
these are congruent to 0 mod N, then N is a prime or a strong
Lucas pseudoprime. */
/* Initialize 2*Q^(d*2^r) for V_2m */
if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
for (r = 1; r < s; r++) {
if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (MP_IS_ZERO(&Vz)) {
*result = MP_YES;
goto LBL_LS_ERR;
}
/* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
if (r < (s - 1)) {
if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
}
LBL_LS_ERR:
mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
return e;
}
#endif
#endif
#endif