Hash :
54174409
Author :
Date :
2014-03-27T17:42:20
state: fix consumed modifier calculation
The current calculation is in short:
entry ? (entry->mask & ~entry->preserve) : 0
This changes it be
type->mask & ~(entry ? entry->preserve : 0)
This is what Xlib does. While less intuitive, it is actually more
correct, if you follow this deduction:
- The key group's type->mask defines which modifiers the key even cares
about. The others are completely irrelevant (and in fact they are
masked out from all sided in the level calculation). Example: NumLock
for an alphabetic key.
- The type->mask, the mods which are not masked out, are *all* relevant
(and in fact in the level calculation they must match *exactly* to the
state). These mods affect which level is chosen for the key, whether
they are active or not.
- Because the type->mask mods are all relevant, they must be considered
as consumed by the calculation *even if they are not active*.
Therefore we use type->mask instead of entry->mask.
The second change is what happens when no entry is found: return 0 or
just take preserve to be 0? Let's consider an example, the basic type
type "ALPHABETIC" {
modifiers = Shift+Lock;
map[Shift] = Level2;
map[Lock] = Level2;
level_name[Level1] = "Base";
level_name[Level2] = "Caps";
};
Suppose Shift+Lock is active - it doesn't match any entry, thus it gets
to level 0. The first interpretation would take them both to be
unconsumed, the second (new one) would take them both to be consumed.
This seems much better: Caps is active, and Shift disables it, they both
do something.
This change also fixes a pretty lousy bug (since 0.3.2), where Shift
appears to apparently *not* disable Caps. What actually happens is that
Caps is not consumed (see above) but active, thus the implicit
capitalization in get_one_sym() kicks in and capitalizes it anyway.
Reported-by: Davinder Pal Singh Bhamra
Signed-off-by: Ran Benita <ran234@gmail.com>