diff --git a/smallpt.cpp b/smallpt.cpp
index 61e2eda..da985ab 100644
--- a/smallpt.cpp
+++ b/smallpt.cpp
@@ -1,33 +1,111 @@
-#include <math.h> // smallpt, a Path Tracer by Kevin Beason, 2008
-#include <stdlib.h> // Make : g++ -O3 -fopenmp smallpt.cpp -o smallpt
-#include <stdio.h> // Remove "-fopenmp" for g++ version < 4.2
-struct Vec { // Usage: time ./smallpt 5000 && xv image.ppm
- double x, y, z; // position, also color (r,g,b)
- Vec(double x_=0, double y_=0, double z_=0){ x=x_; y=y_; z=z_; }
- Vec operator+(const Vec &b) const { return Vec(x+b.x,y+b.y,z+b.z); }
- Vec operator-(const Vec &b) const { return Vec(x-b.x,y-b.y,z-b.z); }
- Vec operator*(double b) const { return Vec(x*b,y*b,z*b); }
- Vec mult(const Vec &b) const { return Vec(x*b.x,y*b.y,z*b.z); }
- Vec& norm(){ return *this = *this * (1/sqrt(x*x+y*y+z*z)); }
- double dot(const Vec &b) const { return x*b.x+y*b.y+z*b.z; } // cross:
- Vec operator%(Vec&b){return Vec(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);}
+/* smallpt, a Path Tracer by Kevin Beason, 2008
+ * Make : g++ -O3 -fopenmp smallpt.cpp -o smallpt
+ * Remove "-fopenmp" for g++ version < 4.2
+ * Usage: time ./smallpt 5000 && xv image.ppm
+ */
+#include <math.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+typedef double F;
+inline F Fsqrt (F x) { return sqrt(x); }
+inline F Fabs (F x) { return fabs(x); }
+
+struct Vec {
+ F x; // position, also color (r,g,b)
+ F y;
+ F z;
+
+ Vec (F x_ = 0, F y_ = 0, F z_ = 0)
+ {
+ x = x_;
+ y = y_;
+ z = z_;
+ }
+
+ Vec operator + (const Vec &b) const
+ {
+ return Vec(x + b.x, y + b.y, z + b.z);
+ }
+
+ Vec operator - (const Vec &b) const
+ {
+ return Vec(x - b.x, y - b.y, z - b.z);
+ }
+
+ Vec operator * (F b) const
+ {
+ return Vec(x * b, y * b, z * b);
+ }
+
+ Vec mult (const Vec &b) const
+ {
+ return Vec(x * b.x, y * b.y, z * b.z);
+ }
+
+ Vec & normalize () {
+ return *this = *this * (1 / Fsqrt(x * x + y * y + z * z));
+ }
+
+ F dot (const Vec &b) const
+ {
+ return x * b.x + y * b.y + z * b.z;
+ }
+
+ // cross product
+ Vec operator % (Vec &b)
+ {
+ return Vec(y * b.z - z * b.y,
+ z * b.x - x * b.z,
+ x * b.y - y * b.x);
+ }
+};
+
+struct Ray {
+ Vec origin;
+ Vec direction;
+
+ Ray (Vec origin_, Vec direction_)
+ : origin(origin_), direction(direction_)
+ {}
};
-struct Ray { Vec o, d; Ray(Vec o_, Vec d_) : o(o_), d(d_) {} };
-enum Refl_t { DIFF, SPEC, REFR }; // material types, used in radiance()
+
+// material types, used in radiance()
+enum Refl_t { DIFF, SPEC, REFR };
+
struct Sphere {
- double rad; // radius
- Vec p, e, c; // position, emission, color
- Refl_t refl; // reflection type (DIFFuse, SPECular, REFRactive)
