1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#include <tommath_private.h>
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
* HAC pp. 73 Algorithm 2.149
* HAC is wrong here, as the special case of (0 | 1) is not
* handled correctly.
*/
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
mp_int a1, p1;
int k, s, r, res;
mp_digit residue;
/* if a < 0 return MP_VAL */
if (mp_isneg(a) == MP_YES) {
return MP_VAL;
}
/* if n <= 0 return MP_VAL */
if (mp_cmp_d(n, 0uL) != MP_GT) {
return MP_VAL;
}
/* step 1. handle case of a == 0 */
if (mp_iszero(a) == MP_YES) {
/* special case of a == 0 and n == 1 */
if (mp_cmp_d(n, 1uL) == MP_EQ) {
*c = 1;
} else {
*c = 0;
}
return MP_OKAY;
}
/* step 2. if a == 1, return 1 */
if (mp_cmp_d(a, 1uL) == MP_EQ) {
*c = 1;
return MP_OKAY;
}
/* default */
s = 0;
/* step 3. write a = a1 * 2**k */
if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&p1)) != MP_OKAY) {
goto LBL_A1;
}
/* divide out larger power of two */
k = mp_cnt_lsb(&a1);
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
goto LBL_P1;
}
/* step 4. if e is even set s=1 */
if (((unsigned)k & 1u) == 0u) {
s = 1;
} else {
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
residue = n->dp[0] & 7u;
if ((residue == 1u) || (residue == 7u)) {
s = 1;
} else if ((residue == 3u) || (residue == 5u)) {
s = -1;
}
}
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
if (((n->dp[0] & 3u) == 3u) && ((a1.dp[0] & 3u) == 3u)) {
s = -s;
}
/* if a1 == 1 we're done */
if (mp_cmp_d(&a1, 1uL) == MP_EQ) {
*c = s;
} else {
/* n1 = n mod a1 */
if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) {
goto LBL_P1;
}
if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) {
goto LBL_P1;
}
*c = s * r;
}
/* done */
res = MP_OKAY;
LBL_P1:
mp_clear(&p1);
LBL_A1:
mp_clear(&a1);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */