Commit e1d580be702741646d348619c1c5c2e759f61369

Con Kolivas 2012-03-05T09:49:50

Tidy up first half of poclbm.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
diff --git a/poclbm120222.cl b/poclbm120222.cl
index f006112..7a4439f 100644
--- a/poclbm120222.cl
+++ b/poclbm120222.cl
@@ -106,6 +106,7 @@ Vals[6]=Vals[2];
 Vals[6]+=g1;
 Vals[3]+=Ma2(g1,Vals[4],f1);
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
 
 Vals[1]=B1addK6;
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
@@ -113,74 +114,86 @@ Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
 
 Vals[5]=Vals[1];
 Vals[5]+=f1;
-Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
+
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[7];
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
 Vals[7]+=K[8];
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
 Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
 Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=K[9];
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
 Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
 Vals[5]+=K[10];
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
 Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
 Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[11];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
 Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
 Vals[3]+=K[12];
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
 Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[13];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
 Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
 Vals[1]+=K[14];
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=0xC19BF3F4U;
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
 Vals[7]+=W16addK16;
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
 Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
 Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=W17addK17;
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 
 W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
 W[2]+=fw2;
@@ -188,7 +201,6 @@ Vals[5]+=W[2];
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
 Vals[5]+=K[18];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@@ -201,6 +213,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[19];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 
 W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=0x80000000U;
@@ -208,7 +221,6 @@ Vals[3]+=W[4];
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
 Vals[3]+=K[20];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@@ -220,6 +232,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[21];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 
 W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=0x00000280U;
@@ -227,7 +240,6 @@ Vals[1]+=W[6];
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
 Vals[1]+=K[22];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@@ -238,9 +250,9 @@ Vals[0]+=W[7];
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[23];
-
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 
 W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=fw1;
@@ -248,7 +260,6 @@ Vals[7]+=W[8];
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
 Vals[7]+=K[24];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@@ -259,9 +270,9 @@ Vals[6]+=W[9];
 Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
 Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=K[25];
-
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 
 W[10]=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
@@ -269,7 +280,6 @@ Vals[5]+=W[10];
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
 Vals[5]+=K[26];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@@ -282,6 +292,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[27];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 
 W[12]=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
@@ -289,7 +300,6 @@ Vals[3]+=W[12];
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
 Vals[3]+=K[28];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@@ -302,6 +312,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[29];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 
 W[14]=0x00a00055U;
 W[14]+=W[7];
@@ -310,7 +321,6 @@ Vals[1]+=W[14];
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
 Vals[1]+=K[30];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@@ -324,6 +334,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[31];
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 
 W[0]=fw01r;
 W[0]+=W[9];
@@ -332,7 +343,6 @@ Vals[7]+=W[0];
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
 Vals[7]+=K[32];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@@ -347,303 +357,333 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=K[33];
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=W[11];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 Vals[5]+=K[34];
 Vals[5]+=W[2];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=W[12];
+W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
 Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[35];
-W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 Vals[4]+=W[3];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=W[13];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 Vals[3]+=K[36];
 Vals[3]+=W[4];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=W[14];
+W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
 Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[37];
-W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 Vals[2]+=W[5];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=W[15];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 Vals[1]+=K[38];
 Vals[1]+=W[6];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=W[0];
+W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[39];
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 Vals[0]+=W[7];
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=W[1];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 Vals[7]+=K[40];
 Vals[7]+=W[8];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=W[2];
+W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
 Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=K[41];
-W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 Vals[6]+=W[9];
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=W[3];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 Vals[5]+=K[42];
 Vals[5]+=W[10];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=W[4];
+W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
 Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[43];
-W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 Vals[4]+=W[11];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=W[5];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 Vals[3]+=K[44];
 Vals[3]+=W[12];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=W[6];
+W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
 Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[45];
-W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 Vals[2]+=W[13];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=W[7];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 Vals[1]+=K[46];
 Vals[1]+=W[14];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=W[8];
+W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[47];
-W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 Vals[0]+=W[15];
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=W[9];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
 Vals[7]+=K[48];
 Vals[7]+=W[0];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=W[10];
+W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
 Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
 Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=K[49];
-W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
 Vals[6]+=W[1];
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=W[11];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 Vals[5]+=K[50];
 Vals[5]+=W[2];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=W[12];
+W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
 Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[51];
-W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 Vals[4]+=W[3];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=W[13];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 Vals[3]+=K[52];
 Vals[3]+=W[4];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=W[14];
+W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
 Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[53];
-W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 Vals[2]+=W[5];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=W[15];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 Vals[1]+=K[54];
 Vals[1]+=W[6];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=W[0];
+W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[55];
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 Vals[0]+=W[7];
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=W[1];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 Vals[7]+=K[56];
 Vals[7]+=W[8];
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=W[2];
+W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
 Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
 Vals[6]+=K[57];
-W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 Vals[6]+=W[9];
 Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=W[3];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
 Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 Vals[5]+=K[58];
 Vals[5]+=W[10];
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=W[4];
+W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
 Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
 Vals[4]+=K[59];
-W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 Vals[4]+=W[11];
 Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=W[5];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 Vals[3]+=K[60];
 Vals[3]+=W[12];
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=W[6];
+W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
 Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
 Vals[2]+=K[61];
-W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 Vals[2]+=W[13];
 Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=W[7];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 Vals[1]+=K[62];
 Vals[1]+=W[14];
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=W[8];
+W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
 Vals[0]+=K[63];
-W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 Vals[0]+=W[15];
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));