/*
* Copyright 2012-2013 Lingchao Xu <lingchao.xu@bitmaintech.com>
* Copyright 2014 Andrew Smith
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include "compat.h"
#include "miner.h"
#ifndef LINUX
static void ants1_detect(__maybe_unused bool hotplug)
{
}
#else
#include "elist.h"
#include "usbutils.h"
#include "driver-bitmain.h"
#include "hexdump.c"
#include "util.h"
bool opt_bitmain_hwerror = false;
int opt_bitmain_temp = BITMAIN_TEMP_TARGET;
int opt_bitmain_overheat = BITMAIN_TEMP_OVERHEAT;
int opt_bitmain_fan_min = BITMAIN_DEFAULT_FAN_MIN_PWM;
int opt_bitmain_fan_max = BITMAIN_DEFAULT_FAN_MAX_PWM;
int opt_bitmain_freq_min = BITMAIN_MIN_FREQUENCY;
int opt_bitmain_freq_max = BITMAIN_MAX_FREQUENCY;
bool opt_bitmain_auto;
static int option_offset = -1;
static unsigned char bit_swap_table[256] =
{
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};
#define bitswap(x) (bit_swap_table[x])
// --------------------------------------------------------------
// CRC16 check table
// --------------------------------------------------------------
const uint8_t chCRCHTalbe[] = // CRC high byte table
{
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40
};
const uint8_t chCRCLTalbe[] = // CRC low byte table
{
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,
0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,
0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
0x41, 0x81, 0x80, 0x40
};
static uint16_t CRC16(const uint8_t* p_data, uint16_t w_len)
{
uint8_t chCRCHi = 0xFF; // CRC high byte initialize
uint8_t chCRCLo = 0xFF; // CRC low byte initialize
uint16_t wIndex = 0; // CRC cycling index
while (w_len--) {
wIndex = chCRCLo ^ *p_data++;
chCRCLo = chCRCHi ^ chCRCHTalbe[wIndex];
chCRCHi = chCRCLTalbe[wIndex];
}
return ((chCRCHi << 8) | chCRCLo);
}
static uint32_t num2bit(int num)
{
if (num < 0 || num > 31)
return 0;
else
return (((uint32_t)1) << (31 - num));
}
static bool get_options(int this_option_offset, int *baud, int *chain_num,
int *asic_num, int *timeout, int *frequency, uint8_t * reg_data)
{
char buf[BUFSIZ+1];
char *ptr, *comma, *colon, *colon2, *colon3, *colon4, *colon5;
size_t max;
int i, tmp;
if (opt_bitmain_options == NULL)
buf[0] = '\0';
else {
ptr = opt_bitmain_options;
for (i = 0; i < this_option_offset; i++) {
comma = strchr(ptr, ',');
if (comma == NULL)
break;
ptr = comma + 1;
}
comma = strchr(ptr, ',');
if (comma == NULL)
max = strlen(ptr);
else
max = comma - ptr;
if (max > BUFSIZ)
max = BUFSIZ;
strncpy(buf, ptr, max);
buf[max] = '\0';
}
if (!(*buf))
return false;
colon = strchr(buf, ':');
if (colon)
*(colon++) = '\0';
tmp = atoi(buf);
switch (tmp) {
case 115200:
*baud = 115200;
break;
case 57600:
*baud = 57600;
break;
case 38400:
*baud = 38400;
break;
case 19200:
*baud = 19200;
break;
default:
quit(1, "Invalid bitmain-options for baud (%s) "
"must be 115200, 57600, 38400 or 19200", buf);
}
if (colon && *colon) {
colon2 = strchr(colon, ':');
if (colon2)
*(colon2++) = '\0';
if (*colon) {
tmp = atoi(colon);
if (tmp > 0)
*chain_num = tmp;
else {
quit(1, "Invalid bitmain-options for "
"chain_num (%s) must be 1 ~ %d",
colon, BITMAIN_DEFAULT_CHAIN_NUM);
}
}
if (colon2 && *colon2) {
colon3 = strchr(colon2, ':');
if (colon3)
*(colon3++) = '\0';
tmp = atoi(colon2);
if (tmp > 0 && tmp <= BITMAIN_DEFAULT_ASIC_NUM)
*asic_num = tmp;
else {
quit(1, "Invalid bitmain-options for "
"asic_num (%s) must be 1 ~ %d",
colon2, BITMAIN_DEFAULT_ASIC_NUM);
}
if (colon3 && *colon3) {
colon4 = strchr(colon3, ':');
if (colon4)
*(colon4++) = '\0';
tmp = atoi(colon3);
if (tmp > 0 && tmp <= 0xff)
*timeout = tmp;
else {
quit(1, "Invalid bitmain-options for "
"timeout (%s) must be 1 ~ %d",
colon3, 0xff);
}
if (colon4 && *colon4) {
colon5 = strchr(colon4, ':');
if (colon5)
*(colon5++) = '\0';
tmp = atoi(colon4);
if (tmp < BITMAIN_MIN_FREQUENCY ||
tmp > BITMAIN_MAX_FREQUENCY) {
quit(1, "Invalid bitmain-options for frequency,"
" must be %d <= frequency <= %d",
BITMAIN_MIN_FREQUENCY,
BITMAIN_MAX_FREQUENCY);
} else
*frequency = tmp;
if (colon5 && *colon5) {
if (strlen(colon5) > 8 ||
strlen(colon5)%2 != 0 ||
strlen(colon5)/2 == 0) {
quit(1, "Invalid bitmain-options for"
" reg data, must be hex now: %s",
colon5);
}
memset(reg_data, 0, 4);
if (!hex2bin(reg_data, colon5, strlen(colon5)/2)) {
quit(1, "Invalid bitmain-options for reg"
" data, hex2bin error now: %s",
colon5);
}
}
}
}
}
}
return true;
}
static int bitmain_set_txconfig(struct bitmain_txconfig_token *bm,
uint8_t reset, uint8_t fan_eft, uint8_t timeout_eft, uint8_t frequency_eft,
uint8_t voltage_eft, uint8_t chain_check_time_eft, uint8_t chip_config_eft, uint8_t hw_error_eft,
uint8_t chain_num, uint8_t asic_num, uint8_t fan_pwm_data, uint8_t timeout_data,
uint16_t frequency, uint8_t voltage, uint8_t chain_check_time,
uint8_t chip_address, uint8_t reg_address, uint8_t * reg_data)
{
uint16_t crc = 0;
int datalen = 0;
uint8_t *sendbuf = (uint8_t *)bm;
if (unlikely(!bm)) {
applog(LOG_WARNING, "%s: %s() bm is null", ants1_drv.dname, __func__);
return -1;
}
if (unlikely(timeout_data <= 0 || asic_num <= 0 || chain_num <= 0)) {
applog(LOG_WARNING, "%s: %s() parameter invalid"
" timeout_data(%d) asic_num(%d) chain_num(%d)",
ants1_drv.dname, __func__,
(int)timeout_data, (int)asic_num, (int)chain_num);
return -1;
}
datalen = sizeof(struct bitmain_txconfig_token);
memset(bm, 0, datalen);
bm->token_type = BITMAIN_TOKEN_TYPE_TXCONFIG;
bm->length = datalen-2;
bm->reset = reset;
bm->fan_eft = fan_eft;
bm->timeout_eft = timeout_eft;
bm->frequency_eft = frequency_eft;
bm->voltage_eft = voltage_eft;
bm->chain_check_time_eft = chain_check_time_eft;
bm->chip_config_eft = chip_config_eft;
bm->hw_error_eft = hw_error_eft;
sendbuf[2] = bitswap(sendbuf[2]);
bm->chain_num = chain_num;
bm->asic_num = asic_num;
bm->fan_pwm_data = fan_pwm_data;
bm->timeout_data = timeout_data;
bm->frequency = htole16(frequency);
bm->voltage = voltage;
bm->chain_check_time = chain_check_time;
memcpy(bm->reg_data, reg_data, 4);
bm->chip_address = chip_address;
bm->reg_address = reg_address;
crc = CRC16((uint8_t *)bm, datalen-2);
bm->crc = htole16(crc);
applog(LOG_DEBUG, "%s: %s() reset(%d) faneft(%d) touteft(%d) freqeft(%d)"
" volteft(%d) chainceft(%d) chipceft(%d) hweft(%d) mnum(%d)"
