Tag
Hash :
2b9bdca6
Author :
Date :
2013-11-23T15:08:43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/*
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
* Copyright 2013 Hashfast Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <stdbool.h>
#include "miner.h"
#include "usbutils.h"
#include "driver-hashfast.h"
////////////////////////////////////////////////////////////////////////////////
// Support for the CRC's used in header (CRC-8) and packet body (CRC-32)
////////////////////////////////////////////////////////////////////////////////
#define GP8 0x107 /* x^8 + x^2 + x + 1 */
#define DI8 0x07
static unsigned char crc8_table[256]; /* CRC-8 table */
static void hfa_init_crc8(void)
{
int i,j;
unsigned char crc;
for (i = 0; i < 256; i++) {
crc = i;
for (j = 0; j < 8; j++)
crc = (crc << 1) ^ ((crc & 0x80) ? DI8 : 0);
crc8_table[i] = crc & 0xFF;
}
}
static unsigned char hfa_crc8(unsigned char *h)
{
int i;
unsigned char crc;
h++; // Preamble not included
for (i = 1, crc = 0xff; i < 7; i++)
crc = crc8_table[crc ^ *h++];
return crc;
}
struct hfa_cmd {
uint8_t cmd;
char *cmd_name;
enum usb_cmds usb_cmd;
};
/* Entries in this array need to align with the actual op values specified
* in hf_protocol.h */
#define C_NULL C_MAX
static const struct hfa_cmd hfa_cmds[] = {
{OP_NULL, "OP_NULL", C_NULL}, // 0
{OP_ROOT, "OP_ROOT", C_NULL},
{OP_RESET, "OP_RESET", C_HF_RESET},
{OP_PLL_CONFIG, "OP_PLL_CONFIG", C_HF_PLL_CONFIG},
{OP_ADDRESS, "OP_ADDRESS", C_HF_ADDRESS},
{OP_READDRESS, "OP_READDRESS", C_NULL},
{OP_HIGHEST, "OP_HIGHEST", C_NULL},
{OP_BAUD, "OP_BAUD", C_HF_BAUD},
{OP_UNROOT, "OP_UNROOT", C_NULL}, // 8
{OP_HASH, "OP_HASH", C_HF_HASH},
{OP_NONCE, "OP_NONCE", C_HF_NONCE},
{OP_ABORT, "OP_ABORT", C_HF_ABORT},
{OP_STATUS, "OP_STATUS", C_HF_STATUS},
{OP_GPIO, "OP_GPIO", C_NULL},
{OP_CONFIG, "OP_CONFIG", C_HF_CONFIG},
{OP_STATISTICS, "OP_STATISTICS", C_HF_STATISTICS},
{OP_GROUP, "OP_GROUP", C_NULL}, // 16
{OP_CLOCKGATE, "OP_CLOCKGATE", C_HF_CLOCKGATE},
{OP_USB_INIT, "OP_USB_INIT", C_HF_USB_INIT}, // 18
{OP_GET_TRACE, "OP_GET_TRACE", C_NULL},
{OP_LOOPBACK_USB, "OP_LOOPBACK_USB", C_NULL},
{OP_LOOPBACK_UART, "OP_LOOPBACK_UART", C_NULL},
{OP_DFU, "OP_DFU", C_NULL},
{OP_USB_SHUTDOWN, "OP_USB_SHUTDOWN", C_NULL},
{OP_DIE_STATUS, "OP_DIE_STATUS", C_HF_DIE_STATUS}, // 24
{OP_GWQ_STATUS, "OP_GWQ_STATUS", C_HF_GWQ_STATUS},
{OP_WORK_RESTART, "OP_WORK_RESTART", C_HF_WORK_RESTART},
{OP_USB_STATS1, "OP_USB_STATS1", C_NULL},
{OP_USB_GWQSTATS, "OP_USB_GWQSTATS", C_HF_GWQSTATS}
};
#define HF_USB_CMD_OFFSET (128 - 18)
#define HF_USB_CMD(X) (X - HF_USB_CMD_OFFSET)
/* Send an arbitrary frame, consisting of an 8 byte header and an optional
* packet body. */
static bool hfa_send_frame(struct cgpu_info *hashfast, uint8_t opcode, uint16_t hdata,
uint8_t *data, int len)
{
int tx_length, ret, amount, id = hashfast->device_id;
uint8_t packet[256];
struct hf_header *p = (struct hf_header *)packet;
p->preamble = HF_PREAMBLE;
p->operation_code = hfa_cmds[opcode].cmd;
p->chip_address = HF_GWQ_ADDRESS;
p->core_address = 0;
p->hdata = htole16(hdata);
p->data_length = len / 4;
p->crc8 = hfa_crc8(packet);
if (len)
memcpy(&packet[sizeof(struct hf_header)], data, len);
tx_length = sizeof(struct hf_header) + len;
ret = usb_write(hashfast, (char *)packet, tx_length, &amount,
hfa_cmds[opcode].usb_cmd);
if (unlikely(ret < 0 || amount != tx_length)) {
applog(LOG_ERR, "HFA %d: hfa_send_frame: USB Send error, ret %d amount %d vs. tx_length %d",