- Sphere(double rad_, Vec p_, Vec e_, Vec c_, Refl_t refl_):
- rad(rad_), p(p_), e(e_), c(c_), refl(refl_) {}
- double intersect(const Ray &r) const { // returns distance, 0 if nohit
- Vec op = p-r.o; // Solve t^2*d.d + 2*t*(o-p).d + (o-p).(o-p)-R^2 = 0
- double t, eps=1e-4, b=op.dot(r.d), det=b*b-op.dot(op)+rad*rad;
- if (det<0) return 0; else det=sqrt(det);
- return (t=b-det)>eps ? t : ((t=b+det)>eps ? t : 0);
+ F radius; // radius
+ Vec position;
+ Vec emission;
+ Vec color;
+ Refl_t reflection_type;
+
+ Sphere (F radius_, Vec position_, Vec emission_, Vec color_,
+ Refl_t reflection_type_)
+ : radius(radius_), p(p_), e(e_), c(c_), refl(refl_)
+ {}
+
+ // returns distance, 0 if nohit
+ F intersect (const Ray &r) const
+ {
+ /* Solve :
+ * t^2 * d . d + 2 * t * (o - p) . d + (o - p) . (o - p) - R^2 = 0
+ */
+ Vec op = p - r.origin;
+ F t;
+ F eps = 1e-4;
+ F b = op.dot(r.direction);
+ F det = b * b - op.dot(op) + radius * radius;
+ if (det < 0)
+ return 0;
+ else
+ det = Fsqrt(det);
+ return (t = b-det) > eps ? t : ((t = b + det) > eps ? t : 0);
}
};
-Sphere spheres[] = {//Scene: radius, position, emission, color, material
+
+//Scene: radius, position, emission, color, material
+Sphere g_spheres[] = {
Sphere(1e5, Vec( 1e5+1,40.8,81.6), Vec(),Vec(.75,.25,.25),DIFF),//Left
Sphere(1e5, Vec(-1e5+99,40.8,81.6),Vec(),Vec(.25,.25,.75),DIFF),//Rght
Sphere(1e5, Vec(50,40.8, 1e5), Vec(),Vec(.75,.75,.75),DIFF),//Back
@@ -38,56 +116,116 @@ Sphere spheres[] = {//Scene: radius, position, emission, color, material
Sphere(16.5,Vec(73,16.5,78), Vec(),Vec(1,1,1)*.999, REFR),//Glas
Sphere(600, Vec(50,681.6-.27,81.6),Vec(12,12,12), Vec(), DIFF) //Lite
};
-inline double clamp(double x){ return x<0 ? 0 : x>1 ? 1 : x; }
-inline int toInt(double x){ return int(pow(clamp(x),1/2.2)*255+.5); }
-inline bool intersect(const Ray &r, double &t, int &id){
- double n=sizeof(spheres)/sizeof(Sphere), d, inf=t=1e20;
- for(int i=int(n);i--;) if((d=spheres[i].intersect(r))&&d<t){t=d;id=i;}
- return t<inf;
+
+inline F clamp (F x)
+{
+ return x < 0 ? 0 : x > 1 ? 1 : x;
+}
+
+inline int toInt (F x)
+{
+ return int(pow(clamp(x), 1 / 2.2) * 255 + .5);
}
-Vec radiance(const Ray &r, int depth, unsigned short *Xi){
- double t; // distance to intersection
- int id=0; // id of intersected object
- if (!intersect(r, t, id)) return Vec(); // if miss, return black
- const Sphere &obj = spheres[id]; // the hit object
- Vec x=r.o+r.d*t, n=(x-obj.p).norm(), nl=n.dot(r.d)<0?n:n*-1, f=obj.c;
- double p = f.x>f.y && f.x>f.z ? f.x : f.y>f.z ? f.y : f.z; // max refl
- if (++depth>5) if (erand48(Xi)<p) f=f*(1/p); else return obj.e; //R.R.
