1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#include "tommath_private.h"
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
int x, y;
mp_err err;
mp_bool res = MP_NO;
mp_digit res_tab[PRIVATE_MP_PRIME_TAB_SIZE], step, kstep;
mp_int b;
/* force positive */
a->sign = MP_ZPOS;
/* simple algo if a is less than the largest prime in the table */
if (mp_cmp_d(a, s_mp_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE-1]) == MP_LT) {
/* find which prime it is bigger than */
for (x = PRIVATE_MP_PRIME_TAB_SIZE - 2; x >= 0; x--) {
if (mp_cmp_d(a, s_mp_prime_tab[x]) != MP_LT) {
/* ok we found a prime smaller or
* equal [so the next is larger]
*/
if (bbs_style == 1) {
/* ... however, the prime must be
* congruent to 3 mod 4
* so do a scan upwards for such a prime */
for (y = x + 1; y < PRIVATE_MP_PRIME_TAB_SIZE; y++) {
if ((s_mp_prime_tab[y] & 3u) == 3u) {
mp_set(a, s_mp_prime_tab[y]);
return MP_OKAY;
}
}
} else {
mp_set(a, s_mp_prime_tab[x + 1]);
return MP_OKAY;
}
}
}
/* at this point a maybe smaller than the smallest prime in the table */
if (mp_cmp_d(a, 2uL) != MP_GT) {
if (bbs_style == 1) {
mp_set(a, 3uL);
} else {
mp_set(a, 2uL);
}
return MP_OKAY;
}
/* fall through to the sieve */
}
/* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
if (bbs_style == 1) {
kstep = 4;
} else {
kstep = 2;
}
/* at this point we will use a combination of a sieve and Miller-Rabin */
if (bbs_style == 1) {
/* if a mod 4 != 3 subtract the correct value to make it so */
if ((a->dp[0] & 3u) != 3u) {
if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
return err;
}
}
} else {
if (MP_IS_EVEN(a)) {
/* force odd */
if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
return err;
}
}
}
/* generate the restable */
for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
if ((err = mp_mod_d(a, s_mp_prime_tab[x], res_tab + x)) != MP_OKAY) {
return err;
}
}
/* init temp used for Miller-Rabin Testing */
if ((err = mp_init(&b)) != MP_OKAY) {
return err;
}
for (;;) {
/* skip to the next non-trivially divisible candidate */
step = 0;
do {
/* y == 1 if any residue was zero [e.g. cannot be prime] */
y = 0;
/* increase step to next candidate */
step += kstep;
/* compute the new residue without using division */
for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
/* add the step to each residue */
res_tab[x] += kstep;
/* subtract the modulus [instead of using division] */
if (res_tab[x] >= s_mp_prime_tab[x]) {
res_tab[x] -= s_mp_prime_tab[x];
}
/* set flag if zero */
if (res_tab[x] == 0u) {
y = 1;
}
}
} while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep)));
/* add the step */
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
goto LBL_ERR;
}
/* if didn't pass sieve and step == MP_MAX then skip test */
if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) {
continue;
}
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
goto LBL_ERR;
}
if (res == MP_YES) {
break;
}
}
err = MP_OKAY;
LBL_ERR:
mp_clear(&b);
return err;
}
#endif