Minor variable symmetry changes in poclbm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
diff --git a/poclbm120222.cl b/poclbm120222.cl
index f642236..bdec3e5 100644
--- a/poclbm120222.cl
+++ b/poclbm120222.cl
@@ -784,79 +784,88 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=0xC19BF274U;
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
+Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
Vals[7]+=K[16];
-Vals[7]+=W[0];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=0x00a00000U;
+Vals[6]+=W[1];
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[17];
-Vals[6]+=W[1];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
+Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[18];
-Vals[5]+=W[2];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+Vals[4]+=W[3];
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[19];
-Vals[4]+=W[3];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
+Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[20];
-Vals[3]+=W[4];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+Vals[2]+=W[5];
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[21];
-Vals[2]+=W[5];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=0x00000100U;
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
+Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=K[22];
-Vals[1]+=W[6];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
W[7]+=0x11002000U;
W[7]+=W[0];
+W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+Vals[0]+=W[7];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[23];
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
-Vals[0]+=W[7];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]=0x80000000U;
W[8]+=W[1];
@@ -865,7 +874,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[24];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@@ -878,6 +886,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[25];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
@@ -885,7 +894,6 @@ Vals[5]+=W[10];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[26];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@@ -898,6 +906,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[27];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
@@ -905,7 +914,6 @@ Vals[3]+=W[12];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[28];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@@ -918,6 +926,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[29];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]=0x00400022U;
W[14]+=W[7];
@@ -926,7 +935,6 @@ Vals[1]+=W[14];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[30];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@@ -941,6 +949,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[31];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
@@ -949,7 +958,6 @@ Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[32];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@@ -963,6 +971,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[33];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
@@ -971,7 +980,6 @@ Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[34];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@@ -985,6 +993,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[35];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
@@ -993,7 +1002,6 @@ Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[36];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@@ -1007,6 +1015,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[37];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
@@ -1015,7 +1024,6 @@ Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[38];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@@ -1029,6 +1037,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[39];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
@@ -1037,7 +1046,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[40];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@@ -1051,6 +1059,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[41];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
@@ -1059,7 +1068,6 @@ Vals[5]+=W[10];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[42];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@@ -1073,6 +1081,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[43];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
@@ -1081,7 +1090,6 @@ Vals[3]+=W[12];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[44];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@@ -1095,6 +1103,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[45];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
@@ -1103,7 +1112,6 @@ Vals[1]+=W[14];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[46];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@@ -1117,6 +1125,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[47];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
@@ -1125,7 +1134,6 @@ Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[48];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@@ -1139,6 +1147,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[49];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
@@ -1147,7 +1156,6 @@ Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[50];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@@ -1161,6 +1169,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[51];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
@@ -1169,7 +1178,6 @@ Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[52];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@@ -1183,6 +1191,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[53];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
@@ -1191,7 +1200,6 @@ Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[54];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@@ -1205,6 +1213,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[55];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
@@ -1213,7 +1222,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[56];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));