- if (obj.refl == DIFF){ // Ideal DIFFUSE reflection
- double r1=2*M_PI*erand48(Xi), r2=erand48(Xi), r2s=sqrt(r2);
- Vec w=nl, u=((fabs(w.x)>.1?Vec(0,1):Vec(1))%w).norm(), v=w%u;
- Vec d = (u*cos(r1)*r2s + v*sin(r1)*r2s + w*sqrt(1-r2)).norm();
- return obj.e + f.mult(radiance(Ray(x,d),depth,Xi));
- } else if (obj.refl == SPEC) // Ideal SPECULAR reflection
- return obj.e + f.mult(radiance(Ray(x,r.d-n*2*n.dot(r.d)),depth,Xi));
- Ray reflRay(x, r.d-n*2*n.dot(r.d)); // Ideal dielectric REFRACTION
- bool into = n.dot(nl)>0; // Ray from outside going in?
- double nc=1, nt=1.5, nnt=into?nc/nt:nt/nc, ddn=r.d.dot(nl), cos2t;
- if ((cos2t=1-nnt*nnt*(1-ddn*ddn))<0) // Total internal reflection
- return obj.e + f.mult(radiance(reflRay,depth,Xi));
- Vec tdir = (r.d*nnt - n*((into?1:-1)*(ddn*nnt+sqrt(cos2t)))).norm();
- double a=nt-nc, b=nt+nc, R0=a*a/(b*b), c = 1-(into?-ddn:tdir.dot(n));
- double Re=R0+(1-R0)*c*c*c*c*c,Tr=1-Re,P=.25+.5*Re,RP=Re/P,TP=Tr/(1-P);
- return obj.e + f.mult(depth>2 ? (erand48(Xi)<P ? // Russian roulette
- radiance(reflRay,depth,Xi)*RP:radiance(Ray(x,tdir),depth,Xi)*TP) :
- radiance(reflRay,depth,Xi)*Re+radiance(Ray(x,tdir),depth,Xi)*Tr);
+
+inline bool intersect (const Ray &r, F &t, int &id)
+{
+ int i = sizeof(g_spheres) / sizeof(Sphere);
+ F d;
+ F inf = 1e20;
+ t = inf;
+ while (i--) {
+ if ((d = spheres[i].intersect(r)) && d < t) {
+ t = d;
+ id = i;
+ }
+ }
+ return t < inf;
+}
+
+Vec radiance (const Ray &r, int depth, unsigned short *Xi)
+{
+ F t; // Distance to intersection
+ int id = 0; // Id of intersected object
+ if (! intersect(r, t, id)) // If miss, return black
+ return Vec();
+ const Sphere &obj = spheres[id]; // The hit object
+ Vec x = r.origin + r.direction * t;
+ Vec n = (x - obj.position).normalize();
+ Vec nl = n.dot(r.direction) < 0 ? n : n * -1;
+ Vec f = obj.c;
+ F p = f.x > f.y && f.x > f.z ? f.x : f.y > f.z ? f.y : f.z; // max refl
+ if (++depth > 5)
+ if (erand48(Xi) < p)
+ f = f * (1 / p);
+ else
+ return obj.emission; //R.R.
+ if (obj.reflection_type == DIFF) { // Ideal diffuse reflection
+ F r1 = 2 * M_PI * erand48(Xi);
+ F r2 = erand48(Xi);
+ F r2s = Fsqrt(r2);
+ Vec w = nl;
+ Vec u = ((Fabs(w.x) > .1 ? Vec(0,1) : Vec(1)) % w).normalize();
+ Vec v= w % u;
+ Vec d = (u * cos(r1) * r2s +
+ v * sin(r1) * r2s +
+ w * Fsqrt(1 - r2)).normalize();
+ return obj.emission + f.mult(radiance(Ray(x, d), depth, Xi));
+ }
+ else if (obj.refl == SPEC) // Ideal specular reflection
+ return obj.emission +
+ f.mult(radiance(Ray(x, r.direction - n * 2 * n.dot(r.direction)),
+ depth, Xi));
+ else { // Ideal dielectric refraction
+ Ray reflRay(x, r.direction - n * 2 * n.dot(r.direction));
+ bool into = n.dot(nl) > 0; // Ray from outside going in?
