Hash :
8b0fb208
Author :
Date :
2014-02-24T02:00:44
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/*
* Copyright 2013-2014 Con Kolivas <kernel@kolivas.org>
* Copyright 2013 Hashfast Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <stdbool.h>
#include <math.h>
#include "miner.h"
#include "usbutils.h"
#include "driver-hashfast.h"
int opt_hfa_ntime_roll = 1;
int opt_hfa_hash_clock = HFA_CLOCK_DEFAULT;
int opt_hfa_overheat = HFA_TEMP_OVERHEAT;
int opt_hfa_target = HFA_TEMP_TARGET;
bool opt_hfa_pll_bypass;
bool opt_hfa_dfu_boot;
int opt_hfa_fan_default = HFA_FAN_DEFAULT;
int opt_hfa_fan_max = HFA_FAN_MAX;
int opt_hfa_fan_min = HFA_FAN_MIN;
////////////////////////////////////////////////////////////////////////////////
// Support for the CRC's used in header (CRC-8) and packet body (CRC-32)
////////////////////////////////////////////////////////////////////////////////
#define GP8 0x107 /* x^8 + x^2 + x + 1 */
#define DI8 0x07
static bool hfa_crc8_set;
char *set_hfa_fan(char *arg)
{
int val1, val2, ret;
ret = sscanf(arg, "%d-%d", &val1, &val2);
if (ret < 1)
return "No values passed to hfa-fan";
if (ret == 1)
val2 = val1;
if (val1 < 0 || val1 > 100 || val2 < 0 || val2 > 100 || val2 < val1)
return "Invalid value passed to hfa-fan";
opt_hfa_fan_min = val1;
opt_hfa_fan_max = val2;
if (opt_hfa_fan_min > opt_hfa_fan_default)
opt_hfa_fan_default = opt_hfa_fan_min;
if (opt_hfa_fan_max < opt_hfa_fan_default)
opt_hfa_fan_default = opt_hfa_fan_max;
return NULL;
}
static unsigned char crc8_table[256]; /* CRC-8 table */
static void hfa_init_crc8(void)
{
int i,j;
unsigned char crc;
hfa_crc8_set = true;
for (i = 0; i < 256; i++) {
crc = i;
for (j = 0; j < 8; j++)
crc = (crc << 1) ^ ((crc & 0x80) ? DI8 : 0);
crc8_table[i] = crc & 0xFF;
}
}
static unsigned char hfa_crc8(unsigned char *h)
{
int i;
unsigned char crc;
h++; // Preamble not included
for (i = 1, crc = 0xff; i < 7; i++)
crc = crc8_table[crc ^ *h++];
return crc;
}
struct hfa_cmd {
uint8_t cmd;
char *cmd_name;
enum usb_cmds usb_cmd;
};
/* Entries in this array need to align with the actual op values specified
* in hf_protocol.h */
#define C_NULL C_MAX
static const struct hfa_cmd hfa_cmds[] = {
{OP_NULL, "OP_NULL", C_NULL}, // 0
{OP_ROOT, "OP_ROOT", C_NULL},
{OP_RESET, "OP_RESET", C_HF_RESET},
{OP_PLL_CONFIG, "OP_PLL_CONFIG", C_HF_PLL_CONFIG},
{OP_ADDRESS, "OP_ADDRESS", C_HF_ADDRESS},
{OP_READDRESS, "OP_READDRESS", C_NULL},
{OP_HIGHEST, "OP_HIGHEST", C_NULL},
{OP_BAUD, "OP_BAUD", C_HF_BAUD},
{OP_UNROOT, "OP_UNROOT", C_NULL}, // 8
{OP_HASH, "OP_HASH", C_HF_HASH},
{OP_NONCE, "OP_NONCE", C_HF_NONCE},
{OP_ABORT, "OP_ABORT", C_HF_ABORT},
{OP_STATUS, "OP_STATUS", C_HF_STATUS},
{OP_GPIO, "OP_GPIO", C_NULL},
{OP_CONFIG, "OP_CONFIG", C_HF_CONFIG},
{OP_STATISTICS, "OP_STATISTICS", C_HF_STATISTICS},
{OP_GROUP, "OP_GROUP", C_NULL}, // 16
{OP_CLOCKGATE, "OP_CLOCKGATE", C_HF_CLOCKGATE},
{OP_USB_INIT, "OP_USB_INIT", C_HF_USB_INIT}, // 18
{OP_GET_TRACE, "OP_GET_TRACE", C_NULL},
{OP_LOOPBACK_USB, "OP_LOOPBACK_USB", C_NULL},
{OP_LOOPBACK_UART, "OP_LOOPBACK_UART", C_NULL},
{OP_DFU, "OP_DFU", C_HF_DFU},
{OP_USB_SHUTDOWN, "OP_USB_SHUTDOWN", C_NULL},
{OP_DIE_STATUS, "OP_DIE_STATUS", C_HF_DIE_STATUS}, // 24
{OP_GWQ_STATUS, "OP_GWQ_STATUS", C_HF_GWQ_STATUS},
{OP_WORK_RESTART, "OP_WORK_RESTART", C_HF_WORK_RESTART},
{OP_USB_STATS1, "OP_USB_STATS1", C_NULL},
{OP_USB_GWQSTATS, "OP_USB_GWQSTATS", C_HF_GWQSTATS},
{OP_USB_NOTICE, "OP_USB_NOTICE", C_HF_NOTICE},
{OP_PING, "OP_PING", C_HF_PING},
{OP_CORE_MAP, "OP_CORE_MAP", C_NULL},
{OP_VERSION, "OP_VERSION", C_NULL}, // 32
{OP_FAN, "OP_FAN", C_HF_FAN},
{OP_NAME, "OP_NAME", C_OP_NAME}
};
#define HF_USB_CMD_OFFSET (128 - 18)
#define HF_USB_CMD(X) (X - HF_USB_CMD_OFFSET)
/* Send an arbitrary frame, consisting of an 8 byte header and an optional
* packet body. */
static bool __hfa_send_frame(struct cgpu_info *hashfast, uint8_t opcode, int tx_length,
uint8_t *packet)
{
struct hashfast_info *info = hashfast->device_data;
int ret, amount, id = hashfast->device_id;
bool retried = false;
if (unlikely(hashfast->usbinfo.nodev))
return false;
info->last_send = time(NULL);
applog(LOG_DEBUG, "%s %d: Sending %s frame", hashfast->drv->name, hashfast->device_id, hfa_cmds[opcode].cmd_name);
retry:
ret = usb_write(hashfast, (char *)packet, tx_length, &amount,
hfa_cmds[opcode].usb_cmd);
if (unlikely(ret < 0 || amount != tx_length)) {
if (hashfast->usbinfo.nodev)
return false;
if (!retried) {
applog(LOG_ERR, "%s %d: hfa_send_frame: USB Send error, ret %d amount %d vs. tx_length %d, retrying",
hashfast->drv->name, id, ret, amount, tx_length);
retried = true;
goto retry;
}
applog(LOG_ERR, "%s %d: hfa_send_frame: USB Send error, ret %d amount %d vs. tx_length %d",
hashfast->drv->name, id, ret, amount, tx_length);
return false;
}
if (retried)
applog(LOG_WARNING, "%s %d: hfa_send_frame: recovered OK", hashfast->drv->name, id);
return true;
}
static bool hfa_send_frame(struct cgpu_info *hashfast, uint8_t opcode, uint16_t hdata,
uint8_t *data, int len)
{
uint8_t packet[256];
struct hf_header *p = (struct hf_header *)packet;
int tx_length;
p->preamble = HF_PREAMBLE;
p->operation_code = hfa_cmds[opcode].cmd;
p->chip_address = HF_GWQ_ADDRESS;
p->core_address = 0;
p->hdata = htole16(hdata);
p->data_length = len / 4;
p->crc8 = hfa_crc8(packet);
if (len)
memcpy(&packet[sizeof(struct hf_header)], data, len);
tx_length = sizeof(struct hf_header) + len;
return (__hfa_send_frame(hashfast, opcode, tx_length, packet));
}
/* Send an already assembled packet, consisting of an 8 byte header which may
* or may not be followed by a packet body. */
static bool hfa_send_packet(struct cgpu_info *hashfast, struct hf_header *h, int cmd)