" anum(%d) fanpwmdata(%d) toutdata(%d) freq(%d) volt(%d)"
" chainctime(%d) regdata(%02x%02x%02x%02x) chipaddr(%02x)"
" regaddr(%02x) crc(%04x)",
ants1_drv.dname, __func__,
(int)reset, (int)fan_eft, (int)timeout_eft, (int)frequency_eft,
(int)voltage_eft, (int)chain_check_time_eft, (int)chip_config_eft,
(int)hw_error_eft, (int)chain_num, (int)asic_num, (int)fan_pwm_data,
(int)timeout_data, (int)frequency, (int)voltage, (int)chain_check_time,
(int)reg_data[0], (int)reg_data[1], (int)reg_data[2], (int)reg_data[3],
(int)chip_address, (int)reg_address, (int)crc);
return datalen;
}
static int bitmain_set_txtask(struct bitmain_info *info, uint8_t *sendbuf,
unsigned int *last_work_block, int *sentcount)
{
uint16_t crc = 0;
uint32_t work_id = 0;
int datalen = 0;
uint8_t new_block = 0;
//char *ob_hex = NULL;
struct bitmain_txtask_token *bm = (struct bitmain_txtask_token *)sendbuf;
int cursentcount = 0;
K_ITEM *witem;
*sentcount = 0;
if (unlikely(!bm)) {
applog(LOG_WARNING, "%s: %s() bm is null", ants1_drv.dname, __func__);
return -1;
}
memset(bm, 0, sizeof(struct bitmain_txtask_token));
bm->token_type = BITMAIN_TOKEN_TYPE_TXTASK;
datalen = 10;
applog(LOG_DEBUG, "%s: send work count %d", ants1_drv.dname, info->work_ready->count);
while (info->work_ready->count) {
witem = k_unlink_head(info->work_ready);
if (DATAW(witem)->work->work_block > *last_work_block) {
applog(LOG_ERR, "%s: send task new block %d old(%d)",
ants1_drv.dname,
DATAW(witem)->work->work_block, *last_work_block);
new_block = 1;
*last_work_block = DATAW(witem)->work->work_block;
}
#ifdef BITMAIN_TEST
if (!hex2bin(DATAW(witem)->work->data, btm_work_test_data, 128)) {
applog(LOG_DEBUG, "%s: send task set test data error",
ants1_drv.dname);
}
if (!hex2bin(DATAW(witem)->work->midstate, btm_work_test_midstate, 32)) {
applog(LOG_DEBUG, "%s: send task set test midstate error",
ants1_drv.dname);
}
#endif
work_id = DATAW(witem)->work->id;
bm->works[cursentcount].work_id = htole32(work_id);
applog(LOG_DEBUG, "%s: send task work id:%"PRIu32" %"PRIu32,
ants1_drv.dname,
bm->works[cursentcount].work_id, work_id);
memcpy(bm->works[cursentcount].midstate, DATAW(witem)->work->midstate, 32);
memcpy(bm->works[cursentcount].data2, DATAW(witem)->work->data + 64, 12);
/*ob_hex = bin2hex(DATAW(witem)->work->data, 76);
applog(LOG_ERR, "%s: work %d data: %s",
ants1_drv.dname,
DATAW(witem)->work->id, ob_hex);
free(ob_hex);*/
cursentcount++;
k_add_head(info->work_list, witem);
}
if (cursentcount <= 0) {
applog(LOG_ERR, "%s: send work count %d", ants1_drv.dname, cursentcount);
return 0;
}
datalen += 48*cursentcount;
bm->length = datalen-4;
bm->length = htole16(bm->length);
//len = datalen-3;
//len = htole16(len);
//memcpy(sendbuf+1, &len, 2);
bm->new_block = new_block;
sendbuf[4] = bitswap(sendbuf[4]);
applog(LOG_DEBUG, "%s: TxTask Token: %d %d %02x%02x%02x%02x%02x%02x",
ants1_drv.dname,
datalen, bm->length,
sendbuf[0], sendbuf[1], sendbuf[2],
sendbuf[3], sendbuf[4], sendbuf[5]);
*sentcount = cursentcount;
crc = CRC16(sendbuf, datalen-2);
crc = htole16(crc);
memcpy(sendbuf+datalen-2, &crc, 2);
applog(LOG_DEBUG, "%s: TxTask Token: new_block(%d) work_num(%d) crc(%04x)",
ants1_drv.dname,
new_block, cursentcount, crc);
applog(LOG_DEBUG, "%s: TxTask Token: %d %d %02x%02x%02x%02x%02x%02x",
ants1_drv.dname,
datalen, bm->length,
sendbuf[0], sendbuf[1], sendbuf[2],
sendbuf[3], sendbuf[4], sendbuf[5]);
return datalen;
}
static int bitmain_set_rxstatus(struct bitmain_rxstatus_token *bm,
uint8_t chip_status_eft, uint8_t detect_get, uint8_t chip_address, uint8_t reg_address)
{
uint16_t crc = 0;
int datalen = 0;
uint8_t *sendbuf = (uint8_t *)bm;
if (unlikely(!bm)) {
applog(LOG_WARNING, "%s: %s() bm is null", ants1_drv.dname, __func__);
return -1;
}
datalen = sizeof(struct bitmain_rxstatus_token);
memset(bm, 0, datalen);
bm->token_type = BITMAIN_TOKEN_TYPE_RXSTATUS;
bm->length = datalen-2;
bm->chip_status_eft = chip_status_eft;
bm->detect_get = detect_get;
sendbuf[2] = bitswap(sendbuf[2]);
bm->chip_address = chip_address;
bm->reg_address = reg_address;
crc = CRC16((uint8_t *)bm, datalen-2);
bm->crc = htole16(crc);
applog(LOG_DEBUG, "%s: RxStatus Token: chip_status_eft(%d) detect_get(%d)"
" chip_address(%02x) reg_address(%02x) crc(%04x)",
ants1_drv.dname,
chip_status_eft, detect_get, chip_address, reg_address, crc);
return datalen;
}
static int bitmain_parse_rxstatus(const uint8_t * data, int datalen, struct bitmain_rxstatus_data *bm)
{
uint16_t crc = 0;
int i = 0;
if (unlikely(!bm)) {
applog(LOG_ERR, "%s: %s() bm is null", ants1_drv.dname, __func__);
return -1;
}
if (unlikely(!data || datalen <= 0)) {
applog(LOG_ERR, "%s: %s() parameter invalid data is null"
" or datalen(%d) error",
ants1_drv.dname, __func__, datalen);
return -1;
}
memcpy(bm, data, sizeof(struct bitmain_rxstatus_data));
if (bm->data_type != BITMAIN_DATA_TYPE_RXSTATUS) {
applog(LOG_ERR, "%s: %s() datatype(%02x) error",
ants1_drv.dname, __func__,
bm->data_type);
return -1;
}
if (bm->length+2 != datalen) {
applog(LOG_ERR, "%s: %s() length(%d) error",
ants1_drv.dname, __func__,
bm->length);
return -1;
}
crc = CRC16(data, datalen-2);
memcpy(&(bm->crc), data+datalen-2, 2);
bm->crc = htole16(bm->crc);
if (crc != bm->crc) {
applog(LOG_ERR, "%s: %s() check crc(%d)"
" != bm crc(%d) datalen(%d)",
ants1_drv.dname, __func__,
crc, bm->crc, datalen);
return -1;
}
bm->fifo_space = htole32(bm->fifo_space);
bm->nonce_error = htole32(bm->nonce_error);
if (bm->chain_num*5 + bm->temp_num + bm->fan_num + 22 != datalen) {
applog(LOG_ERR, "%s: %s() chain_num(%d) temp_num(%d)"
" fan_num(%d) not match datalen(%d)",
ants1_drv.dname, __func__,
bm->chain_num, bm->temp_num, bm->fan_num, datalen);
return -1;
}
if (bm->chain_num > BITMAIN_MAX_CHAIN_NUM) {
applog(LOG_ERR, "%s: %s() chain_num=%d error",
ants1_drv.dname, __func__,
bm->chain_num);
return -1;
}
if (bm->chain_num > 0) {
memcpy(bm->chain_asic_status, data+20, bm->chain_num*4);
memcpy(bm->chain_asic_num, data+20+bm->chain_num*4, bm->chain_num);
}
for (i = 0; i < bm->chain_num; i++) {
//bm->chain_asic_status[i] = swab32(bm->chain_asic_status[i]);
bm->chain_asic_status[i] = htole32(bm->chain_asic_status[i]);
}
if (bm->temp_num > 0) {
