Hash :
7a68f128
Author :
Date :
2019-10-19T16:24:39
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#include "tommath_private.h"
#ifdef S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifdef MP_LOW_MEM
# define TAB_SIZE 32
# define MAX_WINSIZE 5
#else
# define TAB_SIZE 256
# define MAX_WINSIZE 0
#endif
mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;
mp_err err;
int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
mp_err(*redux)(mp_int *x, const mp_int *m, const mp_int *mu);
/* find window size */
x = mp_count_bits(X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize;
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init(&M[x])) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear(&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* create mu, used for Barrett reduction */
if ((err = mp_init(&mu)) != MP_OKAY) goto LBL_M;
if (redmode == 0) {
if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) goto LBL_MU;
redux = mp_reduce;
} else {
if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) goto LBL_MU;
redux = mp_reduce_2k_l;
}
/* create M table
*
* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
* The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) goto LBL_MU;
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU;
for (x = 0; x < (winsize - 1); x++) {
/* square it */
if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)],
&M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU;
/* reduce modulo P */
if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) goto LBL_MU;
}
/* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
* for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
*/
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) goto LBL_MU;
if ((err = redux(&M[x], P, &mu)) != MP_OKAY) goto LBL_MU;
}
/* setup result */
if ((err = mp_init(&res)) != MP_OKAY) goto LBL_MU;
mp_set(&res, 1uL);
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits */
if (digidx == -1) {
break;
}
/* read next digit and reset the bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)MP_DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (mp_digit)(MP_DIGIT_BIT - 1)) & 1uL;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if ((mode == 0) && (y == 0)) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if ((mode == 1) && (y == 0)) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
}
/* then multiply */
if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if ((mode == 2) && (bitcpy > 0)) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) goto LBL_RES;
if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES;
}
}
}
mp_exch(&res, Y);
err = MP_OKAY;
LBL_RES:
mp_clear(&res);
LBL_MU:
mp_clear(&mu);
LBL_M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear(&M[x]);
}
return err;
}
#endif