{
int amount, ret, len;
if (unlikely(hashfast->usbinfo.nodev))
return false;
len = sizeof(*h) + h->data_length * 4;
ret = usb_write(hashfast, (char *)h, len, &amount, hfa_cmds[cmd].usb_cmd);
if (ret < 0 || amount != len) {
applog(LOG_WARNING, "%s %d: send_packet: %s USB Send error, ret %d amount %d vs. length %d",
hashfast->drv->name, hashfast->device_id, hfa_cmds[cmd].cmd_name, ret, amount, len);
return false;
}
return true;
}
static bool hfa_get_header(struct cgpu_info *hashfast, struct hf_header *h, uint8_t *computed_crc)
{
int amount, ret, orig_len, len, ofs = 0;
cgtimer_t ts_start;
char buf[512];
char *header;
if (unlikely(hashfast->usbinfo.nodev))
return false;
orig_len = len = sizeof(*h);
/* Read for up to 500ms till we find the first occurrence of HF_PREAMBLE
* though it should be the first byte unless we get woefully out of
* sync. */
cgtimer_time(&ts_start);
do {
cgtimer_t ts_now, ts_diff;
cgtimer_time(&ts_now);
cgtimer_sub(&ts_now, &ts_start, &ts_diff);
if (cgtimer_to_ms(&ts_diff) > 500)
return false;
if (unlikely(hashfast->usbinfo.nodev))
return false;
ret = usb_read(hashfast, buf + ofs, len, &amount, C_HF_GETHEADER);
if (unlikely(ret && ret != LIBUSB_ERROR_TIMEOUT))
return false;
ofs += amount;
header = memchr(buf, HF_PREAMBLE, ofs);
if (header) {
/* Toss any leading data we can't use */
if (header != buf) {
memmove(buf, header, ofs);
ofs -= header - buf;
}
len -= ofs;
}
} while (len > 0);
memcpy(h, header, orig_len);
*computed_crc = hfa_crc8((uint8_t *)h);
return true;
}
static bool hfa_get_data(struct cgpu_info *hashfast, char *buf, int len4)
{
int amount, ret, len = len4 * 4;
if (unlikely(hashfast->usbinfo.nodev))
return false;
ret = usb_read(hashfast, buf, len, &amount, C_HF_GETDATA);
if (ret)
return false;
if (amount != len) {
applog(LOG_WARNING, "%s %d: get_data: Strange amount returned %d vs. expected %d",
hashfast->drv->name, hashfast->device_id, amount, len);
return false;
}
return true;
}
static const char *hf_usb_init_errors[] = {
"Success",
"Reset timeout",
"Address cycle timeout",
"Clockgate operation timeout",
"Configuration operation timeout",
"Excessive core failures",
"All cores failed diagnostics",
"Too many groups configured - increase ntime roll amount",
"Chaining connections detected but secondary board(s) did not respond",
"Secondary board communication error",
"Main board 12V power is bad",
"Secondary board(s) 12V power is bad",
"Main board FPGA programming error",
"Main board FPGA SPI read timeout",
"Main board FPGA Bad magic number",
"Main board FPGA SPI write timeout",
"Main board FPGA register read/write test failed",
"ASIC core power fault",
"Dynamic baud rate change timeout",
"Address failure",
"Regulator programming error",
"Address range inconsistent after mixed reconfiguration",
"Timeout after mixed reconfiguration"
};
static bool hfa_clear_readbuf(struct cgpu_info *hashfast);
/* If no opname or an invalid opname is set, change it to the serial number if
* it exists, or a random name based on timestamp if not. */
static void hfa_choose_opname(struct hashfast_info *info)
{
struct timeval tv_now;
uint64_t usecs;
if (info->serial_number) {
sprintf(info->op_name, "%x", info->serial_number);
return;
}
cgtime(&tv_now);
usecs = (uint64_t)(tv_now.tv_sec) * (uint64_t)1000000 + (uint64_t)tv_now.tv_usec;
sprintf(info->op_name, "%"PRIu64, usecs);
}
static bool hfa_reset(struct cgpu_info *hashfast, struct hashfast_info *info)
{
struct hf_usb_init_header usb_init[2], *hu = usb_init;
struct hf_usb_init_base *db;
struct hf_usb_init_options *ho;
int retries = 0, i;
char buf[1024];
struct hf_header *h = (struct hf_header *)buf;
uint8_t hcrc;
bool ret;
info->resets++;
/* Hash clock rate in Mhz */
if (!info->hash_clock_rate)
info->hash_clock_rate = opt_hfa_hash_clock;
info->group_ntime_roll = opt_hfa_ntime_roll;
info->core_ntime_roll = 1;
// Assemble the USB_INIT request
memset(hu, 0, sizeof(*hu));
hu->preamble = HF_PREAMBLE;
hu->operation_code = OP_USB_INIT;
hu->protocol = PROTOCOL_GLOBAL_WORK_QUEUE; // Protocol to use
// Force PLL bypass
hu->pll_bypass = opt_hfa_pll_bypass;
hu->hash_clock = info->hash_clock_rate; // Hash clock rate in Mhz
if (info->group_ntime_roll > 1 && info->core_ntime_roll) {
ho = (struct hf_usb_init_options *)(hu + 1);
memset(ho, 0, sizeof(*ho));
ho->group_ntime_roll = info->group_ntime_roll;
ho->core_ntime_roll = info->core_ntime_roll;
hu->data_length = sizeof(*ho) / 4;
}
hu->crc8 = hfa_crc8((uint8_t *)hu);
applog(LOG_INFO, "%s %d: Sending OP_USB_INIT with GWQ protocol specified",
hashfast->drv->name, hashfast->device_id);
resend:
if (unlikely(hashfast->usbinfo.nodev))
return false;
if (!hfa_clear_readbuf(hashfast))
return false;
if (!hfa_send_packet(hashfast, (struct hf_header *)hu, HF_USB_CMD(OP_USB_INIT)))
return false;
// Check for the correct response.
// We extend the normal timeout - a complete device initialization, including
// bringing power supplies up from standby, etc., can take over a second.
tryagain:
for (i = 0; i < 10; i++) {
ret = hfa_get_header(hashfast, h, &hcrc);
if (unlikely(hashfast->usbinfo.nodev))
return false;
if (ret)
break;
}
if (!ret) {
if (retries++ < 3)
goto resend;
applog(LOG_WARNING, "%s %d: OP_USB_INIT failed!", hashfast->drv->name, hashfast->device_id);
return false;
}
if (h->crc8 != hcrc) {
applog(LOG_WARNING, "%s %d: OP_USB_INIT failed! CRC mismatch", hashfast->drv->name, hashfast->device_id);
return false;
}
if (h->operation_code != OP_USB_INIT) {
// This can happen if valid packet(s) were in transit *before* the OP_USB_INIT arrived
// at the device, so we just toss the packets and keep looking for the response.