memcpy(bm->temp, data+20+bm->chain_num*5, bm->temp_num);
}
if (bm->fan_num > 0) {
memcpy(bm->fan, data+20+bm->chain_num*5+bm->temp_num, bm->fan_num);
}
applog(LOG_DEBUG, "%s: RxStatus Data chipvalueeft(%d) version(%d) fifospace(%d)"
" regvalue(%d) chainnum(%d) tempnum(%d) fannum(%d) crc(%04x)",
ants1_drv.dname,
bm->chip_value_eft, bm->version, bm->fifo_space, bm->reg_value,
bm->chain_num, bm->temp_num, bm->fan_num, bm->crc);
applog(LOG_DEBUG, "%s: RxStatus Data chain info:", ants1_drv.dname);
for (i = 0; i < bm->chain_num; i++) {
applog(LOG_DEBUG, "%s: RxStatus Data chain(%d) asic num=%d asic_status=%08x",
ants1_drv.dname,
i+1, bm->chain_asic_num[i], bm->chain_asic_status[i]);
}
applog(LOG_DEBUG, "%s: RxStatus Data temp info:", ants1_drv.dname);
for (i = 0; i < bm->temp_num; i++) {
applog(LOG_DEBUG, "%s: RxStatus Data temp(%d) temp=%d",
ants1_drv.dname,
i+1, bm->temp[i]);
}
applog(LOG_DEBUG, "%s: RxStatus Data fan info:", ants1_drv.dname);
for (i = 0; i < bm->fan_num; i++) {
applog(LOG_DEBUG, "%s: RxStatus Data fan(%d) fan=%d",
ants1_drv.dname,
i+1, bm->fan[i]);
}
return 0;
}
static int bitmain_parse_rxnonce(const uint8_t * data, int datalen, struct bitmain_rxnonce_data *bm, int * nonce_num)
{
int i = 0;
uint16_t crc = 0;
int curnoncenum = 0;
if (unlikely(!bm)) {
applog(LOG_ERR, "%s: %s() bm is null", ants1_drv.dname, __func__);
return -1;
}
if (unlikely(!data || datalen <= 0)) {
applog(LOG_ERR, "%s: %s() parameter invalid data is null"
" or datalen(%d) error",
ants1_drv.dname, __func__, datalen);
return -1;
}
memcpy(bm, data, sizeof(struct bitmain_rxnonce_data));
if (bm->data_type != BITMAIN_DATA_TYPE_RXNONCE) {
applog(LOG_ERR, "%s: %s() datatype(%02x) error",
ants1_drv.dname, __func__,
bm->data_type);
return -1;
}
if (bm->length+2 != datalen) {
applog(LOG_ERR, "%s: %s() length(%d) error",
ants1_drv.dname, __func__,
bm->length);
return -1;
}
crc = CRC16(data, datalen-2);
memcpy(&(bm->crc), data+datalen-2, 2);
bm->crc = htole16(bm->crc);
if (crc != bm->crc) {
applog(LOG_ERR, "%s: %s() check crc(%d)"
" != bm crc(%d) datalen(%d)",
ants1_drv.dname, __func__,
crc, bm->crc, datalen);
return -1;
}
curnoncenum = (datalen-4)/8;
applog(LOG_DEBUG, "%s: RxNonce Data: nonce_num(%d-%d) fifo_space(%d)",
ants1_drv.dname,
curnoncenum, bm->nonce_num, bm->fifo_space);
for (i = 0; i < curnoncenum; i++) {
bm->nonces[i].work_id = htole32(bm->nonces[i].work_id);
bm->nonces[i].nonce = htole32(bm->nonces[i].nonce);
applog(LOG_DEBUG, "%s: RxNonce Data %d: work_id(%"PRIu32") nonce(%08x)(%d)",
ants1_drv.dname,
i, bm->nonces[i].work_id,
bm->nonces[i].nonce, bm->nonces[i].nonce);
}
*nonce_num = curnoncenum;
return 0;
}
static int bitmain_read(struct cgpu_info *bitmain, unsigned char *buf,
size_t bufsize, int timeout, int ep)
{
int readlen = 0, err = 0;
if (bitmain == NULL || buf == NULL || bufsize <= 0) {
applog(LOG_WARNING, "%s%d: %s() parameter error bufsize(%d)",
bitmain->drv->name, bitmain->device_id,
__func__, (int)bufsize);
return -1;
}
err = usb_read_once_timeout(bitmain, (char *)buf, bufsize, &readlen, timeout, ep);
applog(LOG_DEBUG, "%s%i: Get %s() got readlen %d err %d",
bitmain->drv->name, bitmain->device_id,
__func__, readlen, err);
return readlen;
}
static int bitmain_write(struct cgpu_info *bitmain, char *buf, ssize_t len, int ep)
{
int err, amount;
err = usb_write(bitmain, buf, len, &amount, ep);
applog(LOG_DEBUG, "%s%d: usb_write got err %d",
bitmain->drv->name, bitmain->device_id, err);
if (unlikely(err != 0)) {
applog(LOG_ERR, "%s%d: usb_write error on %s() err=%d",
bitmain->drv->name, bitmain->device_id, __func__, err);
return BTM_SEND_ERROR;
}
if (amount != len) {
applog(LOG_ERR, "%s%d: usb_write length mismatch on %s() "
"amount=%d len=%d",
bitmain->drv->name, bitmain->device_id, __func__,
amount, (int)len);
return BTM_SEND_ERROR;
}
return BTM_SEND_OK;
}
static int bitmain_send_data(const uint8_t *data, int datalen, __maybe_unused struct cgpu_info *bitmain)
{
int ret, ep = C_BITMAIN_SEND;
//int delay;
//struct bitmain_info *info = NULL;
//cgtimer_t ts_start;
if (datalen <= 0) {
return 0;
}
if (data[0] == BITMAIN_TOKEN_TYPE_TXCONFIG) {
ep = C_BITMAIN_TOKEN_TXCONFIG;
} else if (data[0] == BITMAIN_TOKEN_TYPE_TXTASK) {
ep = C_BITMAIN_TOKEN_TXTASK;
} else if (data[0] == BITMAIN_TOKEN_TYPE_RXSTATUS) {
ep = C_BITMAIN_TOKEN_RXSTATUS;
}
//info = bitmain->device_data;
//delay = datalen * 10 * 1000000;
//delay = delay / info->baud;
//delay += 4000;
if (opt_debug) {
applog(LOG_DEBUG, "%s: Sent(%d):", ants1_drv.dname, datalen);
hexdump(data, datalen);
}
//cgsleep_prepare_r(&ts_start);
applog(LOG_DEBUG, "%s: %s() start", ants1_drv.dname, __func__);
ret = bitmain_write(bitmain, (char *)data, datalen, ep);
applog(LOG_DEBUG, "%s: %s() stop ret=%d datalen=%d",
ants1_drv.dname, __func__, ret, datalen);
//cgsleep_us_r(&ts_start, delay);
//applog(LOG_DEBUG, "BitMain: Sent: Buffer delay: %dus", delay);
return ret;
}
static void bitmain_inc_nvw(struct bitmain_info *info, struct thr_info *thr)
{
applog(LOG_INFO, "%s%d: No matching work - HW error",
thr->cgpu->drv->name, thr->cgpu->device_id);
inc_hw_errors(thr);
info->no_matching_work++;
}
static inline void record_temp_fan(struct bitmain_info *info, struct bitmain_rxstatus_data *bm, double *temp_avg)
{
int i = 0;
*temp_avg = 0.0;
info->fan_num = bm->fan_num;
for (i = 0; i < bm->fan_num; i++) {
info->fan[i] = bm->fan[i] * BITMAIN_FAN_FACTOR;
}
info->temp_num = bm->temp_num;
for (i = 0; i < bm->temp_num; i++) {
info->temp[i] = bm->temp[i];
/*
if (bm->temp[i] & 0x80) {
bm->temp[i] &= 0x7f;
info->temp[i] = 0 - ((~bm->temp[i] & 0x7f) + 1);
}*/
*temp_avg += info->temp[i];
if (info->temp[i] > info->temp_max) {
info->temp_max = info->temp[i];
}
}
if (bm->temp_num > 0) {
*temp_avg = *temp_avg / bm->temp_num;
info->temp_avg = *temp_avg;
}
}
static void bitmain_update_temps(struct cgpu_info *bitmain, struct bitmain_info *info,
struct bitmain_rxstatus_data *bm)
{
char tmp[64] = {0};
char msg[10240] = {0};
int i = 0;
record_temp_fan(info, bm, &(bitmain->temp));
sprintf(msg, "%s%d: ", bitmain->drv->name, bitmain->device_id);
for (i = 0; i < bm->fan_num; i++) {
if (i != 0) {
strcat(msg, ", ");
}
sprintf(tmp, "Fan%d: %d/m", i+1, info->fan[i]);
strcat(msg, tmp);
