Hash :
c68cfcdb
Author :
Date :
2023-02-07T00:21:56
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*
Simple DirectMedia Layer
Copyright (C) 1997-2023 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SDL_thread_h_
#define SDL_thread_h_
/**
* \file SDL_thread.h
*
* Header for the SDL thread management routines.
*/
#include "SDL_stdinc.h"
#include "SDL_error.h"
/* Thread synchronization primitives */
#include "SDL_atomic.h"
#include "SDL_mutex.h"
#if (defined(__WIN32__) || defined(__GDK__)) && !defined(__WINRT__)
#include <process.h> /* _beginthreadex() and _endthreadex() */
#endif
#if defined(__OS2__) /* for _beginthread() and _endthread() */
#ifndef __EMX__
#include <process.h>
#else
#include <stdlib.h>
#endif
#endif
#include "begin_code.h"
/* Set up for C function definitions, even when using C++ */
#ifdef __cplusplus
extern "C" {
#endif
/* The SDL thread structure, defined in SDL_thread.c */
struct SDL_Thread;
typedef struct SDL_Thread SDL_Thread;
/* The SDL thread ID */
typedef unsigned long SDL_threadID;
/* Thread local storage ID, 0 is the invalid ID */
typedef unsigned int SDL_TLSID;
/**
* The SDL thread priority.
*
* SDL will make system changes as necessary in order to apply the thread priority.
* Code which attempts to control thread state related to priority should be aware
* that calling SDL_SetThreadPriority may alter such state.
* SDL_HINT_THREAD_PRIORITY_POLICY can be used to control aspects of this behavior.
*
* \note On many systems you require special privileges to set high or time critical priority.
*/
typedef enum {
SDL_THREAD_PRIORITY_LOW,
SDL_THREAD_PRIORITY_NORMAL,
SDL_THREAD_PRIORITY_HIGH,
SDL_THREAD_PRIORITY_TIME_CRITICAL
} SDL_ThreadPriority;
/**
* The function passed to SDL_CreateThread().
*
* \param data what was passed as `data` to SDL_CreateThread()
* \returns a value that can be reported through SDL_WaitThread().
*/
typedef int (SDLCALL * SDL_ThreadFunction) (void *data);
#if (defined(__WIN32__) || defined(__GDK__)) && !defined(__WINRT__)
/**
* \file SDL_thread.h
*
* We compile SDL into a DLL. This means, that it's the DLL which
* creates a new thread for the calling process with the SDL_CreateThread()
* API. There is a problem with this, that only the RTL of the SDL2.DLL will
* be initialized for those threads, and not the RTL of the calling
* application!
*
* To solve this, we make a little hack here.
*
* We'll always use the caller's _beginthread() and _endthread() APIs to
* start a new thread. This way, if it's the SDL2.DLL which uses this API,
* then the RTL of SDL2.DLL will be used to create the new thread, and if it's
* the application, then the RTL of the application will be used.
*
* So, in short:
* Always use the _beginthread() and _endthread() of the calling runtime
* library!