id, ret, amount, tx_length);
return false;
}
return true;
}
/* Send an already assembled packet, consisting of an 8 byte header which may
* or may not be followed by a packet body. */
static bool hfa_send_packet(struct cgpu_info *hashfast, struct hf_header *h, int cmd)
{
int amount, ret, len;
len = sizeof(*h) + h->data_length * 4;
ret = usb_write(hashfast, (char *)h, len, &amount, hfa_cmds[cmd].usb_cmd);
if (ret < 0 || amount != len) {
applog(LOG_WARNING, "HFA%d: send_packet: %s USB Send error, ret %d amount %d vs. length %d",
hashfast->device_id, hfa_cmds[cmd].cmd_name, ret, amount, len);
return false;
}
return true;
}
static bool hfa_get_header(struct cgpu_info *hashfast, struct hf_header *h, uint8_t *computed_crc)
{
int amount, ret, orig_len, len, ofs = 0;
cgtimer_t ts_start;
char buf[512];
char *header;
orig_len = len = sizeof(*h);
/* Read for up to 200ms till we find the first occurrence of HF_PREAMBLE
* though it should be the first byte unless we get woefully out of
* sync. */
cgtimer_time(&ts_start);
do {
cgtimer_t ts_now, ts_diff;
cgtimer_time(&ts_now);
cgtimer_sub(&ts_now, &ts_start, &ts_diff);
if (cgtimer_to_ms(&ts_diff) > 200)
return false;
ret = usb_read(hashfast, buf + ofs, len, &amount, C_HF_GETHEADER);
if (unlikely(ret && ret != LIBUSB_ERROR_TIMEOUT))
return false;
ofs += amount;
header = memchr(buf, HF_PREAMBLE, ofs);
if (header)
len -= ofs - (header - buf);
} while (len);
memcpy(h, header, orig_len);
*computed_crc = hfa_crc8((uint8_t *)h);
return true;
}
static bool hfa_get_data(struct cgpu_info *hashfast, char *buf, int len4)
{
int amount, ret, len = len4 * 4;
ret = usb_read(hashfast, buf, len, &amount, C_HF_GETDATA);
if (ret)
return false;
if (amount != len) {
applog(LOG_WARNING, "HFA %d: get_data: Strange amount returned %d vs. expected %d",
hashfast->device_id, amount, len);
return false;
}
return true;
}
static const char *hf_usb_init_errors[] = {
"Success",
"Reset timeout",
"Address cycle timeout",
"Clockgate operation timeout",
"Configuration operation timeout",
"Excessive core failures",
"All cores failed diagnostics",
"Too many groups configured - increase ntime roll amount"
};
static bool hfa_reset(struct cgpu_info *hashfast, struct hashfast_info *info)
{
struct hf_usb_init_header usb_init, *hu = &usb_init;
struct hf_usb_init_base *db;
struct hf_usb_init_options *ho;
int retries = 0, i;
char buf[1024];
struct hf_header *h = (struct hf_header *)buf;
uint8_t hcrc;
bool ret;
// XXX Following items need to be defaults with command-line overrides
info->hash_clock_rate = 550; // Hash clock rate in Mhz
info->group_ntime_roll = 1;
info->core_ntime_roll = 1;
// Assemble the USB_INIT request
memset(hu, 0, sizeof(*hu));
hu->preamble = HF_PREAMBLE;
hu->operation_code = OP_USB_INIT;
hu->protocol = PROTOCOL_GLOBAL_WORK_QUEUE; // Protocol to use
hu->hash_clock = info->hash_clock_rate; // Hash clock rate in Mhz
if (info->group_ntime_roll > 1 && info->core_ntime_roll) {
ho = (struct hf_usb_init_options *)(hu + 1);
memset(ho, 0, sizeof(*ho));
ho->group_ntime_roll = info->group_ntime_roll;
ho->core_ntime_roll = info->core_ntime_roll;
hu->data_length = sizeof(*ho) / 4;
}
hu->crc8 = hfa_crc8((uint8_t *)hu);
applog(LOG_INFO, "HFA%d: Sending OP_USB_INIT with GWQ protocol specified",
hashfast->device_id);
if (!hfa_send_packet(hashfast, (struct hf_header *)hu, HF_USB_CMD(OP_USB_INIT)))
return false;
// Check for the correct response.