applog(LOG_WARNING, "%s %d: OP_USB_INIT: Tossing packet, valid but unexpected type %d",
hashfast->drv->name, hashfast->device_id, h->operation_code);
hfa_get_data(hashfast, buf, h->data_length);
if (retries++ < 3)
goto tryagain;
return false;
}
applog(LOG_DEBUG, "%s %d: Good reply to OP_USB_INIT", hashfast->drv->name, hashfast->device_id);
applog(LOG_DEBUG, "%s %d: OP_USB_INIT: %d die in chain, %d cores, device_type %d, refclk %d Mhz",
hashfast->drv->name, hashfast->device_id, h->chip_address, h->core_address, h->hdata & 0xff, (h->hdata >> 8) & 0xff);
// Save device configuration
info->asic_count = h->chip_address;
info->core_count = h->core_address;
info->device_type = (uint8_t)h->hdata;
info->ref_frequency = (uint8_t)(h->hdata >> 8);
info->hash_sequence_head = 0;
info->hash_sequence_tail = 0;
info->device_sequence_tail = 0;
if (info->asic_count == 12)
hashfast->drv->name = "HFS";
else if (info->asic_count == 4)
hashfast->drv->name = "HFB";
// Size in bytes of the core bitmap in bytes
info->core_bitmap_size = (((info->asic_count * info->core_count) + 31) / 32) * 4;
// Get the usb_init_base structure
if (!hfa_get_data(hashfast, (char *)&info->usb_init_base, U32SIZE(info->usb_init_base))) {
applog(LOG_WARNING, "%s %d: OP_USB_INIT failed! Failure to get usb_init_base data",
hashfast->drv->name, hashfast->device_id);
return false;
}
db = &info->usb_init_base;
applog(LOG_INFO, "%s %d: firmware_rev: %d.%d", hashfast->drv->name, hashfast->device_id,
(db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
applog(LOG_INFO, "%s %d: hardware_rev: %d.%d", hashfast->drv->name, hashfast->device_id,
(db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
applog(LOG_INFO, "%s %d: serial number: 0x%08x", hashfast->drv->name, hashfast->device_id,
db->serial_number);
applog(LOG_INFO, "%s %d: hash clockrate: %d Mhz", hashfast->drv->name, hashfast->device_id,
db->hash_clockrate);
applog(LOG_INFO, "%s %d: inflight_target: %d", hashfast->drv->name, hashfast->device_id,
db->inflight_target);
applog(LOG_INFO, "%s %d: sequence_modulus: %d", hashfast->drv->name, hashfast->device_id,
db->sequence_modulus);
// Now a copy of the config data used
if (!hfa_get_data(hashfast, (char *)&info->config_data, U32SIZE(info->config_data))) {
applog(LOG_WARNING, "%s %d: OP_USB_INIT failed! Failure to get config_data",
hashfast->drv->name, hashfast->device_id);
return false;
}
// Now the core bitmap
info->core_bitmap = malloc(info->core_bitmap_size);
if (!info->core_bitmap)
quit(1, "Failed to malloc info core bitmap in hfa_reset");
if (!hfa_get_data(hashfast, (char *)info->core_bitmap, info->core_bitmap_size / 4)) {
applog(LOG_WARNING, "%s %d: OP_USB_INIT failed! Failure to get core_bitmap", hashfast->drv->name, hashfast->device_id);
return false;
}
// See if the initialization suceeded
if (db->operation_status) {
applog(LOG_ERR, "%s %d: OP_USB_INIT failed! Operation status %d (%s)",
hashfast->drv->name, hashfast->device_id, db->operation_status,
(db->operation_status < sizeof(hf_usb_init_errors)/sizeof(hf_usb_init_errors[0])) ?
hf_usb_init_errors[db->operation_status] : "Unknown error code");
return false;
}
if (!db->hash_clockrate) {
applog(LOG_INFO, "%s %d: OP_USB_INIT failed! Clockrate reported as zero",
hashfast->drv->name, hashfast->device_id);
return false;
}
info->num_sequence = db->sequence_modulus;
info->serial_number = db->serial_number;
info->base_clock = db->hash_clockrate;
hfa_clear_readbuf(hashfast);
/* Try sending and receiving an OP_NAME */
if (!hfa_send_frame(hashfast, HF_USB_CMD(OP_NAME), 0, (uint8_t *)NULL, 0)) {
applog(LOG_WARNING, "%s %d: Failed to send OP_NAME!", hashfast->drv->name,
hashfast->device_id);
return false;
}
ret = hfa_get_header(hashfast, h, &hcrc);
if (!ret) {
applog(LOG_WARNING, "%s %d: Failed to receive OP_NAME response", hashfast->drv->name,
hashfast->device_id);
return false;
}
/* Only try to parse the name if the firmware supports OP_NAME */
if (h->operation_code == OP_NAME) {
if (!hfa_get_data(hashfast, info->op_name, 32)) {
applog(LOG_WARNING, "%s %d: OP_NAME failed! Failure to get op_name data",
hashfast->drv->name, hashfast->device_id);
return false;
}
for (i = 0; i < 32; i++) {
if (i > 0 && info->op_name[i] == '\0')
break;
/* Make sure the op_name is valid ascii only */
if (info->op_name[i] < 32 || info->op_name[i] > 126) {
hfa_choose_opname(info);
break;
}
}
applog(LOG_INFO, "%s %d: Opname set to %s", hashfast->drv->name,
hashfast->device_id, info->op_name);
}
return true;
}
static bool hfa_clear_readbuf(struct cgpu_info *hashfast)
{
int amount, ret = 0;
char buf[512];
do {
if (hashfast->usbinfo.nodev) {
ret = LIBUSB_ERROR_NO_DEVICE;
break;
}
ret = usb_read(hashfast, buf, 512, &amount, C_HF_CLEAR_READ);
} while (!ret && amount);
if (ret && ret != LIBUSB_ERROR_TIMEOUT)
return false;
return true;
}
static bool hfa_send_shutdown(struct cgpu_info *hashfast)
{
bool ret = false;
if (hashfast->usbinfo.nodev)
return ret;
/* Send a restart before the shutdown frame to tell the device to
* discard any work it thinks is in flight for a cleaner restart. */
if (!hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), 0, (uint8_t *)NULL, 0))
return ret;
if (hfa_send_frame(hashfast, HF_USB_CMD(OP_USB_SHUTDOWN), 0, NULL, 0)) {
/* Wait to allow device to properly shut down. */
cgsleep_ms(1000);
ret = true;
}
return ret;
}
static struct cgpu_info *hfa_old_device(struct cgpu_info *hashfast, struct hashfast_info *info)
{
struct cgpu_info *cgpu, *found = NULL;
struct hashfast_info *cinfo = NULL;
int i;
/* If the device doesn't have a serial number, don't try to match it
* with a zombie instance. */
if (!info->serial_number)
return false;
/* See if we can find a zombie instance of the same device */
for (i = 0; i < mining_threads; i++) {
cgpu = mining_thr[i]->cgpu;
if (!cgpu)
continue;
if (cgpu == hashfast)
continue;
if (cgpu->drv->drv_id != DRIVER_hashfast)
continue;
if (!cgpu->usbinfo.nodev)
continue;
cinfo = cgpu->device_data;
if (!cinfo)
continue;
if (info->op_name[0] != '\0' && !strncmp(info->op_name, cinfo->op_name, 32)) {
applog(LOG_DEBUG, "%s %d: Found old device based on OP_NAME %s",
hashfast->drv->name, hashfast->device_id, info->op_name);
found = cgpu;
break;
}
if (info->serial_number == cinfo->serial_number) {
applog(LOG_DEBUG, "%s %d: Found old device based on serial number %x",
hashfast->drv->name, hashfast->device_id, info->serial_number);
found = cgpu;
break;
}
}
return found;
}
static bool hfa_detect_common(struct cgpu_info *hashfast)
{
struct hashfast_info *info;
bool ret;
int i;
info = calloc(sizeof(struct hashfast_info), 1);
if (!info)
quit(1, "Failed to calloc hashfast_info in hfa_detect_common");
hashfast->device_data = info;
/* hashfast_reset should fill in details for info */
ret = hfa_reset(hashfast, info);
if (!ret) {
hfa_send_shutdown(hashfast);
hfa_clear_readbuf(hashfast);
free(info);
hashfast->device_data = NULL;
return false;
}
if (hashfast->usbinfo.nodev)
return false;
// The per-die status array
info->die_status = calloc(info->asic_count, sizeof(struct hf_g1_die_data));
if (unlikely(!(info->die_status)))
