Branch
Hash :
619528d7
Author :
Date :
2015-03-05T10:13:15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
* Copyright 2014-2015 Con Kolivas
* Copyright 2013 Andrew Smith
* Copyright 2013 bitfury
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "miner.h"
#include "driver-bitfury.h"
#include "libbitfury.h"
#include "sha2.h"
void ms3steps(uint32_t *p)
{
uint32_t a, b, c, d, e, f, g, h, new_e, new_a;
int i;
a = p[0];
b = p[1];
c = p[2];
d = p[3];
e = p[4];
f = p[5];
g = p[6];
h = p[7];
for (i = 0; i < 3; i++) {
new_e = p[i+16] + sha256_k[i] + h + CH(e,f,g) + SHA256_F2(e) + d;
new_a = p[i+16] + sha256_k[i] + h + CH(e,f,g) + SHA256_F2(e) +
SHA256_F1(a) + MAJ(a,b,c);
d = c;
c = b;
b = a;
a = new_a;
h = g;
g = f;
f = e;
e = new_e;
}
p[15] = a;
p[14] = b;
p[13] = c;
p[12] = d;
p[11] = e;
p[10] = f;
p[9] = g;
p[8] = h;
}
uint32_t decnonce(uint32_t in)
{
uint32_t out;
/* First part load */
out = (in & 0xFF) << 24;
in >>= 8;
/* Byte reversal */
in = (((in & 0xaaaaaaaa) >> 1) | ((in & 0x55555555) << 1));
in = (((in & 0xcccccccc) >> 2) | ((in & 0x33333333) << 2));
in = (((in & 0xf0f0f0f0) >> 4) | ((in & 0x0f0f0f0f) << 4));
out |= (in >> 2) & 0x3FFFFF;
/* Extraction */
if (in & 1)
out |= (1 << 23);
if (in & 2)
out |= (1 << 22);
out -= 0x800004;
return out;
}
/* Test vectors to calculate (using address-translated loads) */
static unsigned int atrvec[] = {
0xb0e72d8e, 0x1dc5b862, 0xe9e7c4a6, 0x3050f1f5, 0x8a1a6b7e, 0x7ec384e8, 0x42c1c3fc, 0x8ed158a1, /* MIDSTATE */
0,0,0,0,0,0,0,0,
0x8a0bb7b7, 0x33af304f, 0x0b290c1a, 0xf0c4e61f, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
};
static bool atrvec_set;
void bitfury_work_to_payload(struct bitfury_payload *p, struct work *work)
{
cg_memcpy(p->midstate, work->midstate, 32);
p->m7 = *(unsigned int *)(work->data + 64);
p->ntime = *(unsigned int *)(work->data + 68);
p->nbits = *(unsigned int *)(work->data + 72);
applog(LOG_INFO, "INFO nonc: %08x bitfury_scanHash MS0: %08x, ", p->nnonce,
((unsigned int *)work->midstate)[0]);
applog(LOG_INFO, "INFO merkle[7]: %08x, ntime: %08x, nbits: %08x", p->m7,
p->ntime, p->nbits);
}
/* Configuration registers - control oscillators and such stuff. PROGRAMMED when
* magic number matches, UNPROGRAMMED (default) otherwise */
void spi_config_reg(struct bitfury_info *info, int cfgreg, int ena)
{
static const uint8_t enaconf[4] = { 0xc1, 0x6a, 0x59, 0xe3 };
static const uint8_t disconf[4] = { 0, 0, 0, 0 };
if (ena)
spi_add_data(info, 0x7000 + cfgreg * 32, enaconf, 4);
else
spi_add_data(info, 0x7000 + cfgreg * 32, disconf, 4);
}
void spi_set_freq(struct bitfury_info *info)
{
uint64_t freq;
const uint8_t *osc6 = (unsigned char *)&freq;
freq = (1ULL << info->osc6_bits) - 1ULL;
spi_add_data(info, 0x6000, osc6, 8); /* Program internal on-die slow oscillator frequency */
}
#define FIRST_BASE 61
#define SECOND_BASE 4
void spi_send_conf(struct bitfury_info *info)
{
const int8_t nfu_counters[16] = { 64, 64, SECOND_BASE, SECOND_BASE+4, SECOND_BASE+2,
SECOND_BASE+2+16, SECOND_BASE, SECOND_BASE+1, (FIRST_BASE)%65, (FIRST_BASE+1)%65,
(FIRST_BASE+3)%65, (FIRST_BASE+3+16)%65, (FIRST_BASE+4)%65, (FIRST_BASE+4+4)%65,
(FIRST_BASE+3+3)%65, (FIRST_BASE+3+1+3)%65 };
int i;
for (i = 7; i <= 11; i++)
spi_config_reg(info, i, 0);
spi_config_reg(info, 6, 1); /* disable OUTSLK */