// We extend the normal timeout - a complete device initialization, including
// bringing power supplies up from standby, etc., can take over a second.
tryagain:
for (i = 0; i < 30; i++) {
ret = hfa_get_header(hashfast, h, &hcrc);
if (ret)
break;
}
if (!ret) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed!", hashfast->device_id);
return false;
}
if (h->crc8 != hcrc) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! CRC mismatch", hashfast->device_id);
return false;
}
if (h->operation_code != OP_USB_INIT) {
// This can happen if valid packet(s) were in transit *before* the OP_USB_INIT arrived
// at the device, so we just toss the packets and keep looking for the response.
applog(LOG_WARNING, "HFA %d: OP_USB_INIT: Tossing packet, valid but unexpected type %d",
hashfast->device_id, h->operation_code);
hfa_get_data(hashfast, buf, h->data_length);
if (retries++ < 3)
goto tryagain;
return false;
}
applog(LOG_DEBUG, "HFA %d: Good reply to OP_USB_INIT", hashfast->device_id);
applog(LOG_DEBUG, "HFA %d: OP_USB_INIT: %d die in chain, %d cores, device_type %d, refclk %d Mhz",
hashfast->device_id, h->chip_address, h->core_address, h->hdata & 0xff, (h->hdata >> 8) & 0xff);
// Save device configuration
info->asic_count = h->chip_address;
info->core_count = h->core_address;
info->device_type = (uint8_t)h->hdata;
info->ref_frequency = (uint8_t)(h->hdata >> 8);
info->hash_sequence_head = 0;
info->hash_sequence_tail = 0;
info->device_sequence_tail = 0;
// Size in bytes of the core bitmap in bytes
info->core_bitmap_size = (((info->asic_count * info->core_count) + 31) / 32) * 4;
// Get the usb_init_base structure
if (!hfa_get_data(hashfast, (char *)&info->usb_init_base, U32SIZE(info->usb_init_base))) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get usb_init_base data",
hashfast->device_id);
return false;
}
db = &info->usb_init_base;
applog(LOG_INFO, "HFA %d: firmware_rev: %d.%d", hashfast->device_id,
(db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
applog(LOG_INFO, "HFA %d: hardware_rev: %d.%d", hashfast->device_id,
(db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
applog(LOG_INFO, "HFA %d: serial number: %d", hashfast->device_id,
db->serial_number);
applog(LOG_INFO, "HFA %d: hash clockrate: %d Mhz", hashfast->device_id,
db->hash_clockrate);
applog(LOG_INFO, "HFA %d: inflight_target: %d", hashfast->device_id,
db->inflight_target);
applog(LOG_INFO, "HFA %d: sequence_modulus: %d", hashfast->device_id,
db->sequence_modulus);
info->num_sequence = db->sequence_modulus;
// Now a copy of the config data used
if (!hfa_get_data(hashfast, (char *)&info->config_data, U32SIZE(info->config_data))) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get config_data",
hashfast->device_id);
return false;
}
// Now the core bitmap
info->core_bitmap = malloc(info->core_bitmap_size);
if (!info->core_bitmap)
quit(1, "Failed to malloc info core bitmap in hfa_reset");
if (!hfa_get_data(hashfast, (char *)info->core_bitmap, info->core_bitmap_size / 4)) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get core_bitmap", hashfast->device_id);
return false;
}
// See if the initialization suceeded
if (db->operation_status) {
applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Operation status %d (%s)",
hashfast->device_id, db->operation_status,
(db->operation_status < sizeof(hf_usb_init_errors)/sizeof(hf_usb_init_errors[0])) ?