quit(1, "Failed to calloc die_status");
info->die_data = calloc(info->asic_count, sizeof(struct hf_die_data));
if (unlikely(!(info->die_data)))
quit(1, "Failed to calloc die_data");
for (i = 0; i < info->asic_count; i++)
info->die_data[i].hash_clock = info->base_clock;
// The per-die statistics array
info->die_statistics = calloc(info->asic_count, sizeof(struct hf_long_statistics));
if (unlikely(!(info->die_statistics)))
quit(1, "Failed to calloc die_statistics");
info->works = calloc(sizeof(struct work *), info->num_sequence);
if (!info->works)
quit(1, "Failed to calloc info works in hfa_detect_common");
info->cgpu = hashfast;
/* Look for a matching zombie instance and inherit values from it if it
* exists. */
info->old_cgpu = hfa_old_device(hashfast, info);
if (info->old_cgpu) {
struct hashfast_info *cinfo = info->old_cgpu->device_data;
applog(LOG_INFO, "Found matching zombie device for %s %d at device %d",
hashfast->drv->name, hashfast->device_id, info->old_cgpu->device_id);
info->resets = cinfo->resets;
/* Reset the device with the last hash_clock_rate if it's
* different. */
if (info->hash_clock_rate != cinfo->hash_clock_rate) {
info->hash_clock_rate = cinfo->hash_clock_rate;
ret = hfa_reset(hashfast, hashfast->device_data);
if (!ret)
return false;
}
}
return true;
}
static bool hfa_initialise(struct cgpu_info *hashfast)
{
int err;
if (hashfast->usbinfo.nodev)
return false;
if (!hfa_clear_readbuf(hashfast))
return false;
err = usb_transfer(hashfast, 0, 9, 1, 0, C_ATMEL_RESET);
if (!err)
err = usb_transfer(hashfast, 0x21, 0x22, 0, 0, C_ATMEL_OPEN);
if (!err) {
uint32_t buf[2];
/* Magic sequence to reset device only really needed for windows
* but harmless on linux. */
buf[0] = 0x80250000;
buf[1] = 0x00000800;
err = usb_transfer_data(hashfast, 0x21, 0x20, 0x0000, 0, buf,
7, C_ATMEL_INIT);
}
if (err < 0) {
applog(LOG_INFO, "%s %d: Failed to open with error %s",
hashfast->drv->name, hashfast->device_id, libusb_error_name(err));
}
/* Must have transmitted init sequence sized buffer */
return (err == 7);
}
static void hfa_dfu_boot(struct cgpu_info *hashfast)
{
bool ret;
if (unlikely(hashfast->usbinfo.nodev))
return;
ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_DFU), 0, NULL, 0);
applog(LOG_WARNING, "%s %d %03d:%03d DFU Boot %s", hashfast->drv->name, hashfast->device_id,
hashfast->usbinfo.bus_number, hashfast->usbinfo.device_address,
ret ? "Succeeded" : "Failed");
}
static struct cgpu_info *hfa_detect_one(libusb_device *dev, struct usb_find_devices *found)
{
struct cgpu_info *hashfast;
hashfast = usb_alloc_cgpu(&hashfast_drv, HASHFAST_MINER_THREADS);
if (!hashfast)
quit(1, "Failed to usb_alloc_cgpu hashfast");
if (!usb_init(hashfast, dev, found)) {
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
hashfast->usbdev->usb_type = USB_TYPE_STD;
if (!hfa_initialise(hashfast)) {
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
if (opt_hfa_dfu_boot) {
hfa_dfu_boot(hashfast);
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
if (!hfa_detect_common(hashfast)) {
usb_uninit(hashfast);
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
if (!add_cgpu(hashfast))
return NULL;
return hashfast;
}
static void hfa_detect(bool __maybe_unused hotplug)
{
/* Set up the CRC tables only once. */
if (!hfa_crc8_set)
hfa_init_crc8();
usb_detect(&hashfast_drv, hfa_detect_one);
}
static bool hfa_get_packet(struct cgpu_info *hashfast, struct hf_header *h)
{
uint8_t hcrc;
bool ret;
if (unlikely(hashfast->usbinfo.nodev))
return false;
ret = hfa_get_header(hashfast, h, &hcrc);
if (unlikely(!ret))
goto out;
if (unlikely(h->crc8 != hcrc)) {
applog(LOG_WARNING, "%s %d: Bad CRC %d vs %d, discarding packet",
hashfast->drv->name, hashfast->device_id, h->crc8, hcrc);
ret = false;
goto out;
}
if (h->data_length > 0)
ret = hfa_get_data(hashfast, (char *)(h + 1), h->data_length);
if (unlikely(!ret)) {
applog(LOG_WARNING, "%s %d: Failed to get data associated with header",
hashfast->drv->name, hashfast->device_id);
}
out:
return ret;
}
static void hfa_running_shutdown(struct cgpu_info *hashfast, struct hashfast_info *info);
static void hfa_parse_gwq_status(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_gwq_data *g = (struct hf_gwq_data *)(h + 1);
struct work *work;
applog(LOG_DEBUG, "%s %d: OP_GWQ_STATUS, device_head %4d tail %4d my tail %4d shed %3d inflight %4d",
hashfast->drv->name, hashfast->device_id, g->sequence_head, g->sequence_tail, info->hash_sequence_tail,
g->shed_count, HF_SEQUENCE_DISTANCE(info->hash_sequence_head,g->sequence_tail));
/* This is a special flag that the thermal overload has been tripped */
if (unlikely(h->core_address & 0x80)) {
applog(LOG_ERR, "%s %d Thermal overload tripped! Shutting down device",
hashfast->drv->name, hashfast->device_id);
hfa_running_shutdown(hashfast, info);
usb_nodev(hashfast);
return;
}
mutex_lock(&info->lock);
info->raw_hashes += g->hash_count;
info->device_sequence_head = g->sequence_head;
info->device_sequence_tail = g->sequence_tail;
info->shed_count = g->shed_count;
/* Free any work that is no longer required */
while (info->device_sequence_tail != info->hash_sequence_tail) {
if (++info->hash_sequence_tail >= info->num_sequence)
info->hash_sequence_tail = 0;
if (unlikely(!(work = info->works[info->hash_sequence_tail]))) {
applog(LOG_ERR, "%s %d: Bad work sequence tail",
hashfast->drv->name, hashfast->device_id);
hashfast->shutdown = true;
break;
}
applog(LOG_DEBUG, "%s %d: Completing work on hash_sequence_tail %d",
hashfast->drv->name, hashfast->device_id, info->hash_sequence_tail);
free_work(work);
info->works[info->hash_sequence_tail] = NULL;
}
mutex_unlock(&info->lock);
}
/* Board temperature conversion */
static float board_temperature(uint16_t adc)
{
float t, r, f, b;
if (adc < 40 || adc > 650)
return((float) 0.0); // Bad count
b = 3590.0;
f = (float)adc / 1023.0;
r = 1.0 / (1.0 / f - 1.0);
t = log(r) / b;
t += 1.0 / (25.0 + 273.15);
t = 1.0 / t - 273.15;
return t;
}
static void hfa_update_die_status(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_g1_die_data *d = (struct hf_g1_die_data *)(h + 1), *ds;
int num_included = (h->data_length * 4) / sizeof(struct hf_g1_die_data);
int i, j, die = h->chip_address;
float die_temperature, board_temp;
float core_voltage[6];
// Copy in the data. They're numbered sequentially from the starting point
ds = info->die_status + h->chip_address;
for (i = 0; i < num_included; i++)
memcpy(ds++, d++, sizeof(struct hf_g1_die_data));
for (i = 0, d = &info->die_status[h->chip_address]; i < num_included; i++, d++) {
die += i;
die_temperature = GN_DIE_TEMPERATURE(d->die.die_temperature);
/* Sanity checking */
if (unlikely(die_temperature > 255))
die_temperature = info->die_data[die].temp;
else
info->die_data[die].temp = die_temperature;
board_temp = board_temperature(d->temperature);
if (unlikely(board_temp > 255))
board_temp = info->die_data[die].board_temp;
else
info->die_data[die].board_temp = board_temp;
for (j = 0; j < 6; j++)
core_voltage[j] = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