*/
#define SDL_PASSED_BEGINTHREAD_ENDTHREAD
typedef uintptr_t (__cdecl * pfnSDL_CurrentBeginThread)
(void *, unsigned, unsigned (__stdcall *func)(void *),
void * /*arg*/, unsigned, unsigned * /* threadID */);
typedef void (__cdecl * pfnSDL_CurrentEndThread) (unsigned code);
#ifndef SDL_beginthread
#define SDL_beginthread _beginthreadex
#endif
#ifndef SDL_endthread
#define SDL_endthread _endthreadex
#endif
extern DECLSPEC SDL_Thread *SDLCALL
SDL_CreateThread(SDL_ThreadFunction fn, const char *name, void *data,
pfnSDL_CurrentBeginThread pfnBeginThread,
pfnSDL_CurrentEndThread pfnEndThread);
extern DECLSPEC SDL_Thread *SDLCALL
SDL_CreateThreadWithStackSize(SDL_ThreadFunction fn,
const char *name, const size_t stacksize, void *data,
pfnSDL_CurrentBeginThread pfnBeginThread,
pfnSDL_CurrentEndThread pfnEndThread);
#if defined(SDL_CreateThread) && SDL_DYNAMIC_API
#undef SDL_CreateThread
#define SDL_CreateThread(fn, name, data) SDL_CreateThread_REAL(fn, name, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#undef SDL_CreateThreadWithStackSize
#define SDL_CreateThreadWithStackSize(fn, name, stacksize, data) SDL_CreateThreadWithStackSize_REAL(fn, name, stacksize, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#else
#define SDL_CreateThread(fn, name, data) SDL_CreateThread(fn, name, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#define SDL_CreateThreadWithStackSize(fn, name, stacksize, data) SDL_CreateThreadWithStackSize(fn, name, stacksize, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#endif
#elif defined(__OS2__)
/*
* just like the windows case above: We compile SDL2
* into a dll with Watcom's runtime statically linked.
*/
#define SDL_PASSED_BEGINTHREAD_ENDTHREAD
typedef int (*pfnSDL_CurrentBeginThread)(void (*func)(void *), void *, unsigned, void * /*arg*/);
typedef void (*pfnSDL_CurrentEndThread)(void);
#ifndef SDL_beginthread
#define SDL_beginthread _beginthread
#endif
#ifndef SDL_endthread
#define SDL_endthread _endthread
#endif
extern DECLSPEC SDL_Thread *SDLCALL
SDL_CreateThread(SDL_ThreadFunction fn, const char *name, void *data,
pfnSDL_CurrentBeginThread pfnBeginThread,
pfnSDL_CurrentEndThread pfnEndThread);
extern DECLSPEC SDL_Thread *SDLCALL
SDL_CreateThreadWithStackSize(SDL_ThreadFunction fn, const char *name, const size_t stacksize, void *data,
pfnSDL_CurrentBeginThread pfnBeginThread,
pfnSDL_CurrentEndThread pfnEndThread);
#if defined(SDL_CreateThread) && SDL_DYNAMIC_API
#undef SDL_CreateThread
#define SDL_CreateThread(fn, name, data) SDL_CreateThread_REAL(fn, name, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#undef SDL_CreateThreadWithStackSize
#define SDL_CreateThreadWithStackSize(fn, name, stacksize, data) SDL_CreateThreadWithStackSize_REAL(fn, name, stacksize, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#else
#define SDL_CreateThread(fn, name, data) SDL_CreateThread(fn, name, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#define SDL_CreateThreadWithStackSize(fn, name, stacksize, data) SDL_CreateThreadWithStackSize(fn, name, stacksize, data, (pfnSDL_CurrentBeginThread)SDL_beginthread, (pfnSDL_CurrentEndThread)SDL_endthread)
#endif
#else
/**
* Create a new thread with a default stack size.
*
* This is equivalent to calling:
*
* ```c
* SDL_CreateThreadWithStackSize(fn, name, 0, data);
* ```
*
* \param fn the SDL_ThreadFunction function to call in the new thread
* \param name the name of the thread
* \param data a pointer that is passed to `fn`
* \returns an opaque pointer to the new thread object on success, NULL if the
* new thread could not be created; call SDL_GetError() for more
* information.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_CreateThreadWithStackSize
* \sa SDL_WaitThread
*/
extern DECLSPEC SDL_Thread *SDLCALL
SDL_CreateThread(SDL_ThreadFunction fn, const char *name, void *data);
/**
* Create a new thread with a specific stack size.
*
* SDL makes an attempt to report `name` to the system, so that debuggers can
* display it. Not all platforms support this.