}
strcat(msg, " ");
for (i = 0; i < bm->temp_num; i++) {
if (i != 0) {
strcat(msg, ", ");
}
sprintf(tmp, "Temp%d: %dC", i+1, info->temp[i]);
strcat(msg, tmp);
}
sprintf(tmp, ", TempMAX: %dC", info->temp_max);
strcat(msg, tmp);
applog(LOG_INFO, msg);
info->temp_history_index++;
info->temp_sum += bitmain->temp;
applog(LOG_DEBUG, "%s%d: temp_index: %d, temp_count: %d, temp_max: %d",
bitmain->drv->name, bitmain->device_id,
info->temp_history_index, info->temp_history_count, info->temp_max);
if (info->temp_history_index == info->temp_history_count) {
info->temp_history_index = 0;
info->temp_sum = 0;
}
if (unlikely(info->temp_max >= opt_bitmain_overheat)) {
applog(LOG_WARNING, "%s%d: overheat! Idling",
bitmain->drv->name, bitmain->device_id);
info->overheat = true;
} else if (info->overheat && info->temp_max <= opt_bitmain_temp) {
applog(LOG_WARNING, "%s%d: cooled, restarting",
bitmain->drv->name, bitmain->device_id);
info->overheat = false;
}
}
static void bitmain_parse_results(struct cgpu_info *bitmain, struct bitmain_info *info,
struct thr_info *thr, uint8_t *buf, int *offset)
{
int i, j, n, m, errordiff, spare = BITMAIN_READ_SIZE;
uint32_t checkbit = 0x00000000;
bool found = false;
struct work *work = NULL;
//char *ob_hex = NULL;
uint64_t searches;
K_ITEM *witem;
for (i = 0; i <= spare; i++) {
if (buf[i] == 0xa1) {
struct bitmain_rxstatus_data rxstatusdata;
applog(LOG_DEBUG, "%s%d: %s() RxStatus Data",
bitmain->drv->name, bitmain->device_id,
__func__);
if (*offset < 2) {
return;
}
if (buf[i+1] > 124) {
applog(LOG_ERR, "%s%d: %s() RxStatus Data datalen=%d error",
bitmain->drv->name, bitmain->device_id,
__func__, buf[i+1]+2);
continue;
}
if (*offset < buf[i+1] + 2) {
return;
}
if (bitmain_parse_rxstatus(buf+i, buf[i+1]+2, &rxstatusdata) != 0) {
applog(LOG_ERR, "%s%d: %s() RxStatus Data error len=%d",
bitmain->drv->name, bitmain->device_id,
__func__, buf[i+1]+2);
} else {
mutex_lock(&info->qlock);
info->chain_num = rxstatusdata.chain_num;
info->fifo_space = rxstatusdata.fifo_space;
info->nonce_error = rxstatusdata.nonce_error;
errordiff = info->nonce_error-info->last_nonce_error;
applog(LOG_DEBUG, "%s%d: %s() RxStatus Data"
" version=%d chainnum=%d fifospace=%d"
" nonceerror=%d-%d freq=%d chain info:",
bitmain->drv->name, bitmain->device_id, __func__,
rxstatusdata.version, info->chain_num,
info->fifo_space, info->last_nonce_error,
info->nonce_error, info->frequency);
for (n = 0; n < rxstatusdata.chain_num; n++) {
info->chain_asic_num[n] = rxstatusdata.chain_asic_num[n];
info->chain_asic_status[n] = rxstatusdata.chain_asic_status[n];
memset(info->chain_asic_status_t[n], 0, 40);
j = 0;
for (m = 0; m < 32; m++) {
if (m%8 == 0 && m != 0) {
info->chain_asic_status_t[n][j] = ' ';
j++;
}
checkbit = num2bit(m);
if (rxstatusdata.chain_asic_status[n] & checkbit)
info->chain_asic_status_t[n][j] = 'o';
else
info->chain_asic_status_t[n][j] = 'x';
j++;
}
applog(LOG_DEBUG, "%s%d: %s() RxStatus Data chain(%d)"
" asic_num=%d asic_status=%08x-%s",
bitmain->drv->name, bitmain->device_id,
__func__,
n, info->chain_asic_num[n],
info->chain_asic_status[n],
info->chain_asic_status_t[n]);
}
mutex_unlock(&info->qlock);
if (errordiff > 0) {
for (j = 0; j < errordiff; j++) {
bitmain_inc_nvw(info, thr);
}
mutex_lock(&info->qlock);
info->last_nonce_error += errordiff;
mutex_unlock(&info->qlock);
}
bitmain_update_temps(bitmain, info, &rxstatusdata);
}
found = true;
spare = buf[i+1] + 2 + i;
if (spare > *offset) {
applog(LOG_ERR, "%s%d: %s() spare(%d) > offset(%d)",
bitmain->drv->name, bitmain->device_id,
__func__, spare, *offset);
spare = *offset;
}
break;
} else if (buf[i] == 0xa2) {
struct bitmain_rxnonce_data rxnoncedata;
int nonce_num = 0;
applog(LOG_DEBUG, "%s%d: %s() RxNonce Data",
bitmain->drv->name, bitmain->device_id,
__func__);
if (*offset < 2) {
return;
}
if (buf[i+1] > 70) {
applog(LOG_ERR, "%s%d: %s() RxNonce Data datalen=%d error",
bitmain->drv->name, bitmain->device_id,
__func__, buf[i+1]+2);
continue;
}
if (*offset < buf[i+1] + 2) {
return;
}
if (bitmain_parse_rxnonce(buf+i, buf[i+1]+2, &rxnoncedata, &nonce_num) != 0) {
applog(LOG_ERR, "%s%d: %s() RxNonce Data error len=%d",
bitmain->drv->name, bitmain->device_id,
__func__, buf[i+1]+2);
} else {
for (j = 0; j < nonce_num; j++) {
searches = 0;
mutex_lock(&info->qlock);
witem = info->work_list->head;
while (witem) {
searches++;
if (DATAW(witem)->work->id == rxnoncedata.nonces[j].work_id)
break;
witem = witem->next;
}
mutex_unlock(&info->qlock);
if (witem) {
if (info->work_search == 0) {
info->min_search = searches;
info->max_search = searches;
} else {
if (info->min_search > searches)
info->min_search = searches;
if (info->max_search < searches)
info->max_search = searches;
}
info->work_search++;
info->tot_search += searches;
work = DATAW(witem)->work;
applog(LOG_DEBUG, "%s%d: %s() RxNonce Data find "
"work(%"PRIu32"-%"PRIu32")(%08x)",
bitmain->drv->name, bitmain->device_id,
__func__, work->id,
rxnoncedata.nonces[j].work_id,
rxnoncedata.nonces[j].nonce);
/*ob_hex = bin2hex(work->midstate, 32);
applog(LOG_ERR, "%s%d: work %d midstate: %s",
bitmain->drv->name, bitmain->device_id,
work->id, ob_hex);
free(ob_hex);
ob_hex = bin2hex(work->data+64, 12);
applog(LOG_ERR, "%s%d: work %d data2: %s",i
bitmain->drv->name, bitmain->device_id,
work->id, ob_hex);
free(ob_hex);*/
//info->matching_work[work->subid]++;
applog(LOG_DEBUG, "%s%d: %s() nonce = %08x",
bitmain->drv->name, bitmain->device_id,
__func__, rxnoncedata.nonces[j].nonce);
if (submit_nonce(thr, work, rxnoncedata.nonces[j].nonce)) {
applog(LOG_DEBUG, "%s%d: %s() RxNonce Data ok",
bitmain->drv->name,
bitmain->device_id,
__func__);
mutex_lock(&info->qlock);
info->nonces++;
info->auto_nonces++;
mutex_unlock(&info->qlock);
} else {
//bitmain_inc_nvw(info, thr);
applog(LOG_ERR, "%s%d: %s() RxNonce Data "
"error work(%"PRIu32")",
bitmain->drv->name,
bitmain->device_id,
__func__,
rxnoncedata.nonces[j].work_id);
}
} else {
if (info->failed_search == 0) {
info->min_failed = searches;
info->max_failed = searches;
} else {
if (info->min_failed > searches)
info->min_failed = searches;
if (info->max_failed < searches)
info->max_failed = searches;
}
info->failed_search++;
info->tot_failed += searches;