applog(LOG_DEBUG, "%s %d: die %2d: OP_DIE_STATUS Temps die %.1fC board %.1fC vdd's %.2f %.2f %.2f %.2f %.2f %.2f",
hashfast->drv->name, hashfast->device_id, die, die_temperature, board_temp,
core_voltage[0], core_voltage[1], core_voltage[2],
core_voltage[3], core_voltage[4], core_voltage[5]);
// XXX Convert board phase currents, voltage, temperature
}
if (die == info->asic_count - 1) {
/* We have a full set of die temperatures, find the highest
* current temperature. */
float max_temp = 0;
info->temp_updates++;
for (die = 0; die < info->asic_count; die++) {
if (info->die_data[die].temp > max_temp)
max_temp = info->die_data[die].temp;
if (info->die_data[die].board_temp > max_temp)
max_temp = info->die_data[die].board_temp;
}
/* Exponentially change the max_temp to smooth out troughs. */
hashfast->temp = hashfast->temp * 0.63 + max_temp * 0.37;
}
if (unlikely(hashfast->temp >= opt_hfa_overheat)) {
/* -1 means new overheat condition */
if (!info->overheat)
info->overheat = -1;
} else if (unlikely(info->overheat && hashfast->temp < opt_hfa_overheat - HFA_TEMP_HYSTERESIS))
info->overheat = 0;
}
static void hfa_parse_nonce(struct thr_info *thr, struct cgpu_info *hashfast,
struct hashfast_info *info, struct hf_header *h)
{
struct hf_candidate_nonce *n = (struct hf_candidate_nonce *)(h + 1);
int i, num_nonces = h->data_length / U32SIZE(sizeof(struct hf_candidate_nonce));
applog(LOG_DEBUG, "%s %d: OP_NONCE: %2d/%2d:, num_nonces %d hdata 0x%04x",
hashfast->drv->name, hashfast->device_id, h->chip_address, h->core_address, num_nonces, h->hdata);
for (i = 0; i < num_nonces; i++, n++) {
struct work *work = NULL;
applog(LOG_DEBUG, "%s %d: OP_NONCE: %2d: %2d: ntime %2d sequence %4d nonce 0x%08x",
hashfast->drv->name, hashfast->device_id, h->chip_address, i, n->ntime & HF_NTIME_MASK, n->sequence, n->nonce);
if (n->sequence < info->usb_init_base.sequence_modulus) {
// Find the job from the sequence number
mutex_lock(&info->lock);
work = info->works[n->sequence];
mutex_unlock(&info->lock);
} else {
applog(LOG_INFO, "%s %d: OP_NONCE: Sequence out of range %4d max %4d",
hashfast->drv->name, hashfast->device_id, n->sequence, info->usb_init_base.sequence_modulus);
}
if (unlikely(!work)) {
info->no_matching_work++;
applog(LOG_INFO, "%s %d: No matching work!", hashfast->drv->name, hashfast->device_id);
} else {
applog(LOG_DEBUG, "%s %d: OP_NONCE: sequence %d: submitting nonce 0x%08x ntime %d",
hashfast->drv->name, hashfast->device_id, n->sequence, n->nonce, n->ntime & HF_NTIME_MASK);
if (submit_noffset_nonce(thr, work, n->nonce, n->ntime & HF_NTIME_MASK)) {
mutex_lock(&info->lock);
info->hash_count += 0xffffffffull * work->device_diff;
mutex_unlock(&info->lock);
}
#if 0 /* Not used */
if (unlikely(n->ntime & HF_NONCE_SEARCH)) {
/* This tells us there is another share in the
* next 128 nonces */
applog(LOG_DEBUG, "%s %d: OP_NONCE: SEARCH PROXIMITY EVENT FOUND",
hashfast->drv->name, hashfast->device_id);
}
#endif
}
}
}
static void hfa_update_die_statistics(struct hashfast_info *info, struct hf_header *h)
{
struct hf_statistics *s = (struct hf_statistics *)(h + 1);
struct hf_long_statistics *l;
// Accumulate the data
l = info->die_statistics + h->chip_address;
l->rx_header_crc += s->rx_header_crc;
l->rx_body_crc += s->rx_body_crc;
l->rx_header_timeouts += s->rx_header_timeouts;
l->rx_body_timeouts += s->rx_body_timeouts;
l->core_nonce_fifo_full += s->core_nonce_fifo_full;
l->array_nonce_fifo_full += s->array_nonce_fifo_full;
l->stats_overrun += s->stats_overrun;
}
static void hfa_update_stats1(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_long_usb_stats1 *s1 = &info->stats1;
struct hf_usb_stats1 *sd = (struct hf_usb_stats1 *)(h + 1);
s1->usb_rx_preambles += sd->usb_rx_preambles;
s1->usb_rx_receive_byte_errors += sd->usb_rx_receive_byte_errors;
s1->usb_rx_bad_hcrc += sd->usb_rx_bad_hcrc;
s1->usb_tx_attempts += sd->usb_tx_attempts;
s1->usb_tx_packets += sd->usb_tx_packets;
s1->usb_tx_timeouts += sd->usb_tx_timeouts;
s1->usb_tx_incompletes += sd->usb_tx_incompletes;
s1->usb_tx_endpointstalled += sd->usb_tx_endpointstalled;
s1->usb_tx_disconnected += sd->usb_tx_disconnected;
s1->usb_tx_suspended += sd->usb_tx_suspended;
#if 0
/* We don't care about UART stats so they're not in our struct */
s1->uart_tx_queue_dma += sd->uart_tx_queue_dma;
s1->uart_tx_interrupts += sd->uart_tx_interrupts;
s1->uart_rx_preamble_ints += sd->uart_rx_preamble_ints;
s1->uart_rx_missed_preamble_ints += sd->uart_rx_missed_preamble_ints;
s1->uart_rx_header_done += sd->uart_rx_header_done;
s1->uart_rx_data_done += sd->uart_rx_data_done;
s1->uart_rx_bad_hcrc += sd->uart_rx_bad_hcrc;
s1->uart_rx_bad_dma += sd->uart_rx_bad_dma;
s1->uart_rx_short_dma += sd->uart_rx_short_dma;
s1->uart_rx_buffers_full += sd->uart_rx_buffers_full;
#endif
if (sd->max_tx_buffers > s1->max_tx_buffers)
s1->max_tx_buffers = sd->max_tx_buffers;
if (sd->max_rx_buffers > s1->max_rx_buffers)
s1->max_rx_buffers = sd->max_rx_buffers;
applog(LOG_DEBUG, "%s %d: OP_USB_STATS1:", hashfast->drv->name, hashfast->device_id);
applog(LOG_DEBUG, " usb_rx_preambles: %6d", sd->usb_rx_preambles);
applog(LOG_DEBUG, " usb_rx_receive_byte_errors: %6d", sd->usb_rx_receive_byte_errors);
applog(LOG_DEBUG, " usb_rx_bad_hcrc: %6d", sd->usb_rx_bad_hcrc);
applog(LOG_DEBUG, " usb_tx_attempts: %6d", sd->usb_tx_attempts);
applog(LOG_DEBUG, " usb_tx_packets: %6d", sd->usb_tx_packets);
applog(LOG_DEBUG, " usb_tx_timeouts: %6d", sd->usb_tx_timeouts);
applog(LOG_DEBUG, " usb_tx_incompletes: %6d", sd->usb_tx_incompletes);
applog(LOG_DEBUG, " usb_tx_endpointstalled: %6d", sd->usb_tx_endpointstalled);
applog(LOG_DEBUG, " usb_tx_disconnected: %6d", sd->usb_tx_disconnected);
applog(LOG_DEBUG, " usb_tx_suspended: %6d", sd->usb_tx_suspended);
#if 0
applog(LOG_DEBUG, " uart_tx_queue_dma: %6d", sd->uart_tx_queue_dma);
applog(LOG_DEBUG, " uart_tx_interrupts: %6d", sd->uart_tx_interrupts);
applog(LOG_DEBUG, " uart_rx_preamble_ints: %6d", sd->uart_rx_preamble_ints);
applog(LOG_DEBUG, " uart_rx_missed_preamble_ints: %6d", sd->uart_rx_missed_preamble_ints);
applog(LOG_DEBUG, " uart_rx_header_done: %6d", sd->uart_rx_header_done);
applog(LOG_DEBUG, " uart_rx_data_done: %6d", sd->uart_rx_data_done);
applog(LOG_DEBUG, " uart_rx_bad_hcrc: %6d", sd->uart_rx_bad_hcrc);
applog(LOG_DEBUG, " uart_rx_bad_dma: %6d", sd->uart_rx_bad_dma);
applog(LOG_DEBUG, " uart_rx_short_dma: %6d", sd->uart_rx_short_dma);
applog(LOG_DEBUG, " uart_rx_buffers_full: %6d", sd->uart_rx_buffers_full);
#endif
applog(LOG_DEBUG, " max_tx_buffers: %6d", sd->max_tx_buffers);
applog(LOG_DEBUG, " max_rx_buffers: %6d", sd->max_rx_buffers);
}
static void hfa_parse_notice(struct cgpu_info *hashfast, struct hf_header *h)
{
struct hf_usb_notice_data *d;
if (h->data_length == 0) {
applog(LOG_DEBUG, "%s %d: Received OP_USB_NOTICE with zero data length",
hashfast->drv->name, hashfast->device_id);
return;
}
d = (struct hf_usb_notice_data *)(h + 1);
/* FIXME Do something with the notification code d->extra_data here */
applog(LOG_NOTICE, "%s %d NOTICE: %s", hashfast->drv->name, hashfast->device_id, d->message);