hf_usb_init_errors[db->operation_status] : "Unknown error code");
return false;
}
return true;
}
static void hfa_send_shutdown(struct cgpu_info *hashfast)
{
hfa_send_frame(hashfast, HF_USB_CMD(OP_USB_SHUTDOWN), 0, NULL, 0);
}
static void hfa_clear_readbuf(struct cgpu_info *hashfast)
{
int amount, ret;
char buf[512];
do {
ret = usb_read(hashfast, buf, 512, &amount, C_HF_CLEAR_READ);
} while (!ret || amount);
}
static bool hfa_detect_common(struct cgpu_info *hashfast)
{
struct hashfast_info *info;
bool ret;
info = calloc(sizeof(struct hashfast_info), 1);
if (!info)
quit(1, "Failed to calloc hashfast_info in hfa_detect_common");
hashfast->device_data = info;
/* hashfast_reset should fill in details for info */
ret = hfa_reset(hashfast, info);
if (!ret) {
hfa_send_shutdown(hashfast);
hfa_clear_readbuf(hashfast);
free(info);
hashfast->device_data = NULL;
return false;
}
// The per-die status array
info->die_status = calloc(info->asic_count, sizeof(struct hf_g1_die_data));
if (unlikely(!(info->die_status)))
quit(1, "Failed to calloc die_status");
// The per-die statistics array
info->die_statistics = calloc(info->asic_count, sizeof(struct hf_long_statistics));
if (unlikely(!(info->die_statistics)))
quit(1, "Failed to calloc die_statistics");
info->works = calloc(sizeof(struct work *), info->num_sequence);
if (!info->works)
quit(1, "Failed to calloc info works in hfa_detect_common");
return true;
}
static bool hfa_initialise(struct cgpu_info *hashfast)
{
int err;
if (hashfast->usbinfo.nodev)
return false;
hfa_clear_readbuf(hashfast);
err = usb_transfer(hashfast, 0, 9, 1, 0, C_ATMEL_RESET);
if (!err)
err = usb_transfer(hashfast, 0x21, 0x22, 0, 0, C_ATMEL_OPEN);
if (!err) {
uint32_t buf[2];
/* Magic sequence to reset device only really needed for windows
* but harmless on linux. */
buf[0] = 0x80250000;
buf[1] = 0x00000800;
err = usb_transfer_data(hashfast, 0x21, 0x20, 0x0000, 0, buf,
7, C_ATMEL_INIT);
}
if (err < 0) {
applog(LOG_INFO, "HFA %d: Failed to open with error %s",
hashfast->device_id, libusb_error_name(err));
}
/* Must have transmitted init sequence sized buffer */
return (err == 7);
}
static struct cgpu_info *hfa_detect_one(libusb_device *dev, struct usb_find_devices *found)
{
struct cgpu_info *hashfast;
hashfast = usb_alloc_cgpu(&hashfast_drv, HASHFAST_MINER_THREADS);
if (!hashfast)
quit(1, "Failed to usb_alloc_cgpu hashfast");
if (!usb_init(hashfast, dev, found)) {
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
hashfast->usbdev->usb_type = USB_TYPE_STD;
if (!hfa_initialise(hashfast)) {
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
if (!hfa_detect_common(hashfast)) {
usb_uninit(hashfast);
hashfast = usb_free_cgpu(hashfast);
return NULL;
}
if (!add_cgpu(hashfast))
return NULL;
return hashfast;
}
static void hfa_detect(bool hotplug)
{
/* Set up the CRC tables only once. */
if (!hotplug)
hfa_init_crc8();
usb_detect(&hashfast_drv, hfa_detect_one);
}
static bool hfa_get_packet(struct cgpu_info *hashfast, struct hf_header *h)
{
uint8_t hcrc;
bool ret;
ret = hfa_get_header(hashfast, h, &hcrc);
if (unlikely(!ret))
goto out;
if (unlikely(h->crc8 != hcrc)) {
applog(LOG_WARNING, "HFA %d: Bad CRC %d vs %d, attempting to process anyway",
hashfast->device_id, h->crc8, hcrc);
}
if (h->data_length > 0)
ret = hfa_get_data(hashfast, (char *)(h + 1), h->data_length);
if (unlikely(!ret)) {
applog(LOG_WARNING, "HFA %d: Failed to get data associated with header",
hashfast->device_id);
}
out:
return ret;
}
static void hfa_parse_gwq_status(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_gwq_data *g = (struct hf_gwq_data *)(h + 1);
struct work *work;
applog(LOG_DEBUG, "HFA %d: OP_GWQ_STATUS, device_head %4d tail %4d my tail %4d shed %3d inflight %4d",
hashfast->device_id, g->sequence_head, g->sequence_tail, info->hash_sequence_tail,
g->shed_count, HF_SEQUENCE_DISTANCE(info->hash_sequence_head,g->sequence_tail));
mutex_lock(&info->lock);
info->hash_count += g->hash_count;
info->device_sequence_head = g->sequence_head;
info->device_sequence_tail = g->sequence_tail;
