Commit a40003ab62d8645742790861ac5f718411bf62e6

Con Kolivas 2011-06-21T09:46:25

More bfi_int patching.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
diff --git a/ocl.c b/ocl.c
index bf2f659..264adc4 100644
--- a/ocl.c
+++ b/ocl.c
@@ -315,33 +315,32 @@ _clState *initCl(int gpu, char *name, size_t nameSize) {
 			binaries[i] = NULL;
 	}
 	err = clGetProgramInfo( clState->program, CL_PROGRAM_BINARIES, sizeof(char *)*nDevices, binaries, NULL );
-	// all the code should be within the first 83000 bytes or so, but scan
-	// a bit more for headroom
-	unsigned bytes_to_scan = 93000;
+
+#if 0
 	for (i = 0; i < nDevices; i++) {
 		if (!binaries[i])
 			continue;
 
-		unsigned remaining = bytes_to_scan;
+		unsigned remaining = binary_sizes[i];
 		char *w = binaries[i];
+		const int ati_cal_markers = 17;
 		int j;
-
-		if (opt_debug)
-			printf("At %p (%u rem. bytes), searching outer elf marker\n", w, remaining);
-		advance(&w, &remaining, "ELF");
-		if (opt_debug)
-			printf("At %p (%u rem. bytes), searching inner elf marker\n", w, remaining);
-		advance(&w, &remaining, "ELF");
-		if (opt_debug)
-			printf("At %p (%u rem. bytes), searching first .text marker\n", w, remaining);
-		advance(&w, &remaining, ".text");
-		if (opt_debug)
-			printf("At %p (%u rem. bytes), searching second .text marker\n", w, remaining);
-		advance(&w, &remaining, ".text");
-		// now we are pointing to the first opcode
+		for (j = 0; j < ati_cal_markers; j++) {
+			if (opt_debug)
+			printf("At %p (%u rem. bytes), searching ATI CAL marker %i\n",
+				w, remaining, j);
+			advance(&w, &remaining, "ATI CAL");
+			if (remaining < 1)
+			fprintf(stderr, "Only %u rem. bytes\n", remaining), exit(1);
+			w++; remaining--;
+		}
+		if (remaining < 11)
+			fprintf(stderr, "Only %u rem. bytes\n", remaining), exit(1);
+		w += 11; remaining -= 11;
 		patch_opcodes(w, remaining);
+		exit (0);
 	}
-
+#endif
 	status = clReleaseProgram(clState->program);
 	if(status != CL_SUCCESS)
 	{
diff --git a/oclminer.cl b/oclminer.cl
index 5d831ed..d0650ac 100644
--- a/oclminer.cl
+++ b/oclminer.cl
@@ -1,5 +1,4 @@
 typedef uint z;
-#define BITALIGN
 
 #ifdef BITALIGN
 #pragma OPENCL EXTENSION cl_amd_media_ops : enable
@@ -93,268 +92,268 @@ __kernel __attribute__((vec_type_hint(uint))) WGS void oclminer(
     E = fcty_e +  W3;
 A = state0 + E;
 E = E + fcty_e2;
-    D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C1 ^ (A & (B1 ^ C1))) + K[ 4] +  0x80000000;
+    D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] +  0x80000000;
 H = H1 + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1)));
-    C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B1 ^ (H & (A ^ B1))) + K[ 5];
+    C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5];
 G = G1 + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E)));
-    B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6];
+    B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6];
 F = F1 + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7];
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7];
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8];
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8];
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9];
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10];
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11];
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12];
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13];
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14];
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000280;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + fW0;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + fW1;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2;
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] +  W2;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] +  W2;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W3 = W3 + fW3;
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] +  W3;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] +  W3;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000;
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280;
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0;
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1;
 
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] +  W8;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] +  W8;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] +  W9;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] +  W9;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] +  W0;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] +  W0;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] +  W1;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] +  W1;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] +  W2;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] +  W2;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] +  W3;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] +  W3;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] +  W8;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] +  W8;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] +  W9;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] +  W9;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] +  W0;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] +  W0;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] +  W1;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] +  W1;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] +  W2;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] +  W2;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] +  W3;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] +  W3;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] +  W8;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] +  W8;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] +  W9;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] +  W9;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[61] + W13;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[62] + W14;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[63] + W15;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     
@@ -372,265 +371,263 @@ H = H + 0x08909ae5;
     G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] +  W1;
 C = 0x3c6ef372 + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667)));
-    F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (0x510e527f ^ (C & (D ^ 0x510e527f))) + K[ 2] +  W2;
+    F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] +  W2;
 B = 0xbb67ae85 + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H)));
-    E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[ 3] +  W3;
+    E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] +  W3;
 A = 0x6a09e667 + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[ 4] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[ 5] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8] +  0x80000000;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] +  0x80000000;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9];
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10];
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11];
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12];
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13];
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14];
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000100;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] +  W0;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] +  W0;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000;
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] +  W1;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] +  W1;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] +  W2;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] +  W2;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] +  W3;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] +  W3;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] +  W8;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] +  W8;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] +  W9;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] +  W9;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] +  W0;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] +  W0;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] +  W1;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] +  W1;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] +  W2;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] +  W2;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] +  W3;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] +  W3;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] +  W8;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] +  W8;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] +  W9;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] +  W9;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] +  W0;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] +  W0;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] +  W1;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] +  W1;
 C = C + G;
 G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] +  W2;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] +  W2;
 B = B + F;
 F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] +  W3;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] +  W3;
 A = A + E;
 E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] +  W4;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] +  W4;
 H = H + D;
 D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
-    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] +  W5;
+    C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] +  W5;
 G = G + C;
 C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
-    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] +  W6;
+    B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] +  W6;
 F = F + B;
 B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
-    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] +  W7;
+    A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] +  W7;
 E = E + A;
 A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
-    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] +  W8;
+    H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] +  W8;
 D = D + H;
 H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
-    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] +  W9;
+    G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] +  W9;
 C = C + G;
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
-    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10;
+    F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10;
 B = B + F;
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
-    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11;
+    E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11;
 A = A + E;
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
-    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12;
+    D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12;
 H = H + D;
 
 	if (H==0xa41f32e7) {
-		for (it = 0;
-it != 128;
-it++) {
+		for (it = 0; it != 128; it++) {
 			if (!output[it]) {
 				output[it] = tnonce;
 				break;