}
static void *hfa_read(void *arg)
{
struct thr_info *thr = (struct thr_info *)arg;
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
char threadname[16];
snprintf(threadname, sizeof(threadname), "%d/%sRead", hashfast->device_id, hashfast->drv->name);
RenameThread(threadname);
while (likely(!hashfast->shutdown)) {
char buf[512];
struct hf_header *h = (struct hf_header *)buf;
bool ret;
mutex_lock(&info->rlock);
ret = hfa_get_packet(hashfast, h);
mutex_unlock(&info->rlock);
if (unlikely(hashfast->usbinfo.nodev))
break;
if (unlikely(!ret))
continue;
switch (h->operation_code) {
case OP_GWQ_STATUS:
hfa_parse_gwq_status(hashfast, info, h);
break;
case OP_DIE_STATUS:
hfa_update_die_status(hashfast, info, h);
break;
case OP_NONCE:
hfa_parse_nonce(thr, hashfast, info, h);
break;
case OP_STATISTICS:
hfa_update_die_statistics(info, h);
break;
case OP_USB_STATS1:
hfa_update_stats1(hashfast, info, h);
break;
case OP_USB_NOTICE:
hfa_parse_notice(hashfast, h);
break;
case OP_PING:
/* Do nothing */
break;
default:
if (h->operation_code == OP_FAN) {
applog(LOG_NOTICE, "%s %d: Firmware upgrade required to support fan control",
hashfast->drv->name, hashfast->device_id);
opt_hfa_target = 0;
break;
}
applog(LOG_WARNING, "%s %d: Unhandled operation code %d",
hashfast->drv->name, hashfast->device_id, h->operation_code);
break;
}
/* Make sure we send something to the device at least every 5
* seconds so it knows the driver is still alive for when we
* run out of work. The read thread never blocks so is the
* best place to do this. */
if (time(NULL) - info->last_send > 5)
hfa_send_frame(hashfast, HF_USB_CMD(OP_PING), 0, NULL, 0);
}
applog(LOG_DEBUG, "%s %d: Shutting down read thread", hashfast->drv->name, hashfast->device_id);
return NULL;
}
static void hfa_set_fanspeed(struct cgpu_info *hashfast, struct hashfast_info *info,
int fanspeed);
static bool hfa_prepare(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
struct timeval now;
/* Inherit the old device id */
if (info->old_cgpu)
hashfast->device_id = info->old_cgpu->device_id;
mutex_init(&info->lock);
mutex_init(&info->rlock);
if (pthread_create(&info->read_thr, NULL, hfa_read, (void *)thr))
quit(1, "Failed to pthread_create read thr in hfa_prepare");
cgtime(&now);
get_datestamp(hashfast->init, sizeof(hashfast->init), &now);
hashfast->last_device_valid_work = time(NULL);
info->resets = 0;
hfa_set_fanspeed(hashfast, info, opt_hfa_fan_default);
return true;
}
/* If this ever returns 0 it means we have shed all the cores which will lead
* to no work being done which will trigger the watchdog. */
static inline int hfa_basejobs(struct hashfast_info *info)
{
return info->usb_init_base.inflight_target - info->shed_count;
}
/* Figure out how many jobs to send. */
static int hfa_jobs(struct cgpu_info *hashfast, struct hashfast_info *info)
{
int ret = 0;
if (unlikely(info->overheat)) {
/* Acknowledge and notify of new condition.*/
if (info->overheat < 0) {
applog(LOG_WARNING, "%s %d: Hit overheat temp %.1f, throttling!",
hashfast->drv->name, hashfast->device_id, hashfast->temp);
/* Value of 1 means acknowledged overheat */
info->overheat = 1;
}
goto out;
}
mutex_lock(&info->lock);
ret = hfa_basejobs(info) - HF_SEQUENCE_DISTANCE(info->hash_sequence_head, info->device_sequence_tail);
/* Place an upper limit on how many jobs to queue to prevent sending
* more work than the device can use after a period of outage. */
if (ret > hfa_basejobs(info))
ret = hfa_basejobs(info);
mutex_unlock(&info->lock);
if (unlikely(ret < 0))
ret = 0;
out:
return ret;
}
static void hfa_set_fanspeed(struct cgpu_info *hashfast, struct hashfast_info *info,
int fandiff)
{
const uint8_t opcode = HF_USB_CMD(OP_FAN);
uint8_t packet[256];
struct hf_header *p = (struct hf_header *)packet;
const int tx_length = sizeof(struct hf_header);
uint16_t hdata;
int fandata;
info->fanspeed += fandiff;
if (info->fanspeed > opt_hfa_fan_max)
info->fanspeed = opt_hfa_fan_max;
else if (info->fanspeed < opt_hfa_fan_min)
info->fanspeed = opt_hfa_fan_min;
fandata = info->fanspeed * 255 / 100; // Fanspeed is in percent, hdata 0-255
hdata = fandata; // Use an int first to avoid overflowing uint16_t
p->preamble = HF_PREAMBLE;
p->operation_code = hfa_cmds[opcode].cmd;
p->chip_address = 0xff;
p->core_address = 1;
p->hdata = htole16(hdata);
p->data_length = 0;
p->crc8 = hfa_crc8(packet);
__hfa_send_frame(hashfast, opcode, tx_length, packet);
}
static void hfa_increase_clock(struct cgpu_info *hashfast, struct hashfast_info *info,
int die)
{
int i, high_clock = 0, low_clock = info->hash_clock_rate;
struct hf_die_data *hdd = &info->die_data[die];
uint32_t diebit = 0x00000001ul << die;
uint16_t hdata, increase = 10;
if (hdd->hash_clock + increase > info->hash_clock_rate)
increase = info->hash_clock_rate - hdd->hash_clock;
hdd->hash_clock += increase;
hdata = (WR_MHZ_INCREASE << 12) | increase;
if (info->clock_offset) {
for (i = 0; i < info->asic_count; i++) {
if (info->die_data[i].hash_clock > high_clock)
high_clock = info->die_data[i].hash_clock;
if (info->die_data[i].hash_clock < low_clock)
low_clock = info->die_data[i].hash_clock;
}
if (low_clock + HFA_CLOCK_MAXDIFF > high_clock) {
/* We can increase all clocks again */
for (i = 0; i < info->asic_count; i++) {
if (i == die) /* We've already added to this die */
continue;
info->die_data[i].hash_clock += increase;
}
applog(LOG_INFO, "%s %d: Die %d temp below range %.1f, increasing ALL dies by %d",
hashfast->drv->name, hashfast->device_id, die, info->die_data[die].temp, increase);
hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), hdata, (uint8_t *)NULL, 0);
info->clock_offset -= increase;
return;
}
}
applog(LOG_INFO, "%s %d: Die temp below range %.1f, increasing die %d clock to %d",
hashfast->drv->name, hashfast->device_id, info->die_data[die].temp, die, hdd->hash_clock);
hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), hdata, (uint8_t *)&diebit, 4);
}
static void hfa_decrease_clock(struct cgpu_info *hashfast, struct hashfast_info *info,
int die)
{
struct hf_die_data *hdd = &info->die_data[die];
uint32_t diebit = 0x00000001ul << die;
uint16_t hdata, decrease = 20;
int i, high_clock = 0;
/* Find the fastest die for comparison */
for (i = 0; i < info->asic_count; i++) {
if (info->die_data[i].hash_clock > high_clock)
high_clock = info->die_data[i].hash_clock;
}
if (hdd->hash_clock - decrease < HFA_CLOCK_MIN)
decrease = hdd->hash_clock - HFA_CLOCK_MIN;
hdata = (WR_MHZ_DECREASE << 12) | decrease;
if (high_clock >= hdd->hash_clock + HFA_CLOCK_MAXDIFF) {
/* We can't have huge differences in clocks as it will lead to
* starvation of the faster cores so we have no choice but to
* slow down all dies to tame this one. */
for (i = 0; i < info->asic_count; i++)
info->die_data[i].hash_clock -= decrease;
applog(LOG_INFO, "%s %d: Die %d temp above range %.1f, decreasing ALL die clocks by %d",
hashfast->drv->name, hashfast->device_id, die, info->die_data[die].temp, decrease);
hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), hdata, (uint8_t *)NULL, 0);
info->clock_offset += decrease;