info->shed_count = g->shed_count;
/* Free any work that is no longer required */
while (info->device_sequence_tail != info->hash_sequence_tail) {
if (++info->hash_sequence_tail >= info->num_sequence)
info->hash_sequence_tail = 0;
if (unlikely(!(work = info->works[info->hash_sequence_tail]))) {
applog(LOG_ERR, "HFA %d: Bad work sequence tail",
hashfast->device_id);
hashfast->shutdown = true;
break;
}
applog(LOG_DEBUG, "HFA %d: Completing work on hash_sequence_tail %d",
hashfast->device_id, info->hash_sequence_tail);
free_work(work);
info->works[info->hash_sequence_tail] = NULL;
}
mutex_unlock(&info->lock);
}
static void hfa_update_die_status(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_g1_die_data *d = (struct hf_g1_die_data *)(h + 1), *ds;
int num_included = (h->data_length * 4) / sizeof(struct hf_g1_die_data);
int i, j;
float die_temperature;
float core_voltage[6];
if (info->device_type == HFD_G1) {
// Copy in the data. They're numbered sequentially from the starting point
ds = info->die_status + h->chip_address;
for (i = 0; i < num_included; i++)
memcpy(ds++, d++, sizeof(struct hf_g1_die_data));
for (i = 0, d = &info->die_status[h->chip_address]; i < num_included; i++, d++) {
die_temperature = GN_DIE_TEMPERATURE(d->die.die_temperature);
for (j = 0; j < 6; j++)
core_voltage[j] = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
applog(LOG_DEBUG, "HFA %d: die %2d: OP_DIE_STATUS Die temp %.2fC vdd's %.2f %.2f %.2f %.2f %.2f %.2f",
hashfast->device_id, h->chip_address + i, die_temperature,
core_voltage[0], core_voltage[1], core_voltage[2],
core_voltage[3], core_voltage[4], core_voltage[5]);
// XXX Convert board phase currents, voltage, temperature
}
}
}
static void search_for_extra_nonce(struct thr_info *thr, struct work *work,
struct hf_candidate_nonce *n)
{
uint32_t nonce = n->nonce;
int i;
/* No function to test with ntime offsets yet */
if (n->ntime & HF_NTIME_MASK)
return;
for (i = 0; i < 128; i++, nonce++) {
/* We could break out of this early if nonce wraps or if we
* find one correct nonce since the chance of more is extremely
* low but this function will be hit so infrequently we may as
* well test the entire range with the least code. */
if (test_nonce(work, nonce))
submit_tested_work(thr, work);
}
}
static void hfa_parse_nonce(struct thr_info *thr, struct cgpu_info *hashfast,
struct hashfast_info *info, struct hf_header *h)
{
struct hf_candidate_nonce *n = (struct hf_candidate_nonce *)(h + 1);
int i, num_nonces = h->data_length / U32SIZE(sizeof(struct hf_candidate_nonce));
applog(LOG_DEBUG, "HFA %d: OP_NONCE: %2d:, num_nonces %d hdata 0x%04x",
hashfast->device_id, h->chip_address, num_nonces, h->hdata);
for (i = 0; i < num_nonces; i++, n++) {
struct work *work;
applog(LOG_DEBUG, "HFA %d: OP_NONCE: %2d: %2d: ntime %2d sequence %4d nonce 0x%08x",
hashfast->device_id, h->chip_address, i, n->ntime & HF_NTIME_MASK, n->sequence, n->nonce);
// Find the job from the sequence number
mutex_lock(&info->lock);
work = info->works[n->sequence];
mutex_unlock(&info->lock);
if (unlikely(!work)) {
info->no_matching_work++;
applog(LOG_INFO, "HFA %d: No matching work!", hashfast->device_id);
} else {
applog(LOG_DEBUG, "HFA %d: OP_NONCE: sequence %d: submitting nonce 0x%08x ntime %d",
hashfast->device_id, n->sequence, n->nonce, n->ntime & HF_NTIME_MASK);
if ((n->nonce & 0xffff0000) == 0x42420000) // XXX REMOVE THIS
break; // XXX PHONEY EMULATOR NONCE
submit_noffset_nonce(thr, work, n->nonce, n->ntime & HF_NTIME_MASK); // XXX Return value from submit_nonce is error if set
if (unlikely(n->ntime & HF_NONCE_SEARCH)) {
/* This tells us there is another share in the
* next 128 nonces */
applog(LOG_DEBUG, "HFA %d: OP_NONCE: SEARCH PROXIMITY EVENT FOUND",
hashfast->device_id);
search_for_extra_nonce(thr, work, n);
}
}
}
}
static void hfa_update_die_statistics(struct hashfast_info *info, struct hf_header *h)
{
struct hf_statistics *s = (struct hf_statistics *)(h + 1);
struct hf_long_statistics *l;
// Accumulate the data
l = info->die_statistics + h->chip_address;
l->rx_header_crc += s->rx_header_crc;