*
* Thread naming is a little complicated: Most systems have very small limits
* for the string length (Haiku has 32 bytes, Linux currently has 16, Visual
* C++ 6.0 has _nine_!), and possibly other arbitrary rules. You'll have to
* see what happens with your system's debugger. The name should be UTF-8 (but
* using the naming limits of C identifiers is a better bet). There are no
* requirements for thread naming conventions, so long as the string is
* null-terminated UTF-8, but these guidelines are helpful in choosing a name:
*
* https://stackoverflow.com/questions/149932/naming-conventions-for-threads
*
* If a system imposes requirements, SDL will try to munge the string for it
* (truncate, etc), but the original string contents will be available from
* SDL_GetThreadName().
*
* The size (in bytes) of the new stack can be specified. Zero means "use the
* system default" which might be wildly different between platforms. x86
* Linux generally defaults to eight megabytes, an embedded device might be a
* few kilobytes instead. You generally need to specify a stack that is a
* multiple of the system's page size (in many cases, this is 4 kilobytes, but
* check your system documentation).
*
* In SDL 2.1, stack size will be folded into the original SDL_CreateThread
* function, but for backwards compatibility, this is currently a separate
* function.
*
* \param fn the SDL_ThreadFunction function to call in the new thread
* \param name the name of the thread
* \param stacksize the size, in bytes, to allocate for the new thread stack.
* \param data a pointer that is passed to `fn`
* \returns an opaque pointer to the new thread object on success, NULL if the
* new thread could not be created; call SDL_GetError() for more
* information.
*
* \since This function is available since SDL 2.0.9.
*
* \sa SDL_WaitThread
*/
extern DECLSPEC SDL_Thread *SDLCALL
SDL_CreateThreadWithStackSize(SDL_ThreadFunction fn, const char *name, const size_t stacksize, void *data);
#endif
/**
* Get the thread name as it was specified in SDL_CreateThread().
*
* This is internal memory, not to be freed by the caller, and remains valid
* until the specified thread is cleaned up by SDL_WaitThread().
*
* \param thread the thread to query
* \returns a pointer to a UTF-8 string that names the specified thread, or
* NULL if it doesn't have a name.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_CreateThread
*/
extern DECLSPEC const char *SDLCALL SDL_GetThreadName(SDL_Thread *thread);
/**
* Get the thread identifier for the current thread.
*
* This thread identifier is as reported by the underlying operating system.
* If SDL is running on a platform that does not support threads the return
* value will always be zero.
*
* This function also returns a valid thread ID when called from the main
* thread.
*
* \returns the ID of the current thread.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_GetThreadID
*/
extern DECLSPEC SDL_threadID SDLCALL SDL_ThreadID(void);
/**
* Get the thread identifier for the specified thread.
*
* This thread identifier is as reported by the underlying operating system.
* If SDL is running on a platform that does not support threads the return
* value will always be zero.
*
* \param thread the thread to query
* \returns the ID of the specified thread, or the ID of the current thread if
* `thread` is NULL.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_ThreadID
*/
extern DECLSPEC SDL_threadID SDLCALL SDL_GetThreadID(SDL_Thread * thread);
/**
* Set the priority for the current thread.
*
* Note that some platforms will not let you alter the priority (or at least,
* promote the thread to a higher priority) at all, and some require you to be
* an administrator account. Be prepared for this to fail.
*
* \param priority the SDL_ThreadPriority to set
* \returns 0 on success or a negative error code on failure; call
* SDL_GetError() for more information.
*
* \since This function is available since SDL 2.0.0.
*/
extern DECLSPEC int SDLCALL SDL_SetThreadPriority(SDL_ThreadPriority priority);
/**
* Wait for a thread to finish.
*
* Threads that haven't been detached will remain (as a "zombie") until this
* function cleans them up. Not doing so is a resource leak.
*
* Once a thread has been cleaned up through this function, the SDL_Thread
* that references it becomes invalid and should not be referenced again. As
* such, only one thread may call SDL_WaitThread() on another.
*
* The return code for the thread function is placed in the area pointed to by
* `status`, if `status` is not NULL.
*
* You may not wait on a thread that has been used in a call to
* SDL_DetachThread(). Use either that function or this one, but not both, or
* behavior is undefined.