//bitmain_inc_nvw(info, thr);
applog(LOG_ERR, "%s%d: %s() Work not found for id (%"PRIu32")",
bitmain->drv->name, bitmain->device_id,
__func__, rxnoncedata.nonces[j].work_id);
}
}
mutex_lock(&info->qlock);
info->fifo_space = rxnoncedata.fifo_space;
applog(LOG_DEBUG, "%s%d: %s() RxNonce Data fifo space=%d",
bitmain->drv->name, bitmain->device_id,
__func__, info->fifo_space);
mutex_unlock(&info->qlock);
}
found = true;
spare = buf[i+1] + 2 + i;
if (spare > *offset) {
applog(LOG_ERR, "%s%d: %s() RxNonce Data space(%d) > offset(%d)",
bitmain->drv->name, bitmain->device_id, __func__,
spare, *offset);
spare = *offset;
}
break;
} else {
applog(LOG_ERR, "%s%d: %s() data type error=%02x",
bitmain->drv->name, bitmain->device_id,
__func__, buf[i]);
}
}
if (!found) {
spare = *offset - BITMAIN_READ_SIZE;
/* We are buffering and haven't accumulated one more corrupt
* work result. */
if (spare < (int)BITMAIN_READ_SIZE)
return;
bitmain_inc_nvw(info, thr);
}
*offset -= spare;
memmove(buf, buf + spare, *offset);
}
static void bitmain_running_reset(struct bitmain_info *info)
{
info->results = 0;
info->reset = false;
}
static void *bitmain_get_results(void *userdata)
{
struct cgpu_info *bitmain = (struct cgpu_info *)userdata;
struct bitmain_info *info = bitmain->device_data;
int offset = 0, ret = 0;
const int rsize = BITMAIN_FTDI_READSIZE;
char readbuf[BITMAIN_READBUF_SIZE];
struct thr_info *thr = info->thr;
char threadname[24];
int errorcount = 0;
snprintf(threadname, 24, "btm_recv/%d", bitmain->device_id);
RenameThread(threadname);
while (likely(!bitmain->shutdown)) {
unsigned char buf[rsize];
applog(LOG_DEBUG, "%s%d: %s() offset=%d",
bitmain->drv->name, bitmain->device_id, __func__, offset);
if (offset >= (int)BITMAIN_READ_SIZE) {
applog(LOG_DEBUG, "%s%d: %s() start",
bitmain->drv->name, bitmain->device_id, __func__);
bitmain_parse_results(bitmain, info, thr, (uint8_t *)readbuf, &offset);
applog(LOG_DEBUG, "%s%d: %s() stop",
bitmain->drv->name, bitmain->device_id, __func__);
}
if (unlikely(offset + rsize >= BITMAIN_READBUF_SIZE)) {
/* This should never happen */
applog(LOG_DEBUG, "%s%d: readbuf overflow, resetting buffer",
bitmain->drv->name, bitmain->device_id);
offset = 0;
}
if (unlikely(info->reset)) {
bitmain_running_reset(info);
/* Discard anything in the buffer */
offset = 0;
}
/* As the usb read returns after just 1ms, sleep long enough
* to leave the interface idle for writes to occur, but do not
* sleep if we have been receiving data as more may be coming. */
//if (offset == 0)
// cgsleep_ms_r(&ts_start, BITMAIN_READ_TIMEOUT);
//cgsleep_prepare_r(&ts_start);
applog(LOG_DEBUG, "%s%d: %s() read",
bitmain->drv->name, bitmain->device_id, __func__);
ret = bitmain_read(bitmain, buf, rsize, BITMAIN_READ_TIMEOUT, C_BITMAIN_READ);
applog(LOG_DEBUG, "%s%d: %s() read=%d",
bitmain->drv->name, bitmain->device_id, __func__, ret);
if (ret < 1) {
errorcount++;
if (errorcount > 100) {
applog(LOG_ERR, "%s%d: read errorcount>100 ret=%d",
bitmain->drv->name, bitmain->device_id, ret);
cgsleep_ms(20);
errorcount = 0;
}
continue;
}
if (opt_debug) {
applog(LOG_DEBUG, "%s%d: get:",
bitmain->drv->name, bitmain->device_id);
hexdump((uint8_t *)buf, ret);
}
memcpy(readbuf+offset, buf, ret);
offset += ret;
}
return NULL;
}
/*
static void bitmain_set_timeout(struct bitmain_info *info)
{
info->timeout = BITMAIN_TIMEOUT_FACTOR / info->frequency;
}
*/
static void bitmain_init(struct cgpu_info *bitmain)
{
applog(LOG_INFO, "%s%d: opened on %s",
bitmain->drv->name, bitmain->device_id,
bitmain->device_path);
}
static bool bitmain_prepare(struct thr_info *thr)
{
struct cgpu_info *bitmain = thr->cgpu;
struct bitmain_info *info = bitmain->device_data;
info->thr = thr;
mutex_init(&info->lock);
mutex_init(&info->qlock);
if (unlikely(pthread_cond_init(&info->qcond, NULL)))
quit(1, "Failed to pthread_cond_init bitmain qcond");
cgsem_init(&info->write_sem);
if (pthread_create(&info->read_thr, NULL, bitmain_get_results, (void *)bitmain))
quit(1, "Failed to create bitmain read_thr");
bitmain_init(bitmain);
return true;
}
static int bitmain_initialize(struct cgpu_info *bitmain)
{
uint8_t data[BITMAIN_READBUF_SIZE];
struct bitmain_info *info = NULL;
int ret = 0;
uint8_t sendbuf[BITMAIN_SENDBUF_SIZE];
int readlen = 0;
int sendlen = 0;
int trycount = 3;
struct timespec p;
struct bitmain_rxstatus_data rxstatusdata;
int i = 0, j = 0, m = 0, statusok = 0;
uint32_t checkbit = 0x00000000;
int eft = 0;
/* Send reset, then check for result */
if (!bitmain) {
applog(LOG_WARNING, "%s%d: %s() cgpu_info is null",
bitmain->drv->name, bitmain->device_id, __func__);
return -1;
}
info = bitmain->device_data;
/* clear read buf */
ret = bitmain_read(bitmain, data, BITMAIN_READBUF_SIZE,
BITMAIN_RESET_TIMEOUT, C_BITMAIN_READ);
if (ret > 0) {
if (opt_debug) {
applog(LOG_DEBUG, "%s%d: clear read(%d):",
bitmain->drv->name, bitmain->device_id, ret);
hexdump(data, ret);
}
}
sendlen = bitmain_set_rxstatus((struct bitmain_rxstatus_token *)sendbuf, 0, 1, 0, 0);
if (sendlen <= 0) {
applog(LOG_ERR, "%s%d: %s() set_rx error(%d)",
bitmain->drv->name, bitmain->device_id, __func__, sendlen);
return -1;
}
ret = bitmain_send_data(sendbuf, sendlen, bitmain);
if (unlikely(ret == BTM_SEND_ERROR)) {
applog(LOG_ERR, "%s%d: %s() send_data error",
bitmain->drv->name, bitmain->device_id, __func__);
return -1;
}
while (trycount >= 0) {
ret = bitmain_read(bitmain, data+readlen, BITMAIN_READBUF_SIZE,
BITMAIN_RESET_TIMEOUT, C_BITMAIN_DATA_RXSTATUS);
if (ret > 0) {
readlen += ret;
if (readlen > BITMAIN_READ_SIZE) {
for (i = 0; i < readlen; i++) {
if (data[i] == 0xa1) {
if (opt_debug) {
applog(LOG_DEBUG, "%s%d: initset get:",
bitmain->drv->name,
bitmain->device_id);
hexdump(data, readlen);
}
if (data[i+1] > 124) {
applog(LOG_ERR, "%s%d: %s() rxstatus datalen=%d error",
bitmain->drv->name, bitmain->device_id,
__func__, data[i+1]+2);
continue;
}
if (readlen-i < data[i+1]+2) {
applog(LOG_ERR, "%s%d: %s() rxstatus datalen=%d low",
bitmain->drv->name, bitmain->device_id,
__func__, data[i+1]+2);
continue;
}
if (bitmain_parse_rxstatus(data+i, data[i+1]+2, &rxstatusdata) != 0) {
applog(LOG_ERR, "%s%d: %s() parse_rxstatus error",
bitmain->drv->name, bitmain->device_id,