spi_config_reg(info, 4, 1); /* Enable slow oscillator */
for (i = 1; i <= 3; ++i)
spi_config_reg(info, i, 0);
/* Program counters correctly for rounds processing, here it should
* start consuming power */
spi_add_data(info, 0x0100, nfu_counters, 16);
}
void spi_send_init(struct bitfury_info *info)
{
/* Prepare internal buffers */
/* PREPARE BUFFERS (INITIAL PROGRAMMING) */
unsigned int w[16];
if (!atrvec_set) {
atrvec_set = true;
ms3steps(atrvec);
}
memset(w, 0, sizeof(w));
w[3] = 0xffffffff;
w[4] = 0x80000000;
w[15] = 0x00000280;
spi_add_data(info, 0x1000, w, 16 * 4);
spi_add_data(info, 0x1400, w, 8 * 4);
memset(w, 0, sizeof(w));
w[0] = 0x80000000;
w[7] = 0x100;
spi_add_data(info, 0x1900, w, 8 * 4); /* Prepare MS and W buffers! */
spi_add_data(info, 0x3000, atrvec, 19 * 4);
}
void spi_clear_buf(struct bitfury_info *info)
{
info->spibufsz = 0;
}
void spi_add_buf(struct bitfury_info *info, const void *buf, const int sz)
{
if (unlikely(info->spibufsz + sz > SPIBUF_SIZE)) {
applog(LOG_WARNING, "SPI bufsize overflow!");
return;
}
cg_memcpy(&info->spibuf[info->spibufsz], buf, sz);
info->spibufsz += sz;
}
void spi_add_break(struct bitfury_info *info)
{
spi_add_buf(info, "\x4", 1);
}
void spi_add_fasync(struct bitfury_info *info, int n)
{
int i;
for (i = 0; i < n; i++)
spi_add_buf(info, "\x5", 1);
}
static void spi_add_buf_reverse(struct bitfury_info *info, const char *buf, const int sz)
{
int i;
for (i = 0; i < sz; i++) { // Reverse bit order in each byte!
unsigned char p = buf[i];
p = ((p & 0xaa) >> 1) | ((p & 0x55) << 1);
p = ((p & 0xcc) >> 2) | ((p & 0x33) << 2);
p = ((p & 0xf0) >> 4) | ((p & 0x0f) << 4);
info->spibuf[info->spibufsz + i] = p;
}
info->spibufsz += sz;
}
void spi_add_data(struct bitfury_info *info, uint16_t addr, const void *buf, int len)
{
unsigned char otmp[3];
if (len < 4 || len > 128) {
applog(LOG_WARNING, "Can't add SPI data size %d", len);
return;
}
len /= 4; /* Strip */
otmp[0] = (len - 1) | 0xE0;
otmp[1] = (addr >> 8) & 0xFF;
otmp[2] = addr & 0xFF;
spi_add_buf(info, otmp, 3);
len *= 4;
spi_add_buf_reverse(info, buf, len);
}
// Bit-banging reset... Each 3 reset cycles reset first chip in chain
bool spi_reset(struct cgpu_info *bitfury, struct bitfury_info *info)
{
struct mcp_settings *mcp = &info->mcp;
int r;
// SCK_OVRRIDE
mcp->value.pin[NFU_PIN_SCK_OVR] = MCP2210_GPIO_PIN_HIGH;
mcp->direction.pin[NFU_PIN_SCK_OVR] = MCP2210_GPIO_OUTPUT;
mcp->designation.pin[NFU_PIN_SCK_OVR] = MCP2210_PIN_GPIO;
if (!mcp2210_set_gpio_settings(bitfury, mcp))
return false;
for (r = 0; r < 16; ++r) {
char buf[1] = {0x81}; // will send this waveform: - _ _ _ _ _ _ -
unsigned int length = 1;
if (!mcp2210_spi_transfer(bitfury, &info->mcp, buf, &length))
return false;
}
// Deactivate override
mcp->direction.pin[NFU_PIN_SCK_OVR] = MCP2210_GPIO_INPUT;
if (!mcp2210_set_gpio_settings(bitfury, mcp))
return false;
return true;
}
bool mcp_spi_txrx(struct cgpu_info *bitfury, struct bitfury_info *info)
{
unsigned int length, sendrcv;
int offset = 0;
length = info->spibufsz;
applog(LOG_DEBUG, "%s %d: SPI sending %u bytes total", bitfury->drv->name,
bitfury->device_id, length);
while (length > MCP2210_TRANSFER_MAX) {
sendrcv = MCP2210_TRANSFER_MAX;
if (!mcp2210_spi_transfer(bitfury, &info->mcp, info->spibuf + offset, &sendrcv))
return false;
