1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
#ifdef MP_8BIT
// floor of positive solution of
// (2^16)-1 = (a+4)*(2*a+5)
// TODO: that is too small, would have to use a bigint for a instead
#define LTM_FROBENIUS_UNDERWOOD_A 177
// commented out to allow Travis's tests to run
// Don't forget to switch in back on in production or we'll find it at TDWTF.com!
//#warning "Frobenius test not fully usable with MP_8BIT!"
#else
// floor of positive solution of
// (2^31)-1 = (a+4)*(2*a+5)
// TODO: that might be too small
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
{
mp_int T1z,T2z,Np1z,sz,tz;
int a, ap2, length, i, j, isset;
int e = MP_OKAY;
*result = MP_NO;
if ((e = mp_init_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL)) != MP_OKAY) {
goto LBL_FU_ERR;
}
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
//TODO: That's ugly! No, really, it is!
if (a==2||a==4||a==7||a==8||a==10||a==14||a==18||a==23||a==26||a==28) {
continue;
}
// (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed)
if ((e = mp_set_int(&T1z,(unsigned long)a)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sqr(&T1z,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub_d(&T1z,4,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (j == -1) {
break;
}
if (j == 0) {
// composite
goto LBL_FU_ERR;
}
}
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
e = MP_VAL;
goto LBL_FU_ERR;
}
// Composite if N and (a+4)*(2*a+5) are not coprime
if ((e = mp_set_int(&T1z, (unsigned long)((a+4)*(2*a+5)))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_gcd(N,&T1z,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (!(T1z.used == 1 && T1z.dp[0] == 1u)) {
goto LBL_FU_ERR;
}
ap2 = a + 2;
if ((e = mp_add_d(N,1u,&Np1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_set(&sz,1u);
mp_set(&tz,2u);
length = mp_count_bits(&Np1z);
for (i = length - 2; i >= 0; i--) {
/*
temp = (sz*(a*sz+2*tz))%N;
tz = ((tz-sz)*(tz+sz))%N;
sz = temp;
*/
if ((e = mp_mul_2(&tz,&T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
// TODO: is this small saving worth the branch?
if (a != 0) {
if ((e = mp_mul_d(&sz,(mp_digit)a,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&T1z,&T2z,&T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((isset = mp_get_bit(&Np1z,i)) == MP_VAL) {
e = isset;
goto LBL_FU_ERR;
}
if (isset == MP_YES) {
/*
temp = (a+2) * sz + tz
tz = 2 * tz - sz
sz = temp
*/
if (a == 0) {
if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
} else {
if ((e = mp_mul_d(&sz, (mp_digit) ap2, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_exch(&sz,&T1z);
}
}
if ((e = mp_set_int(&T1z, (unsigned long)(2 * a + 5))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z,N,&T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
*result = MP_YES;
goto LBL_FU_ERR;
}
LBL_FU_ERR:
mp_clear_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL);
return e;
}
#endif