return;
}
hdd->hash_clock -= decrease;
applog(LOG_INFO, "%s %d: Die temp above range %.1f, decreasing die %d clock to %d",
hashfast->drv->name, hashfast->device_id, info->die_data[die].temp, die, hdd->hash_clock);
hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), hdata, (uint8_t *)&diebit, 4);
}
/* Adjust clock according to temperature if need be by changing the clock
* setting and issuing a work restart with the new clock speed. */
static void hfa_temp_clock(struct cgpu_info *hashfast, struct hashfast_info *info)
{
int temp_change, i, low_clock;
time_t now_t = time(NULL);
bool throttled = false;
if (!opt_hfa_target)
return;
/* First find out if any dies are throttled before trying to optimise
* fanspeed, and find the slowest clock. */
low_clock = info->hash_clock_rate;
for (i = 0; i < info->asic_count ; i++) {
struct hf_die_data *hdd = &info->die_data[i];
if (hdd->hash_clock < info->hash_clock_rate)
throttled = true;
if (hdd->hash_clock < low_clock)
low_clock = hdd->hash_clock;
}
/* Find the direction of temperature change since we last checked */
if (info->temp_updates < 5)
goto dies_only;
info->temp_updates = 0;
temp_change = hashfast->temp - info->last_max_temp;
info->last_max_temp = hashfast->temp;
/* Adjust fanspeeds first if possible before die speeds, increasing
* speed quickly and lowering speed slowly */
if (hashfast->temp > opt_hfa_target ||
(throttled && hashfast->temp >= opt_hfa_target - HFA_TEMP_HYSTERESIS)) {
/* We should be trying to decrease temperature, if it's not on
* its way down. */
if (info->fanspeed < opt_hfa_fan_max) {
if (!temp_change)
hfa_set_fanspeed(hashfast, info, 5);
else if (temp_change > 0)
hfa_set_fanspeed(hashfast, info, 10);
}
} else if (hashfast->temp >= opt_hfa_target - HFA_TEMP_HYSTERESIS) {
/* In optimal range, try and maintain the same temp */
if (temp_change > 0) {
/* Temp rising, tweak fanspeed up */
if (info->fanspeed < opt_hfa_fan_max)
hfa_set_fanspeed(hashfast, info, 2);
} else if (temp_change < 0) {
/* Temp falling, tweak fanspeed down */
if (info->fanspeed > opt_hfa_fan_min)
hfa_set_fanspeed(hashfast, info, -1);
}
} else {
/* Below optimal range, try and increase temp */
if (temp_change <= 0 && !throttled) {
if (info->fanspeed > opt_hfa_fan_min)
hfa_set_fanspeed(hashfast, info, -1);
}
}
dies_only:
/* Do no restarts at all if there has been one less than 15 seconds
* ago */
if (now_t - info->last_restart < 15)
return;
for (i = 1; i <= info->asic_count ; i++) {
int die = (info->last_die_adjusted + i) % info->asic_count;
struct hf_die_data *hdd = &info->die_data[die];
/* Sanity check */
if (unlikely(hdd->temp == 0.0 || hdd->temp > 255))
continue;
/* In target temperature */
if (hdd->temp >= opt_hfa_target - HFA_TEMP_HYSTERESIS && hdd->temp <= opt_hfa_target)
continue;
if (hdd->temp > opt_hfa_target) {
/* Temp above target range */
/* Already at min speed */
if (hdd->hash_clock == HFA_CLOCK_MIN)
continue;
/* Have some leeway before throttling speed */
if (hdd->temp < opt_hfa_target + HFA_TEMP_HYSTERESIS)
break;
hfa_decrease_clock(hashfast, info, die);
} else {
/* Temp below target range. Only send a restart to
* increase speed no more than every 60 seconds. */
if (now_t - hdd->last_restart < 60)
continue;
/* Already at max speed */
if (hdd->hash_clock == info->hash_clock_rate)
continue;
/* Do not increase the clocks on any dies if we have
* a forced offset due to wild differences in clocks,
* unless this is the slowest one. */
if (info->clock_offset && hdd->hash_clock > low_clock)
continue;
hfa_increase_clock(hashfast, info, die);
}
/* Keep track of the last die adjusted since we only adjust
* one at a time to ensure we end up iterating over all of
* them. */
info->last_restart = hdd->last_restart = now_t;
info->last_die_adjusted = die;
break;
}
}
static void hfa_running_shutdown(struct cgpu_info *hashfast, struct hashfast_info *info)
{
/* If the device has already disapperaed, don't drop the clock in case
* it was just unplugged as opposed to a failure. */
if (hashfast->usbinfo.nodev)
return;
if (info->hash_clock_rate > HFA_CLOCK_DEFAULT) {
struct hashfast_info *cinfo;
/* Set the master device's clock speed if this is a copy */
if (info->old_cgpu && info->old_cgpu->device_data)
cinfo = info->old_cgpu->device_data;
else
cinfo = info;
cinfo->hash_clock_rate -= 10;
if (cinfo->hash_clock_rate < HFA_CLOCK_DEFAULT)
cinfo->hash_clock_rate = HFA_CLOCK_DEFAULT;
applog(LOG_WARNING, "%s %d: Decreasing clock speed to %d with reset",
hashfast->drv->name, hashfast->device_id, cinfo->hash_clock_rate);
}
if (!hfa_send_shutdown(hashfast))
return;
if (hashfast->usbinfo.nodev)
return;
mutex_lock(&info->rlock);
hfa_clear_readbuf(hashfast);
mutex_unlock(&info->rlock);
}
static int64_t hfa_scanwork(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
int jobs, ret, cycles = 0;
double fail_time;
int64_t hashes;
if (unlikely(hashfast->usbinfo.nodev)) {
applog(LOG_WARNING, "%s %d: device disappeared, disabling",
hashfast->drv->name, hashfast->device_id);
return -1;
}
/* Base the fail time on no valid nonces for 25 full nonce ranges at
* the current expected hashrate. */
fail_time = 25.0 * (double)hashfast->drv->max_diff * 0xffffffffull /
(double)(info->base_clock * 1000000) / hfa_basejobs(info);
if (unlikely(share_work_tdiff(hashfast) > fail_time)) {
applog(LOG_WARNING, "%s %d: No valid hashes for over %.0f seconds, shutting down thread",
hashfast->drv->name, hashfast->device_id, fail_time);
hfa_running_shutdown(hashfast, info);
return -1;
}
if (unlikely(thr->work_restart)) {
restart:
info->last_restart = time(NULL);
thr->work_restart = false;
ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), 0, (uint8_t *)NULL, 0);
if (unlikely(!ret)) {
hfa_running_shutdown(hashfast, info);
return -1;
}
/* Give a full allotment of jobs after a restart, not waiting
* for the status update telling us how much to give. */
jobs = hfa_basejobs(info);
} else {
/* Only adjust die clocks if there's no restart since two
* restarts back to back get ignored. */
hfa_temp_clock(hashfast, info);
jobs = hfa_jobs(hashfast, info);
}
/* Wait on restart_wait for up to 0.5 seconds or submit jobs as soon as
* they're required. */
while (!jobs && ++cycles < 5) {
ret = restart_wait(thr, 100);
if (unlikely(!ret))
goto restart;
jobs = hfa_jobs(hashfast, info);
}
if (jobs) {
applog(LOG_DEBUG, "%s %d: Sending %d new jobs", hashfast->drv->name, hashfast->device_id,
jobs);
}
while (jobs-- > 0) {
struct hf_hash_usb op_hash_data;
struct work *work;
uint64_t intdiff;
int i, sequence;
uint32_t *p;
/* This is a blocking function if there's no work */
work = get_work(thr, thr->id);
/* Assemble the data frame and send the OP_HASH packet */
memcpy(op_hash_data.midstate, work->midstate, sizeof(op_hash_data.midstate));
memcpy(op_hash_data.merkle_residual, work->data + 64, 4);
p = (uint32_t *)(work->data + 64 + 4);
op_hash_data.timestamp = *p++;
op_hash_data.bits = *p++;
op_hash_data.starting_nonce = 0;
op_hash_data.nonce_loops = 0;
op_hash_data.ntime_loops = 0;
/* Set the number of leading zeroes to look for based on diff.