__func__);
continue;
}
info->chain_num = rxstatusdata.chain_num;
info->fifo_space = rxstatusdata.fifo_space;
info->nonce_error = 0;
info->last_nonce_error = 0;
applog(LOG_ERR, "%s%d: %s() parse_rxstatus "
"version(%d) chain_num(%d) fifo_space(%d) "
"nonce_error(%d) freq=%d",
bitmain->drv->name, bitmain->device_id,
__func__,
rxstatusdata.version,
info->chain_num,
info->fifo_space,
rxstatusdata.nonce_error,
info->frequency);
for (i = 0; i < rxstatusdata.chain_num; i++) {
info->chain_asic_num[i] = rxstatusdata.chain_asic_num[i];
info->chain_asic_status[i] = rxstatusdata.chain_asic_status[i];
memset(info->chain_asic_status_t[i], 0, 40);
j = 0;
for (m = 0; m < 32; m++) {
if (m%8 == 0 && m != 0) {
info->chain_asic_status_t[i][j] = ' ';
j++;
}
checkbit = num2bit(m);
if (rxstatusdata.chain_asic_status[i] & checkbit)
info->chain_asic_status_t[i][j] = 'o';
else
info->chain_asic_status_t[i][j] = 'x';
j++;
}
applog(LOG_ERR, "%s%d: %s() parse_rxstatus chain(%d) "
"asic_num=%d asic_status=%08x-%s",
bitmain->drv->name, bitmain->device_id,
__func__, i, info->chain_asic_num[i],
info->chain_asic_status[i],
info->chain_asic_status_t[i]);
}
bitmain_update_temps(bitmain, info, &rxstatusdata);
statusok = 1;
break;
}
}
if (statusok)
break;
}
}
trycount--;
p.tv_sec = 0;
p.tv_nsec = BITMAIN_RESET_PITCH;
nanosleep(&p, NULL);
}
p.tv_sec = 0;
p.tv_nsec = BITMAIN_RESET_PITCH;
nanosleep(&p, NULL);
cgtime(&info->last_status_time);
if (statusok) {
applog(LOG_ERR, "%s%d: %s() set_txconfig",
bitmain->drv->name, bitmain->device_id, __func__);
if (opt_bitmain_hwerror)
eft = 1;
else
eft = 0;
sendlen = bitmain_set_txconfig((struct bitmain_txconfig_token *)sendbuf,
1, 1, 1, 1, 1, 0, 1, eft,
info->chain_num, info->asic_num,
BITMAIN_DEFAULT_FAN_MAX_PWM, info->timeout,
info->frequency, BITMAIN_DEFAULT_VOLTAGE,
0, 0, 0x04, info->reg_data);
if (sendlen <= 0) {
applog(LOG_ERR, "%s%d: %s() set_txconfig error(%d)",
bitmain->drv->name, bitmain->device_id, __func__, sendlen);
return -1;
}
ret = bitmain_send_data(sendbuf, sendlen, bitmain);
if (unlikely(ret == BTM_SEND_ERROR)) {
applog(LOG_ERR, "%s%d: %s() send_data error",
bitmain->drv->name, bitmain->device_id, __func__);
return -1;
}
applog(LOG_WARNING, "%s%d: %s() succeeded",
bitmain->drv->name, bitmain->device_id, __func__);
} else {
applog(LOG_WARNING, "%s%d: %s() failed",
bitmain->drv->name, bitmain->device_id, __func__);
return -1;
}
return 0;
}
static struct cgpu_info *bitmain_detect_one(libusb_device *dev, struct usb_find_devices *found)
{
int baud, chain_num, asic_num, timeout, frequency = 0;
uint8_t reg_data[4] = {0};
int this_option_offset = ++option_offset;
struct bitmain_info *info;
struct cgpu_info *bitmain;
bool configured;
int ret;
if (opt_bitmain_options == NULL)
return NULL;
bitmain = usb_alloc_cgpu(&ants1_drv, BITMAIN_MINER_THREADS);
baud = BITMAIN_IO_SPEED;
chain_num = BITMAIN_DEFAULT_CHAIN_NUM;
asic_num = BITMAIN_DEFAULT_ASIC_NUM;
timeout = BITMAIN_DEFAULT_TIMEOUT;
frequency = BITMAIN_DEFAULT_FREQUENCY;
if (!usb_init(bitmain, dev, found))
goto shin;
configured = get_options(this_option_offset, &baud, &chain_num,
&asic_num, &timeout, &frequency, reg_data);
/* Even though this is an FTDI type chip, we want to do the parsing
* all ourselves so set it to std usb type */
bitmain->usbdev->usb_type = USB_TYPE_STD;
bitmain->device_data = calloc(sizeof(struct bitmain_info), 1);
if (unlikely(!(bitmain->device_data)))
quit(1, "Failed to calloc bitmain_info data");
info = bitmain->device_data;
if (configured) {
info->baud = baud;
info->chain_num = chain_num;
info->asic_num = asic_num;
info->timeout = timeout;
info->frequency = frequency;
memcpy(info->reg_data, reg_data, 4);
} else {
info->baud = BITMAIN_IO_SPEED;
info->chain_num = BITMAIN_DEFAULT_CHAIN_NUM;
info->asic_num = BITMAIN_DEFAULT_ASIC_NUM;
info->timeout = BITMAIN_DEFAULT_TIMEOUT;
info->frequency = BITMAIN_DEFAULT_FREQUENCY;
memset(info->reg_data, 0, 4);
}
info->voltage = BITMAIN_DEFAULT_VOLTAGE;
info->fan_pwm = BITMAIN_DEFAULT_FAN_MIN_PWM;
info->temp_max = 0;
/* This is for check the temp/fan every 3~4s */
info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
if (info->temp_history_count <= 0)
info->temp_history_count = 1;
info->temp_history_index = 0;
info->temp_sum = 0;
if (!add_cgpu(bitmain))
goto unshin;
applog(LOG_ERR, "%s: detected %s%d",
ants1_drv.dname, bitmain->drv->name, bitmain->device_id);
ret = bitmain_initialize(bitmain);
if (ret && !configured)
goto unshin;
update_usb_stats(bitmain);
info->errorcount = 0;
info->work_list = k_new_list("Work", sizeof(WITEM), ALLOC_WITEMS, LIMIT_WITEMS, true);
info->work_ready = k_new_store(info->work_list);
applog(LOG_DEBUG, "%s%d: detected %s "
"chain_num=%d asic_num=%d timeout=%d frequency=%d",
bitmain->drv->name, bitmain->device_id, bitmain->device_path,
info->chain_num, info->asic_num, info->timeout,
info->frequency);
return bitmain;
unshin:
usb_uninit(bitmain);
shin:
free(bitmain->device_data);
bitmain->device_data = NULL;
bitmain = usb_free_cgpu(bitmain);
return NULL;
}
static void ants1_detect(bool __maybe_unused hotplug)
{
usb_detect(&ants1_drv, bitmain_detect_one);
}
static void do_bitmain_close(struct thr_info *thr)
{
struct cgpu_info *bitmain = thr->cgpu;
struct bitmain_info *info = bitmain->device_data;
pthread_join(info->read_thr, NULL);
bitmain_running_reset(info);
info->no_matching_work = 0;
cgsem_destroy(&info->write_sem);
}
static void get_bitmain_statline_before(char *buf, size_t bufsiz, struct cgpu_info *bitmain)
{
struct bitmain_info *info = bitmain->device_data;
int lowfan = 10000;
int i = 0;
/* Find the lowest fan speed of the ASIC cooling fans. */
for (i = 0; i < info->fan_num; i++) {
if (info->fan[i] >= 0 && info->fan[i] < lowfan)
lowfan = info->fan[i];
}
tailsprintf(buf, bufsiz, "%2d/%3dC %04dR", info->temp_avg, info->temp_max, lowfan);
}
/* We use a replacement algorithm to only remove references to work done from
* the buffer when we need the extra space for new work. */
static bool bitmain_fill(struct cgpu_info *bitmain)
{
struct bitmain_info *info = bitmain->device_data;
int subid;
struct work *work, *usework;
bool ret = true;
int sendret = 0, sentcount = 0, neednum = 0, queuednum = 0, sendnum = 0, sendlen = 0;