l->rx_body_crc += s->rx_body_crc;
l->rx_header_timeouts += s->rx_header_timeouts;
l->rx_body_timeouts += s->rx_body_timeouts;
l->core_nonce_fifo_full += s->core_nonce_fifo_full;
l->array_nonce_fifo_full += s->array_nonce_fifo_full;
l->stats_overrun += s->stats_overrun;
}
static void hfa_update_stats1(struct cgpu_info *hashfast, struct hashfast_info *info,
struct hf_header *h)
{
struct hf_long_usb_stats1 *s1 = &info->stats1;
struct hf_usb_stats1 *sd = (struct hf_usb_stats1 *)(h + 1);
s1->usb_rx_preambles += sd->usb_rx_preambles;
s1->usb_rx_receive_byte_errors += sd->usb_rx_receive_byte_errors;
s1->usb_rx_bad_hcrc += sd->usb_rx_bad_hcrc;
s1->usb_tx_attempts += sd->usb_tx_attempts;
s1->usb_tx_packets += sd->usb_tx_packets;
s1->usb_tx_timeouts += sd->usb_tx_timeouts;
s1->usb_tx_incompletes += sd->usb_tx_incompletes;
s1->usb_tx_endpointstalled += sd->usb_tx_endpointstalled;
s1->usb_tx_disconnected += sd->usb_tx_disconnected;
s1->usb_tx_suspended += sd->usb_tx_suspended;
#if 0
/* We don't care about UART stats so they're not in our struct */
s1->uart_tx_queue_dma += sd->uart_tx_queue_dma;
s1->uart_tx_interrupts += sd->uart_tx_interrupts;
s1->uart_rx_preamble_ints += sd->uart_rx_preamble_ints;
s1->uart_rx_missed_preamble_ints += sd->uart_rx_missed_preamble_ints;
s1->uart_rx_header_done += sd->uart_rx_header_done;
s1->uart_rx_data_done += sd->uart_rx_data_done;
s1->uart_rx_bad_hcrc += sd->uart_rx_bad_hcrc;
s1->uart_rx_bad_dma += sd->uart_rx_bad_dma;
s1->uart_rx_short_dma += sd->uart_rx_short_dma;
s1->uart_rx_buffers_full += sd->uart_rx_buffers_full;
#endif
if (sd->max_tx_buffers > s1->max_tx_buffers)
s1->max_tx_buffers = sd->max_tx_buffers;
if (sd->max_rx_buffers > s1->max_rx_buffers)
s1->max_rx_buffers = sd->max_rx_buffers;
applog(LOG_DEBUG, "HFA %d: OP_USB_STATS1:", hashfast->device_id);
applog(LOG_DEBUG, " usb_rx_preambles: %6d", sd->usb_rx_preambles);
applog(LOG_DEBUG, " usb_rx_receive_byte_errors: %6d", sd->usb_rx_receive_byte_errors);
applog(LOG_DEBUG, " usb_rx_bad_hcrc: %6d", sd->usb_rx_bad_hcrc);
applog(LOG_DEBUG, " usb_tx_attempts: %6d", sd->usb_tx_attempts);
applog(LOG_DEBUG, " usb_tx_packets: %6d", sd->usb_tx_packets);
applog(LOG_DEBUG, " usb_tx_timeouts: %6d", sd->usb_tx_timeouts);
applog(LOG_DEBUG, " usb_tx_incompletes: %6d", sd->usb_tx_incompletes);
applog(LOG_DEBUG, " usb_tx_endpointstalled: %6d", sd->usb_tx_endpointstalled);
applog(LOG_DEBUG, " usb_tx_disconnected: %6d", sd->usb_tx_disconnected);
applog(LOG_DEBUG, " usb_tx_suspended: %6d", sd->usb_tx_suspended);
#if 0
applog(LOG_DEBUG, " uart_tx_queue_dma: %6d", sd->uart_tx_queue_dma);
applog(LOG_DEBUG, " uart_tx_interrupts: %6d", sd->uart_tx_interrupts);
applog(LOG_DEBUG, " uart_rx_preamble_ints: %6d", sd->uart_rx_preamble_ints);
applog(LOG_DEBUG, " uart_rx_missed_preamble_ints: %6d", sd->uart_rx_missed_preamble_ints);
applog(LOG_DEBUG, " uart_rx_header_done: %6d", sd->uart_rx_header_done);
applog(LOG_DEBUG, " uart_rx_data_done: %6d", sd->uart_rx_data_done);
applog(LOG_DEBUG, " uart_rx_bad_hcrc: %6d", sd->uart_rx_bad_hcrc);
applog(LOG_DEBUG, " uart_rx_bad_dma: %6d", sd->uart_rx_bad_dma);
applog(LOG_DEBUG, " uart_rx_short_dma: %6d", sd->uart_rx_short_dma);
applog(LOG_DEBUG, " uart_rx_buffers_full: %6d", sd->uart_rx_buffers_full);
#endif
applog(LOG_DEBUG, " max_tx_buffers: %6d", sd->max_tx_buffers);
applog(LOG_DEBUG, " max_rx_buffers: %6d", sd->max_rx_buffers);
}
static void *hfa_read(void *arg)
{
struct thr_info *thr = (struct thr_info *)arg;
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
char threadname[24];
snprintf(threadname, 24, "hfa_read/%d", hashfast->device_id);
RenameThread(threadname);
while (likely(!hashfast->shutdown)) {
char buf[512];
struct hf_header *h = (struct hf_header *)buf;
bool ret = hfa_get_packet(hashfast, h);
if (unlikely(!ret))
continue;
switch (h->operation_code) {
case OP_GWQ_STATUS:
hfa_parse_gwq_status(hashfast, info, h);
break;
case OP_DIE_STATUS:
hfa_update_die_status(hashfast, info, h);
break;
case OP_NONCE:
hfa_parse_nonce(thr, hashfast, info, h);
break;
case OP_STATISTICS:
hfa_update_die_statistics(info, h);
break;
case OP_USB_STATS1:
hfa_update_stats1(hashfast, info, h);
break;
default:
applog(LOG_WARNING, "HFA %d: Unhandled operation code %d",
hashfast->device_id, h->operation_code);
break;
}
}
return NULL;
}
static bool hfa_prepare(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
struct timeval now;
mutex_init(&info->lock);
if (pthread_create(&info->read_thr, NULL, hfa_read, (void *)thr))
quit(1, "Failed to pthread_create read thr in hfa_prepare");
cgtime(&now);
get_datestamp(hashfast->init, sizeof(hashfast->init), &now);
return true;
}
/* Figure out how many jobs to send. */
static int hfa_jobs(struct hashfast_info *info)
{
int ret;
mutex_lock(&info->lock);
ret = info->usb_init_base.inflight_target - HF_SEQUENCE_DISTANCE(info->hash_sequence_head, info->device_sequence_tail);
/* Place an upper limit on how many jobs to queue to prevent sending
* more work than the device can use after a period of outage. */
if (ret > info->usb_init_base.inflight_target)
ret = info->usb_init_base.inflight_target;
mutex_unlock(&info->lock);
return ret;
}
static int64_t hfa_scanwork(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
int64_t hashes;
int jobs, ret;
if (unlikely(hashfast->usbinfo.nodev)) {
applog(LOG_WARNING, "HFA %d: device disappeared, disabling",
hashfast->device_id);
return -1;
}
if (unlikely(thr->work_restart)) {
restart:
ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), 0, (uint8_t *)NULL, 0);
if (unlikely(!ret)) {
ret = hfa_reset(hashfast, info);
if (unlikely(!ret)) {
applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling",
hashfast->device_id);
return -1;
}
}
}
jobs = hfa_jobs(info);
if (!jobs) {
ret = restart_wait(thr, 100);
if (unlikely(!ret))
goto restart;
jobs = hfa_jobs(info);
}
while (jobs-- > 0) {
struct hf_hash_usb op_hash_data;
struct work *work;
uint64_t intdiff;
int i, sequence;
uint32_t *p;
/* This is a blocking function if there's no work */
work = get_work(thr, thr->id);
/* Assemble the data frame and send the OP_HASH packet */
memcpy(op_hash_data.midstate, work->midstate, sizeof(op_hash_data.midstate));
memcpy(op_hash_data.merkle_residual, work->data + 64, 4);
p = (uint32_t *)(work->data + 64 + 4);
op_hash_data.timestamp = *p++;
op_hash_data.bits = *p++;
op_hash_data.nonce_loops = 0;
/* Set the number of leading zeroes to look for based on diff.
* Diff 1 = 32, Diff 2 = 33, Diff 4 = 34 etc. */
intdiff = (uint64_t)work->device_diff;
for (i = 31; intdiff; i++, intdiff >>= 1);
op_hash_data.search_difficulty = i;
if ((sequence = info->hash_sequence_head + 1) >= info->num_sequence)
sequence = 0;
ret = hfa_send_frame(hashfast, OP_HASH, sequence, (uint8_t *)&op_hash_data, sizeof(op_hash_data));
if (unlikely(!ret)) {
ret = hfa_reset(hashfast, info);
if (unlikely(!ret)) {
applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling",
hashfast->device_id);
return -1;
}
}
mutex_lock(&info->lock);
info->hash_sequence_head = sequence;
info->works[info->hash_sequence_head] = work;
mutex_unlock(&info->lock);
applog(LOG_DEBUG, "HFA %d: OP_HASH sequence %d search_difficulty %d work_difficulty %g",
hashfast->device_id, info->hash_sequence_head, op_hash_data.search_difficulty, work->work_difficulty);
}
mutex_lock(&info->lock);
hashes = info->hash_count;
info->hash_count = 0;
mutex_unlock(&info->lock);
return hashes;
}
static struct api_data *hfa_api_stats(struct cgpu_info *cgpu)
{
struct hashfast_info *info = cgpu->device_data;
struct hf_long_usb_stats1 *s1;
struct api_data *root = NULL;
struct hf_usb_init_base *db;
int varint, i;
char buf[64];
root = api_add_int(root, "asic count", &info->asic_count, false);
root = api_add_int(root, "core count", &info->core_count, false);
db = &info->usb_init_base;
sprintf(buf, "%d.%d", (db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
root = api_add_string(root, "firmware rev", buf, true);
sprintf(buf, "%d.%d", (db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
root = api_add_string(root, "hardware rev", buf, true);
varint = db->serial_number;
root = api_add_int(root, "serial number", &varint, true);