* Diff 1 = 32, Diff 2 = 33, Diff 4 = 34 etc. */
intdiff = (uint64_t)work->device_diff;
for (i = 31; intdiff; i++, intdiff >>= 1);
op_hash_data.search_difficulty = i;
op_hash_data.group = 0;
if ((sequence = info->hash_sequence_head + 1) >= info->num_sequence)
sequence = 0;
ret = hfa_send_frame(hashfast, OP_HASH, sequence, (uint8_t *)&op_hash_data, sizeof(op_hash_data));
if (unlikely(!ret)) {
hfa_running_shutdown(hashfast, info);
return -1;
}
mutex_lock(&info->lock);
info->hash_sequence_head = sequence;
info->works[info->hash_sequence_head] = work;
mutex_unlock(&info->lock);
applog(LOG_DEBUG, "%s %d: OP_HASH sequence %d search_difficulty %d work_difficulty %g",
hashfast->drv->name, hashfast->device_id, info->hash_sequence_head,
op_hash_data.search_difficulty, work->work_difficulty);
}
/* Only count 2/3 of the hashes to smooth out the hashrate for cycles
* that have no hashes added. */
mutex_lock(&info->lock);
hashes = info->hash_count / 3 * 2;
info->calc_hashes += hashes;
info->hash_count -= hashes;
mutex_unlock(&info->lock);
return hashes;
}
static struct api_data *hfa_api_stats(struct cgpu_info *cgpu)
{
struct hashfast_info *info = cgpu->device_data;
struct hf_long_usb_stats1 *s1;
struct api_data *root = NULL;
struct hf_usb_init_base *db;
int varint, i;
char buf[64];
root = api_add_int(root, "asic count", &info->asic_count, false);
root = api_add_int(root, "core count", &info->core_count, false);
db = &info->usb_init_base;
sprintf(buf, "%d.%d", (db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
root = api_add_string(root, "firmware rev", buf, true);
sprintf(buf, "%d.%d", (db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
root = api_add_string(root, "hardware rev", buf, true);
root = api_add_hex32(root, "serial number", &db->serial_number, true);
varint = db->hash_clockrate;
root = api_add_int(root, "hash clockrate", &varint, true);
varint = db->inflight_target;
root = api_add_int(root, "inflight target", &varint, true);
varint = db->sequence_modulus;
root = api_add_int(root, "sequence modulus", &varint, true);
root = api_add_int(root, "fan percent", &info->fanspeed, false);
s1 = &info->stats1;
root = api_add_uint64(root, "rx preambles", &s1->usb_rx_preambles, false);
root = api_add_uint64(root, "rx rcv byte err", &s1->usb_rx_receive_byte_errors, false);
root = api_add_uint64(root, "rx bad hcrc", &s1->usb_rx_bad_hcrc, false);
root = api_add_uint64(root, "tx attempts", &s1->usb_tx_attempts, false);
root = api_add_uint64(root, "tx packets", &s1->usb_tx_packets, false);
root = api_add_uint64(root, "tx incompletes", &s1->usb_tx_incompletes, false);
root = api_add_uint64(root, "tx ep stalled", &s1->usb_tx_endpointstalled, false);
root = api_add_uint64(root, "tx disconnect", &s1->usb_tx_disconnected, false);
root = api_add_uint64(root, "tx suspend", &s1->usb_tx_suspended, false);
varint = s1->max_tx_buffers;
root = api_add_int(root, "max tx buf", &varint, true);
varint = s1->max_rx_buffers;
root = api_add_int(root, "max rx buf", &varint, true);
for (i = 0; i < info->asic_count; i++) {
struct hf_long_statistics *l = &info->die_statistics[i];
struct hf_g1_die_data *d = &info->die_status[i];
double val;
int j;
root = api_add_int(root, "Core", &i, true);
root = api_add_int(root, "hash clockrate", &(info->die_data[i].hash_clock), false);
val = GN_DIE_TEMPERATURE(d->die.die_temperature);
root = api_add_double(root, "die temperature", &val, true);
val = board_temperature(d->temperature);
root = api_add_double(root, "board temperature", &val, true);
for (j = 0; j < 6; j++) {
val = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
sprintf(buf, "%d: %.2f", j, val);
root = api_add_string(root, "core voltage", buf, true);
}
root = api_add_uint64(root, "rx header crc", &l->rx_header_crc, false);
root = api_add_uint64(root, "rx body crc", &l->rx_body_crc, false);
root = api_add_uint64(root, "rx header to", &l->rx_header_timeouts, false);
root = api_add_uint64(root, "rx body to", &l->rx_body_timeouts, false);
root = api_add_uint64(root, "cn fifo full", &l->core_nonce_fifo_full, false);
root = api_add_uint64(root, "an fifo full", &l->array_nonce_fifo_full, false);
root = api_add_uint64(root, "stats overrun", &l->stats_overrun, false);
}
root = api_add_uint64(root, "raw hashcount", &info->raw_hashes, false);
root = api_add_uint64(root, "calc hashcount", &info->calc_hashes, false);
root = api_add_int(root, "no matching work", &info->no_matching_work, false);
root = api_add_int(root, "resets", &info->resets, false);
return root;
}
static void hfa_statline_before(char *buf, size_t bufsiz, struct cgpu_info *hashfast)
{
struct hashfast_info *info = hashfast->device_data;
struct hf_g1_die_data *d;
double max_volt;
int i;
max_volt = 0.0;
for (i = 0; i < info->asic_count; i++) {
int j;
d = &info->die_status[i];
for (j = 0; j < 6; j++) {
double volt = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
if (volt > max_volt)
max_volt = volt;
}
}
tailsprintf(buf, bufsiz, "%3dMHz %3.0fC %3d%% %3.2fV", info->base_clock,
hashfast->temp, info->fanspeed, max_volt);
}
static void hfa_init(struct cgpu_info __maybe_unused *hashfast)
{
}
static void hfa_free_all_work(struct hashfast_info *info)
{
while (info->device_sequence_tail != info->hash_sequence_head) {
struct work *work;
if (++info->hash_sequence_tail >= info->num_sequence)
info->hash_sequence_tail = 0;
if (unlikely(!(work = info->works[info->hash_sequence_tail])))
break;
free_work(work);
info->works[info->hash_sequence_tail] = NULL;
}
}
static void hfa_shutdown(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
hfa_send_shutdown(hashfast);
pthread_join(info->read_thr, NULL);
hfa_free_all_work(info);
hfa_clear_readbuf(hashfast);
free(info->works);
free(info->die_statistics);
free(info->die_status);
free(info->die_data);
/* Don't free info here since it will be accessed by statline before
* if a device is removed. */
}
struct device_drv hashfast_drv = {
.drv_id = DRIVER_hashfast,
.dname = "Hashfast",
.name = "HFA",
.max_diff = 256.0, // Limit max diff to get some nonces back regardless
.drv_detect = hfa_detect,
.thread_prepare = hfa_prepare,
.hash_work = &hash_driver_work,
.scanwork = hfa_scanwork,
.get_api_stats = hfa_api_stats,
.get_statline_before = hfa_statline_before,
.reinit_device = hfa_init,
.thread_shutdown = hfa_shutdown,
};