*
* It is safe to pass a NULL thread to this function; it is a no-op.
*
* Note that the thread pointer is freed by this function and is not valid
* afterward.
*
* \param thread the SDL_Thread pointer that was returned from the
* SDL_CreateThread() call that started this thread
* \param status pointer to an integer that will receive the value returned
* from the thread function by its 'return', or NULL to not
* receive such value back.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_CreateThread
* \sa SDL_DetachThread
*/
extern DECLSPEC void SDLCALL SDL_WaitThread(SDL_Thread * thread, int *status);
/**
* Let a thread clean up on exit without intervention.
*
* A thread may be "detached" to signify that it should not remain until
* another thread has called SDL_WaitThread() on it. Detaching a thread is
* useful for long-running threads that nothing needs to synchronize with or
* further manage. When a detached thread is done, it simply goes away.
*
* There is no way to recover the return code of a detached thread. If you
* need this, don't detach the thread and instead use SDL_WaitThread().
*
* Once a thread is detached, you should usually assume the SDL_Thread isn't
* safe to reference again, as it will become invalid immediately upon the
* detached thread's exit, instead of remaining until someone has called
* SDL_WaitThread() to finally clean it up. As such, don't detach the same
* thread more than once.
*
* If a thread has already exited when passed to SDL_DetachThread(), it will
* stop waiting for a call to SDL_WaitThread() and clean up immediately. It is
* not safe to detach a thread that might be used with SDL_WaitThread().
*
* You may not call SDL_WaitThread() on a thread that has been detached. Use
* either that function or this one, but not both, or behavior is undefined.
*
* It is safe to pass NULL to this function; it is a no-op.
*
* \param thread the SDL_Thread pointer that was returned from the
* SDL_CreateThread() call that started this thread
*
* \since This function is available since SDL 2.0.2.
*
* \sa SDL_CreateThread
* \sa SDL_WaitThread
*/
extern DECLSPEC void SDLCALL SDL_DetachThread(SDL_Thread * thread);
/**
* Create a piece of thread-local storage.
*
* This creates an identifier that is globally visible to all threads but
* refers to data that is thread-specific.
*
* \returns the newly created thread local storage identifier or 0 on error.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_TLSGet
* \sa SDL_TLSSet
*/
extern DECLSPEC SDL_TLSID SDLCALL SDL_TLSCreate(void);
/**
* Get the current thread's value associated with a thread local storage ID.
*
* \param id the thread local storage ID
* \returns the value associated with the ID for the current thread or NULL if
* no value has been set; call SDL_GetError() for more information.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_TLSCreate
* \sa SDL_TLSSet
*/
extern DECLSPEC void * SDLCALL SDL_TLSGet(SDL_TLSID id);
/**
* Set the current thread's value associated with a thread local storage ID.
*
* The function prototype for `destructor` is:
*
* ```c
* void destructor(void *value)
* ```
*
* where its parameter `value` is what was passed as `value` to SDL_TLSSet().
*
* \param id the thread local storage ID
* \param value the value to associate with the ID for the current thread
* \param destructor a function called when the thread exits, to free the
* value
* \returns 0 on success or a negative error code on failure; call
* SDL_GetError() for more information.
*
* \since This function is available since SDL 2.0.0.
*
* \sa SDL_TLSCreate
* \sa SDL_TLSGet
*/
extern DECLSPEC int SDLCALL SDL_TLSSet(SDL_TLSID id, const void *value, void (SDLCALL *destructor)(void*));
/**
* Cleanup all TLS data for this thread.
*
* \since This function is available since SDL 2.0.16.
*/
extern DECLSPEC void SDLCALL SDL_TLSCleanup(void);
/* Ends C function definitions when using C++ */
#ifdef __cplusplus
}
#endif
#include "close_code.h"
#endif /* SDL_thread_h_ */
/* vi: set ts=4 sw=4 expandtab: */