int roll, roll_limit;
uint8_t sendbuf[BITMAIN_SENDBUF_SIZE];
cgtimer_t ts_start;
int senderror = 0;
struct timeval now;
int timediff = 0;
K_ITEM *witem;
applog(LOG_DEBUG, "%s%d: %s() start",
bitmain->drv->name, bitmain->device_id,
__func__);
mutex_lock(&info->qlock);
if (info->fifo_space <= 0) {
applog(LOG_DEBUG, "%s%d: %s() fifo space empty",
bitmain->drv->name, bitmain->device_id,
__func__);
ret = true;
goto out_unlock;
}
if (info->queued >= BITMAIN_MAX_WORK_QUEUE_NUM)
ret = true;
else
ret = false;
while (info->fifo_space > 0) {
neednum = info->fifo_space<8?info->fifo_space:8;
queuednum = info->queued;
applog(LOG_DEBUG, "%s%d: Work task queued(%d) fifo space(%d) needsend(%d)",
bitmain->drv->name, bitmain->device_id,
queuednum, info->fifo_space, neednum);
while (queuednum < neednum) {
work = get_queued(bitmain);
if (!work)
break;
else {
roll_limit = work->drv_rolllimit;
roll = 0;
while (queuednum < neednum && roll <= roll_limit) {
applog(LOG_DEBUG, "%s%d: get work queued number:%d"
" neednum:%d",
bitmain->drv->name,
bitmain->device_id,
queuednum, neednum);
// Using devflag to say if it was rolled
if (roll == 0) {
usework = work;
usework->devflag = false;
} else {
usework = copy_work_noffset(work, roll);
usework->devflag = true;
}
subid = info->queued++;
usework->subid = subid;
witem = k_unlink_tail(info->work_list);
if (DATAW(witem)->work) {
// Was it rolled?
if (DATAW(witem)->work->devflag)
free_work(DATAW(witem)->work);
else
work_completed(bitmain, DATAW(witem)->work);
}
DATAW(witem)->work = usework;
k_add_tail(info->work_ready, witem);
queuednum++;
roll++;
}
}
}
if (queuednum < BITMAIN_MAX_DEAL_QUEUE_NUM) {
if (queuednum < neednum) {
applog(LOG_DEBUG, "%s%d: Not enough work to send, queue num=%d",
bitmain->drv->name, bitmain->device_id,
queuednum);
break;
}
}
sendnum = queuednum < neednum ? queuednum : neednum;
sendlen = bitmain_set_txtask(info, sendbuf, &(info->last_work_block), &sentcount);
info->queued -= sendnum;
info->send_full_space += sendnum;
if (info->queued < 0)
info->queued = 0;
applog(LOG_DEBUG, "%s%d: Send work %d",
bitmain->drv->name, bitmain->device_id,
sentcount);
if (sendlen > 0) {
info->fifo_space -= sentcount;
if (info->fifo_space < 0)
info->fifo_space = 0;
sendret = bitmain_send_data(sendbuf, sendlen, bitmain);
if (unlikely(sendret == BTM_SEND_ERROR)) {
applog(LOG_ERR, "%s%d: send work comms error",
bitmain->drv->name, bitmain->device_id);
//dev_error(bitmain, REASON_DEV_COMMS_ERROR);
info->reset = true;
info->errorcount++;
senderror = 1;
if (info->errorcount > 1000) {
info->errorcount = 0;
applog(LOG_ERR, "%s%d: Device disappeared,"
" shutting down thread",
bitmain->drv->name, bitmain->device_id);
bitmain->shutdown = true;
}
break;
} else {
applog(LOG_DEBUG, "%s%d: send_data ret=%d",
bitmain->drv->name, bitmain->device_id,
sendret);
info->errorcount = 0;
}
} else {
applog(LOG_DEBUG, "%s%d: Send work set_txtask error: %d",
bitmain->drv->name, bitmain->device_id,
sendlen);
break;
}
}
out_unlock:
cgtime(&now);
timediff = now.tv_sec - info->last_status_time.tv_sec;
if (timediff < 0) timediff = -timediff;
if (now.tv_sec - info->last_status_time.tv_sec > BITMAIN_SEND_STATUS_TIME) {
applog(LOG_DEBUG, "%s%d: Send RX Status Token fifo_space(%d) timediff(%d)",
bitmain->drv->name, bitmain->device_id,
info->fifo_space, timediff);
copy_time(&(info->last_status_time), &now);
sendlen = bitmain_set_rxstatus((struct bitmain_rxstatus_token *) sendbuf, 0, 0, 0, 0);
if (sendlen > 0) {
sendret = bitmain_send_data(sendbuf, sendlen, bitmain);
if (unlikely(sendret == BTM_SEND_ERROR)) {
applog(LOG_ERR, "%s%d: send status comms error",
bitmain->drv->name, bitmain->device_id);
//dev_error(bitmain, REASON_DEV_COMMS_ERROR);
info->reset = true;
info->errorcount++;
senderror = 1;
if (info->errorcount > 1000) {
info->errorcount = 0;
applog(LOG_ERR, "%s%d: Device disappeared,"
" shutting down thread",
bitmain->drv->name, bitmain->device_id);
bitmain->shutdown = true;
}
} else {
info->errorcount = 0;
if (info->fifo_space <= 0) {
senderror = 1;
}
}
}
}
if (info->send_full_space > BITMAIN_SEND_FULL_SPACE) {
info->send_full_space = 0;
ret = true;
}
mutex_unlock(&info->qlock);
if (senderror) {
ret = true;
cgsleep_prepare_r(&ts_start);
cgsleep_ms_r(&ts_start, 50);
}
return ret;
}
static int64_t bitmain_scanhash(struct thr_info *thr)
{
struct cgpu_info *bitmain = thr->cgpu;
struct bitmain_info *info = bitmain->device_data;
const int chain_num = info->chain_num;
struct timeval now, then, tdiff;
int64_t hash_count, us_timeout;
/* Half nonce range */
us_timeout = 0x80000000ll / info->asic_num / info->frequency;
tdiff.tv_sec = us_timeout / 1000000;
tdiff.tv_usec = us_timeout - (tdiff.tv_sec * 1000000);
cgtime(&now);
timeradd(&now, &tdiff, &then);
mutex_lock(&info->qlock);
hash_count = 0xffffffffull * (uint64_t)info->nonces;
info->results += info->nonces + info->idle;
if (info->results > chain_num)
info->results = chain_num;
if (!info->reset)
info->results--;
info->nonces = info->idle = 0;
mutex_unlock(&info->qlock);
/* Check for nothing but consecutive bad results or consistently less
* results than we should be getting and reset the FPGA if necessary */
//if (info->results < -chain_num && !info->reset) {
// applog(LOG_ERR, "%s%d: Result return rate low, resetting!",
// bitmain->drv->name, bitmain->device_id);
// info->reset = true;
//}
if (unlikely(bitmain->usbinfo.nodev)) {
applog(LOG_ERR, "%s%d: Device disappeared, shutting down thread",
bitmain->drv->name, bitmain->device_id);
bitmain->shutdown = true;
}
/* This hashmeter is just a utility counter based on returned shares */
return hash_count;
}
static void bitmain_flush_work(struct cgpu_info *bitmain)
{
struct bitmain_info *info = bitmain->device_data;
//int i = 0;
mutex_lock(&info->qlock);
applog(LOG_ERR, "%s%d: %s() queued=%d",
bitmain->drv->name, bitmain->device_id,
__func__, info->queued);
/* Will overwrite any work queued */
info->queued = 0;
//pthread_cond_signal(&info->qcond);
mutex_unlock(&info->qlock);
}
static struct api_data *bitmain_api_stats(struct cgpu_info *cgpu)
{
struct api_data *root = NULL;
struct bitmain_info *info = cgpu->device_data;
//int i = 0;
double hwp = (cgpu->hw_errors + cgpu->diff1) ?