+ F nc = 1;
+ F nt = 1.5;
+ F nnt = into ? nc / nt : nt / nc;
+ F ddn = r.direction.dot(nl);
+ F cos2t;
+ cos2t = 1 - nnt * nnt * (1 - ddn * ddn);
+ if (cos2t < 0) // Total internal reflection
+ return obj.emission + f.mult(radiance(reflRay, depth, Xi));
+ Vec tdir = (r.direction * nnt - n *
+ ((into ? 1 : -1) *
+ (ddn * nnt + Fsqrt(cos2t)))).normalize();
+ F a = nt - nc;
+ F b = nt + nc;
+ F R0 = a * a / (b * b);
+ F c = 1 - (into ? -ddn : tdir.dot(n));
+ F Re = R0 + (1 - R0) * c * c * c * c * c;
+ F Tr = 1 - Re;
+ F P = .25 + .5 * Re;
+ F RP = Re / P;
+ F TP = Tr / (1 - P);
+ return obj.emission +
+ f.mult(depth > 2 ?
+ (erand48(Xi) < P ? // Russian roulette
+ radiance(reflRay, depth, Xi) * RP :
+ radiance(Ray(x, tdir), depth, Xi) * TP) :
+ radiance(reflRay, depth, Xi) * Re +
+ radiance(Ray(x, tdir), depth, Xi) * Tr);
}
-int main(int argc, char *argv[]){
- int w=1024, h=768, samps = argc==2 ? atoi(argv[1])/4 : 1; // # samples
- Ray cam(Vec(50,52,295.6), Vec(0,-0.042612,-1).norm()); // cam pos, dir
- Vec cx=Vec(w*.5135/h), cy=(cx%cam.d).norm()*.5135, r, *c=new Vec[w*h];
+
+int main (int argc, char *argv[])
+{
+ int w = 1024;
+ int h = 768;
+ int samples = argc == 2 ? atoi(argv[1]) / 4 : 1;
+ Ray camera(Vec(50,52,295.6), Vec(0,-0.042612,-1).normalize());
+ Vec cx=Vec(w*.5135/h), cy=(cx%camera.direction).norm()*.5135, r, *c=new Vec[w*h];
#pragma omp parallel for schedule(dynamic, 1) private(r) // OpenMP
for (int y=0; y<h; y++){ // Loop over image rows
- fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samps*4,100.*y/(h-1));
- for (unsigned short x=0, Xi[3]={0,0,y*y*y}; x<w; x++) // Loop cols
+ fprintf(stderr,"\rRendering (%d spp) %5.2f%%",samples*4,100.*y/(h-1));
+ for (unsigned short x=0, Xi[3]={0,0,static_cast<unsigned short>(y*y*y)}; x<w; x++) // Loop cols
for (int sy=0, i=(h-y-1)*w+x; sy<2; sy++) // 2x2 subpixel rows
for (int sx=0; sx<2; sx++, r=Vec()){ // 2x2 subpixel cols
- for (int s=0; s<samps; s++){
- double r1=2*erand48(Xi), dx=r1<1 ? sqrt(r1)-1: 1-sqrt(2-r1);
- double r2=2*erand48(Xi), dy=r2<1 ? sqrt(r2)-1: 1-sqrt(2-r2);
+ for (int s=0; s<samples; s++){
+ F r1=2*erand48(Xi), dx=r1<1 ? Fsqrt(r1)-1: 1-Fsqrt(2-r1);
+ F r2=2*erand48(Xi), dy=r2<1 ? Fsqrt(r2)-1: 1-Fsqrt(2-r2);
Vec d = cx*( ( (sx+.5 + dx)/2 + x)/w - .5) +
- cy*( ( (sy+.5 + dy)/2 + y)/h - .5) + cam.d;
- r = r + radiance(Ray(cam.o+d*140,d.norm()),0,Xi)*(1./samps);
+ cy*( ( (sy+.5 + dy)/2 + y)/h - .5) + camera.direction;
+ r = r + radiance(Ray(camera.origin + d*140,d.norm()),0,Xi)*(1./samples);
} // Camera rays are pushed ^^^^^ forward to start in interior
c[i] = c[i] + Vec(clamp(r.x),clamp(r.y),clamp(r.z))*.25;
}