varint = db->hash_clockrate;
root = api_add_int(root, "hash clockrate", &varint, true);
varint = db->inflight_target;
root = api_add_int(root, "inflight target", &varint, true);
varint = db->sequence_modulus;
root = api_add_int(root, "sequence modules", &varint, true);
s1 = &info->stats1;
root = api_add_uint64(root, "rx preambles", &s1->usb_rx_preambles, false);
root = api_add_uint64(root, "rx rcv byte err", &s1->usb_rx_receive_byte_errors, false);
root = api_add_uint64(root, "rx bad hcrc", &s1->usb_rx_bad_hcrc, false);
root = api_add_uint64(root, "tx attempts", &s1->usb_tx_attempts, false);
root = api_add_uint64(root, "tx packets", &s1->usb_tx_packets, false);
root = api_add_uint64(root, "tx incompletes", &s1->usb_tx_incompletes, false);
root = api_add_uint64(root, "tx ep stalled", &s1->usb_tx_endpointstalled, false);
root = api_add_uint64(root, "tx disconnect", &s1->usb_tx_disconnected, false);
root = api_add_uint64(root, "tx suspend", &s1->usb_tx_suspended, false);
varint = s1->max_tx_buffers;
root = api_add_int(root, "max tx buf", &varint, true);
varint = s1->max_rx_buffers;
root = api_add_int(root, "max rx buf", &varint, true);
for (i = 0; i < info->asic_count; i++) {
struct hf_long_statistics *l = &info->die_statistics[i];
struct hf_g1_die_data *d = &info->die_status[i];
double die_temp, core_voltage;
int j;
root = api_add_int(root, "Core", &i, true);
die_temp = GN_DIE_TEMPERATURE(d->die.die_temperature);
root = api_add_double(root, "die temperature", &die_temp, true);
for (j = 0; j < 6; j++) {
core_voltage = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
sprintf(buf, "%d: %.2f", j, core_voltage);
root = api_add_string(root, "core voltage", buf, true);
}
root = api_add_uint64(root, "rx header crc", &l->rx_header_crc, false);
root = api_add_uint64(root, "rx body crc", &l->rx_body_crc, false);
root = api_add_uint64(root, "rx header to", &l->rx_header_timeouts, false);
root = api_add_uint64(root, "rx body to", &l->rx_body_timeouts, false);
root = api_add_uint64(root, "cn fifo full", &l->core_nonce_fifo_full, false);
root = api_add_uint64(root, "an fifo full", &l->array_nonce_fifo_full, false);
root = api_add_uint64(root, "stats overrun", &l->stats_overrun, false);
}
return root;
}
static void hfa_statline_before(char *buf, size_t bufsiz, struct cgpu_info *hashfast)
{
struct hashfast_info *info = hashfast->device_data;
double max_temp, max_volt;
struct hf_g1_die_data *d;
int i;
max_temp = max_volt = 0.0;
for (i = 0; i < info->asic_count; i++) {
double temp;
int j;
d = &info->die_status[i];
temp = GN_DIE_TEMPERATURE(d->die.die_temperature);
if (temp > max_temp)
max_temp = temp;
for (j = 0; j < 6; j++) {
double volt = GN_CORE_VOLTAGE(d->die.core_voltage[j]);
if (volt > max_volt)
max_volt = volt;
}
}
tailsprintf(buf, bufsiz, " max%3.0fC %3.2fV | ", max_temp, max_volt);
}
static void hfa_init(struct cgpu_info __maybe_unused *hashfast)
{
}
static void hfa_free_all_work(struct hashfast_info *info)
{
while (info->device_sequence_tail != info->hash_sequence_head) {
struct work *work;
if (++info->hash_sequence_tail >= info->num_sequence)
info->hash_sequence_tail = 0;
if (unlikely(!(work = info->works[info->hash_sequence_tail])))
break;
free_work(work);
info->works[info->hash_sequence_tail] = NULL;
}
}
static void hfa_shutdown(struct thr_info *thr)
{
struct cgpu_info *hashfast = thr->cgpu;
struct hashfast_info *info = hashfast->device_data;
hfa_send_shutdown(hashfast);
pthread_join(info->read_thr, NULL);
hfa_free_all_work(info);
hfa_clear_readbuf(hashfast);
free(info->works);
free(info->die_statistics);
free(info->die_status);
free(info);
}
struct device_drv hashfast_drv = {
.drv_id = DRIVER_hashfast,
.dname = "Hashfast",
.name = "HFA",
.max_diff = 256.0, // Limit max diff to get some nonces back regardless
.drv_detect = hfa_detect,
.thread_prepare = hfa_prepare,
.hash_work = &hash_driver_work,
.scanwork = hfa_scanwork,
.get_api_stats = hfa_api_stats,
.get_statline_before = hfa_statline_before,
.reinit_device = hfa_init,
.thread_shutdown = hfa_shutdown,
};