(double)(cgpu->hw_errors) / (double)(cgpu->hw_errors + cgpu->diff1) : 0;
root = api_add_int(root, "baud", &(info->baud), false);
root = api_add_int(root, "miner_count", &(info->chain_num), false);
root = api_add_int(root, "asic_count", &(info->asic_num), false);
root = api_add_int(root, "timeout", &(info->timeout), false);
root = api_add_int(root, "frequency", &(info->frequency), false);
root = api_add_int(root, "voltage", &(info->voltage), false);
root = api_add_int(root, "fan_num", &(info->fan_num), false);
root = api_add_int(root, "fan1", &(info->fan[0]), false);
root = api_add_int(root, "fan2", &(info->fan[1]), false);
root = api_add_int(root, "fan3", &(info->fan[2]), false);
root = api_add_int(root, "fan4", &(info->fan[3]), false);
root = api_add_int(root, "temp_num", &(info->temp_num), false);
root = api_add_int(root, "temp1", &(info->temp[0]), false);
root = api_add_int(root, "temp2", &(info->temp[1]), false);
root = api_add_int(root, "temp3", &(info->temp[2]), false);
root = api_add_int(root, "temp4", &(info->temp[3]), false);
root = api_add_int(root, "temp_avg", &(info->temp_avg), false);
root = api_add_int(root, "temp_max", &(info->temp_max), false);
root = api_add_percent(root, "Device Hardware%", &hwp, true);
root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
/*
for (i = 0; i < info->chain_num; i++) {
char mcw[24];
sprintf(mcw, "match_work_count%d", i + 1);
root = api_add_int(root, mcw, &(info->matching_work[i]), false);
}*/
root = api_add_int(root, "chain_acn1", &(info->chain_asic_num[0]), false);
root = api_add_int(root, "chain_acn2", &(info->chain_asic_num[1]), false);
root = api_add_int(root, "chain_acn3", &(info->chain_asic_num[2]), false);
root = api_add_int(root, "chain_acn4", &(info->chain_asic_num[3]), false);
root = api_add_string(root, "chain_acs1", info->chain_asic_status_t[0], false);
root = api_add_string(root, "chain_acs2", info->chain_asic_status_t[1], false);
root = api_add_string(root, "chain_acs3", info->chain_asic_status_t[2], false);
root = api_add_string(root, "chain_acs4", info->chain_asic_status_t[3], false);
//root = api_add_int(root, "chain_acs1", &(info->chain_asic_status[0]), false);
//root = api_add_int(root, "chain_acs2", &(info->chain_asic_status[1]), false);
//root = api_add_int(root, "chain_acs3", &(info->chain_asic_status[2]), false);
//root = api_add_int(root, "chain_acs4", &(info->chain_asic_status[3]), false);
root = api_add_int(root, "work_list_total", &(info->work_list->total), true);
root = api_add_int(root, "work_list_count", &(info->work_list->count), true);
root = api_add_int(root, "work_ready_count", &(info->work_ready->count), true);
root = api_add_uint64(root, "work_search", &(info->work_search), true);
root = api_add_uint64(root, "min_search", &(info->min_search), true);
root = api_add_uint64(root, "max_search", &(info->max_search), true);
float avg = info->work_search ? (float)(info->tot_search) /
(float)(info->work_search) : 0;
root = api_add_avg(root, "avg_search", &avg, true);
root = api_add_uint64(root, "failed_search", &(info->failed_search), true);
root = api_add_uint64(root, "min_failed", &(info->min_failed), true);
root = api_add_uint64(root, "max_failed", &(info->max_failed), true);
avg = info->failed_search ? (float)(info->tot_failed) /
(float)(info->failed_search) : 0;
root = api_add_avg(root, "avg_failed", &avg, true);
return root;
}
static void bitmain_shutdown(struct thr_info *thr)
{
do_bitmain_close(thr);
}
char *set_bitmain_fan(char *arg)
{
int val1, val2, ret;
ret = sscanf(arg, "%d-%d", &val1, &val2);
if (ret < 1)
return "No values passed to bitmain-fan";
if (ret == 1)
val2 = val1;
if (val1 < 0 || val1 > 100 || val2 < 0 || val2 > 100 || val2 < val1)
return "Invalid value passed to bitmain-fan";
opt_bitmain_fan_min = val1 * BITMAIN_PWM_MAX / 100;
opt_bitmain_fan_max = val2 * BITMAIN_PWM_MAX / 100;
return NULL;
}
char *set_bitmain_freq(char *arg)
{
int val1, val2, ret;
ret = sscanf(arg, "%d-%d", &val1, &val2);
if (ret < 1)
return "No values passed to bitmain-freq";
if (ret == 1)
val2 = val1;
if (val1 < BITMAIN_MIN_FREQUENCY || val1 > BITMAIN_MAX_FREQUENCY ||
val2 < BITMAIN_MIN_FREQUENCY || val2 > BITMAIN_MAX_FREQUENCY ||
val2 < val1)
return "Invalid value passed to bitmain-freq";
opt_bitmain_freq_min = val1;
opt_bitmain_freq_max = val2;
return NULL;
}
#endif
struct device_drv ants1_drv = {
.drv_id = DRIVER_ants1,
.dname = "BitmainAntS1",
.name = "ANT",
.drv_detect = ants1_detect,
#ifdef LINUX
.thread_prepare = bitmain_prepare,
.hash_work = hash_queued_work,
.queue_full = bitmain_fill,
.scanwork = bitmain_scanhash,
.flush_work = bitmain_flush_work,
.get_api_stats = bitmain_api_stats,
.get_statline_before = get_bitmain_statline_before,
.reinit_device = bitmain_init,
.thread_shutdown = bitmain_shutdown,
#endif
};