if (sendrcv != MCP2210_TRANSFER_MAX) {
applog(LOG_DEBUG, "%s %d: Send/Receive size mismatch sent %d received %d",
bitfury->drv->name, bitfury->device_id, MCP2210_TRANSFER_MAX, sendrcv);
}
length -= MCP2210_TRANSFER_MAX;
offset += MCP2210_TRANSFER_MAX;
}
sendrcv = length;
if (!mcp2210_spi_transfer(bitfury, &info->mcp, info->spibuf + offset, &sendrcv))
return false;
if (sendrcv != length) {
applog(LOG_WARNING, "%s %d: Send/Receive size mismatch sent %d received %d",
bitfury->drv->name, bitfury->device_id, length, sendrcv);
return false;
}
return true;
}
#define READ_WRITE_BYTES_SPI0 0x31
bool ftdi_spi_txrx(struct cgpu_info *bitfury, struct bitfury_info *info)
{
int err, amount, len;
uint16_t length;
char buf[1024];
len = info->spibufsz;
length = info->spibufsz - 1; //FTDI length is shifted by one 0x0000 = one byte
buf[0] = READ_WRITE_BYTES_SPI0;
buf[1] = length & 0x00FF;
buf[2] = (length & 0xFF00) >> 8;
cg_memcpy(&buf[3], info->spibuf, info->spibufsz);
info->spibufsz += 3;
err = usb_write(bitfury, buf, info->spibufsz, &amount, C_BXM_SPITX);
if (err || amount != (int)info->spibufsz) {
applog(LOG_ERR, "%s %d: SPI TX error %d, sent %d of %d", bitfury->drv->name,
bitfury->device_id, err, amount, info->spibufsz);
return false;
}
info->spibufsz = len;
/* We shouldn't even get a timeout error on reads in spi mode */
err = usb_read(bitfury, info->spibuf, len, &amount, C_BXM_SPIRX);
if (err || amount != len) {
applog(LOG_ERR, "%s %d: SPI RX error %d, read %d of %d", bitfury->drv->name,
bitfury->device_id, err, amount, info->spibufsz);
return false;
}
amount = usb_buffer_size(bitfury);
if (amount) {
applog(LOG_ERR, "%s %d: SPI RX Extra read buffer size %d", bitfury->drv->name,
bitfury->device_id, amount);
usb_buffer_clear(bitfury);
return false;
}
return true;
}
#define BT_OFFSETS 3
bool bitfury_checkresults(struct thr_info *thr, struct work *work, uint32_t nonce)
{
const uint32_t bf_offsets[] = {-0x800000, 0, -0x400000};
int i;
for (i = 0; i < BT_OFFSETS; i++) {
uint32_t noffset = nonce + bf_offsets[i];
if (test_nonce(work, noffset)) {
submit_tested_work(thr, work);
return true;
}
}
return false;
}
/* Currently really only supports 2 chips, so chip_n can only be 0 or 1 */
bool libbitfury_sendHashData(struct thr_info *thr, struct cgpu_info *bitfury,
struct bitfury_info *info, int chip_n)
{
unsigned newbuf[17];
unsigned *oldbuf = &info->oldbuf[17 * chip_n];
struct bitfury_payload *p = &info->payload[chip_n];
unsigned int localvec[20];
/* Programming next value */
cg_memcpy(localvec, p, 20 * 4);
ms3steps(localvec);
spi_clear_buf(info);
spi_add_break(info);
spi_add_fasync(info, chip_n);
spi_add_data(info, 0x3000, (void*)localvec, 19 * 4);
if (!info->spi_txrx(bitfury, info))
return false;
cg_memcpy(newbuf, info->spibuf + 4 + chip_n, 17 * 4);
info->job_switched[chip_n] = newbuf[16] != oldbuf[16];
if (likely(info->second_run[chip_n])) {
if (info->job_switched[chip_n]) {
int i;
for (i = 0; i < 16; i++) {
if (oldbuf[i] != newbuf[i] && info->owork[chip_n]) {
uint32_t nonce; //possible nonce
nonce = decnonce(newbuf[i]);
if (bitfury_checkresults(thr, info->owork[chip_n], nonce)) {
info->submits[chip_n]++;
info->nonces++;
}
}
}
cg_memcpy(oldbuf, newbuf, 17 * 4);
}
} else
info->second_run[chip_n] = true;
cgsleep_ms(BITFURY_REFRESH_DELAY);
return true;
}