Commit fa4c10b1d9435848a3f09d3e2a86699977fcc408

Con Kolivas 2011-06-22T00:45:35

Implement ma macro for amd bytealign that gets patched into bfi_int as well.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
diff --git a/oclminer.cl b/oclminer.cl
index 40550ca..968d01c 100644
--- a/oclminer.cl
+++ b/oclminer.cl
@@ -96,268 +96,268 @@ A = state0 + E;
 E = E + fcty_e2;
     D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] +  0x80000000;
 H = H1 + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G1, E, F1);
     C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5];
 G = G1 + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F1, D, E);
     B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6];
 F = F1 + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7];
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8];
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2;
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] +  W2;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W3 = W3 + fW3;
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] +  W3;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000;
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280;
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0;
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1;
 
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] +  W8;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] +  W9;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] +  W0;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] +  W1;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] +  W2;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] +  W3;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] +  W8;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] +  W9;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] +  W0;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] +  W1;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] +  W2;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] +  W3;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] +  W8;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] +  W9;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     
     W0 = A + state0;
 W1 = B + state1;
@@ -372,245 +372,245 @@ D = 0xa54ff53a + H;
 H = H + 0x08909ae5;
     G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] +  W1;
 C = 0x3c6ef372 + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(0xbb67ae85, H, 0x6a09e667);
     F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] +  W2;
 B = 0xbb67ae85 + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(0x6a09e667, G, H);
     E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] +  W3;
 A = 0x6a09e667 + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] +  0x80000000;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3));
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] +  W0;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000;
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] +  W1;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] +  W2;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] +  W3;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] +  W8;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] +  W9;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] +  W0;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] +  W1;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] +  W2;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] +  W3;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] +  W8;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] +  W9;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
 
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] +  W0;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] +  W1;
 C = C + G;
-G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
+G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
     W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
     F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] +  W2;
 B = B + F;
-F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
+F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
     W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
 
     E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] +  W3;
 A = A + E;
-E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
+E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
     W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
 
     D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] +  W4;
 H = H + D;
-D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
+D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
     W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
 
     C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] +  W5;
 G = G + C;
-C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
+C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
     W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
 
     B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] +  W6;
 F = F + B;
-B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
+B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
     W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
 
     A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] +  W7;
 E = E + A;
-A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
+A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
     W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
 
     H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] +  W8;
 D = D + H;
-H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
+H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
     W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
 
     G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] +  W9;