1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#include "tommath_private.h"
#ifdef BN_MP_ROOT_U32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit.
*/
mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c)
{
mp_int t1, t2, t3, a_;
mp_ord cmp;
int ilog2;
mp_err err;
/* input must be positive if b is even */
if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
return MP_VAL;
}
if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) {
return err;
}
/* if a is negative fudge the sign but keep track */
a_ = *a;
a_.sign = MP_ZPOS;
/* Compute seed: 2^(log_2(n)/b + 2)*/
ilog2 = mp_count_bits(a);
/*
If "b" is larger than INT_MAX it is also larger than
log_2(n) because the bit-length of the "n" is measured
with an int and hence the root is always < 2 (two).
*/
if (b > (uint32_t)(INT_MAX/2)) {
mp_set(c, 1uL);
c->sign = a->sign;
err = MP_OKAY;
goto LBL_ERR;
}
/* "b" is smaller than INT_MAX, we can cast safely */
if (ilog2 < (int)b) {
mp_set(c, 1uL);
c->sign = a->sign;
err = MP_OKAY;
goto LBL_ERR;
}
ilog2 = ilog2 / ((int)b);
if (ilog2 == 0) {
mp_set(c, 1uL);
c->sign = a->sign;
err = MP_OKAY;
goto LBL_ERR;
}
/* Start value must be larger than root */
ilog2 += 2;
if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) goto LBL_ERR;
do {
/* t1 = t2 */
if ((err = mp_copy(&t2, &t1)) != MP_OKAY) goto LBL_ERR;
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((err = mp_expt_u32(&t1, b - 1u, &t3)) != MP_OKAY) goto LBL_ERR;
/* numerator */
/* t2 = t1**b */
if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) goto LBL_ERR;
/* t2 = t1**b - a */
if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) goto LBL_ERR;
/* denominator */
/* t3 = t1**(b-1) * b */
if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) goto LBL_ERR;
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) goto LBL_ERR;
/*
Number of rounds is at most log_2(root). If it is more it
got stuck, so break out of the loop and do the rest manually.
*/
if (ilog2-- == 0) {
break;
}
} while (mp_cmp(&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
/* Loop beneath can overshoot by one if found root is smaller than actual root */
for (;;) {
if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
cmp = mp_cmp(&t2, &a_);
if (cmp == MP_EQ) {
err = MP_OKAY;
goto LBL_ERR;
}
if (cmp == MP_LT) {
if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
} else {
break;
}
}
/* correct overshoot from above or from recurrence */
for (;;) {
if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
if (mp_cmp(&t2, &a_) == MP_GT) {
if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
} else {
break;
}
}
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
c->sign = a->sign;
err = MP_OKAY;
LBL_ERR:
mp_clear_multi(&t1, &t2, &t3, NULL);
return err;
}
#endif