2nd pass radical reorder.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
diff --git a/poclbm120213.cl b/poclbm120213.cl
index 69ad02f..3503675 100644
--- a/poclbm120213.cl
+++ b/poclbm120213.cl
@@ -94,8 +94,8 @@ W[19]=d1;
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],b1,c1);
W[19]+=K[4];
-W[23]=h1;
W[19]+=0x80000000;
+W[23]=h1;
W[23]+=W[19];
W[20]+=fcty_e2;
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
@@ -117,8 +117,8 @@ W[18]+=Ma2(f1,W[19],W[20]);
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[7];
W[17]+=Ma(W[20],W[18],W[19]);
+W[16]+=K[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[16]+=Ma(W[19],W[17],W[18]);
@@ -214,8 +214,8 @@ W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[21];
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+W[18]+=K[21];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
@@ -293,10 +293,10 @@ W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]=0x00a00055U;
W[14]+=W[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[30];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -306,17 +306,17 @@ W[15]=fw15;
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[31];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
+W[16]+=K[31];
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]=fw01r;
W[0]+=W[9];
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[32];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -334,10 +334,10 @@ W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[34];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -347,17 +347,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[35];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+W[20]+=K[35];
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[36];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -367,17 +367,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[37];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+W[18]+=K[37];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[38];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -387,17 +387,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[39];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[16]+=K[39];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[40];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -407,17 +407,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[41];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+W[22]+=K[41];
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[42];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -427,17 +427,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[43];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+W[20]+=K[43];
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[44];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -447,17 +447,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[45];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
+W[18]+=K[45];
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[46];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -467,17 +467,17 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[47];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
+W[16]+=K[47];
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[48];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -487,17 +487,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[49];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
+W[22]+=K[49];
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[50];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -507,17 +507,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[51];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+W[20]+=K[51];
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[52];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -527,17 +527,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[53];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+W[18]+=K[53];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[54];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -547,17 +547,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[55];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[16]+=K[55];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[56];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -567,17 +567,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[57];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+W[22]+=K[57];
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[58];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -587,17 +587,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[59];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+W[20]+=K[59];
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[60];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -607,17 +607,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[61];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
+W[18]+=K[61];
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[62];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -627,8 +627,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[63];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
+W[16]+=K[63];
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
@@ -652,10 +652,10 @@ W[22]=0x1f83d9abU;
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U));
W[22]+=K[1];
-W[22]+=W[1];
W[2]=W[18];
W[2]+=state2;
W[18]=0x3c6ef372U;
+W[22]+=W[1];
W[18]+=W[22];
W[23]+=0x08909ae5U;
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
@@ -665,8 +665,8 @@ W[21]=0x9b05688cU;
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],0x510e527fU);
W[21]+=K[2];
-W[21]+=W[2];
W[17]=0xbb67ae85U;
+W[21]+=W[2];
W[17]+=W[21];
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U);
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
@@ -676,8 +676,8 @@ W[20]=0x510e527fU;
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[3];
-W[20]+=W[3];
W[16]=0x6a09e667U;
+W[20]+=W[3];
W[16]+=W[20];
W[21]+=Ma2(0x6a09e667U,W[22],W[23]);
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
@@ -759,10 +759,10 @@ W[16]+=K[15];
W[16]+=0x00000100U;
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
-W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[16];
+W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -814,10 +814,10 @@ W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=0x00000100U;
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[22];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -827,17 +827,17 @@ W[7]+=0x11002000U;
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[23];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[16]+=K[23];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]=0x80000000;
W[8]+=W[1];
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[24];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -889,10 +889,10 @@ W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]=0x00400022U;
W[14]+=W[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[30];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -910,10 +910,10 @@ W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[32];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -923,17 +923,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[33];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
+W[22]+=K[33];
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[34];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -943,17 +943,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[35];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+W[20]+=K[35];
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[36];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -963,17 +963,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[37];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+W[18]+=K[37];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[38];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -983,17 +983,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[39];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[16]+=K[39];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[40];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -1003,17 +1003,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[41];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+W[22]+=K[41];
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[42];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -1023,17 +1023,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[43];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+W[20]+=K[43];
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[44];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -1043,17 +1043,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[45];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
+W[18]+=K[45];
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[46];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -1063,17 +1063,17 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[47];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
+W[16]+=K[47];
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[48];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -1083,17 +1083,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[49];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
+W[22]+=K[49];
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[50];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
@@ -1103,17 +1103,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
-W[20]+=K[51];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+W[20]+=K[51];
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[52];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
@@ -1123,17 +1123,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
-W[18]+=K[53];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+W[18]+=K[53];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[54];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
@@ -1143,17 +1143,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
-W[16]+=K[55];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[16]+=K[55];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[56];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
@@ -1163,20 +1163,20 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
-W[22]+=K[57];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+W[22]+=K[57];
W[22]+=W[9];
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[18]+=W[22];
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[58];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=W[10];
-W[17]+=W[21];
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
+W[17]+=W[21];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[59];
@@ -1184,12 +1184,12 @@ W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=W[11];
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[23]+=W[19];
W[16]+=W[20];
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[23]+=ch(W[16],W[17],W[18]);
W[23]+=K[60];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[23]+=W[12];
#define FOUND (0x80)