Hash :
5a0c8198
Author :
Date :
2022-07-19T22:03:02
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
/*
Simple DirectMedia Layer
Copyright (C) 1997-2022 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "../SDL_internal.h"
/* Functions for audio drivers to perform runtime conversion of audio format */
/* FIXME: Channel weights when converting from more channels to fewer may need to be adjusted, see https://msdn.microsoft.com/en-us/library/windows/desktop/ff819070(v=vs.85).aspx
*/
#include "SDL.h"
#include "SDL_audio.h"
#include "SDL_audio_c.h"
#include "SDL_loadso.h"
#include "../SDL_dataqueue.h"
#include "SDL_cpuinfo.h"
#define DEBUG_AUDIOSTREAM 0
#ifdef __ARM_NEON
#define HAVE_NEON_INTRINSICS 1
#endif
#ifdef __SSE__
#define HAVE_SSE_INTRINSICS 1
#endif
#ifdef __SSE3__
#define HAVE_SSE3_INTRINSICS 1
#endif
#if defined(HAVE_IMMINTRIN_H) && !defined(SDL_DISABLE_IMMINTRIN_H)
#define HAVE_AVX_INTRINSICS 1
#endif
#if defined __clang__
# if (!__has_attribute(target))
# undef HAVE_AVX_INTRINSICS
# endif
# if (defined(_MSC_VER) || defined(__SCE__)) && !defined(__AVX__)
# undef HAVE_AVX_INTRINSICS
# endif
#elif defined __GNUC__
# if (__GNUC__ < 4) || (__GNUC__ == 4 && __GNUC_MINOR__ < 9)
# undef HAVE_AVX_INTRINSICS
# endif
#endif
/*
* CHANNEL LAYOUTS AS SDL EXPECTS THEM:
*
* (Even if the platform expects something else later, that
* SDL will swizzle between the app and the platform).
*
* Abbreviations:
* - FRONT=single mono speaker
* - FL=front left speaker
* - FR=front right speaker
* - FC=front center speaker
* - BL=back left speaker
* - BR=back right speaker
* - SR=side right speaker
* - SL=side left speaker
* - BC=back center speaker
* - LFE=low-frequency speaker
*
* These are listed in the order they are laid out in
* memory, so "FL+FR" means "the front left speaker is
* layed out in memory first, then the front right, then
* it repeats for the next audio frame".
*
* 1 channel (mono) layout: FRONT
* 2 channels (stereo) layout: FL+FR
* 3 channels (2.1) layout: FL+FR+LFE
* 4 channels (quad) layout: FL+FR+BL+BR
* 5 channels (4.1) layout: FL+FR+LFE+BL+BR
* 6 channels (5.1) layout: FL+FR+FC+LFE+BL+BR
* 7 channels (6.1) layout: FL+FR+FC+LFE+BC+SL+SR
* 8 channels (7.1) layout: FL+FR+FC+LFE+BL+BR+SL+SR
*/
#if 0 /* !!! FIXME: these need to be updated to match the new scalar code. */
#if HAVE_AVX_INTRINSICS
/* MSVC will always accept AVX intrinsics when compiling for x64 */
#if defined(__clang__) || defined(__GNUC__)
__attribute__((target("avx")))
#endif
/* Convert from 5.1 to stereo. Average left and right, distribute center, discard LFE. */
static void SDLCALL
SDL_Convert51ToStereo_AVX(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i = cvt->len_cvt / (sizeof (float) * 6);
const float two_fifths_f = 1.0f / 2.5f;
const __m256 two_fifths_v = _mm256_set1_ps(two_fifths_f);
const __m256 half = _mm256_set1_ps(0.5f);
LOG_DEBUG_CONVERT("5.1", "stereo (using AVX)");
SDL_assert(format == AUDIO_F32SYS);
/* SDL's 5.1 layout: FL+FR+FC+LFE+BL+BR */
while (i >= 4) {
__m256 in0 = _mm256_loadu_ps(src + 0); /* 0FL 0FR 0FC 0LF 0BL 0BR 1FL 1FR */
__m256 in1 = _mm256_loadu_ps(src + 8); /* 1FC 1LF 1BL 1BR 2FL 2FR 2FC 2LF */
__m256 in2 = _mm256_loadu_ps(src + 16); /* 2BL 2BR 3FL 3FR 3FC 3LF 3BL 3BR */
/* 0FL 0FR 0FC 0LF 2FL 2FR 2FC 2LF */
__m256 temp0 = _mm256_blend_ps(in0, in1, 0xF0);
/* 1FC 1LF 1BL 1BR 3FC 3LF 3BL 3BR */
__m256 temp1 = _mm256_blend_ps(in1, in2, 0xF0);
/* 0FC 0FC 1FC 1FC 2FC 2FC 3FC 3FC */
__m256 fc_distributed = _mm256_mul_ps(half, _mm256_shuffle_ps(temp0, temp1, _MM_SHUFFLE(0, 0, 2, 2)));
/* 0FL 0FR 1BL 1BR 2FL 2FR 3BL 3BR */
__m256 permuted0 = _mm256_blend_ps(temp0, temp1, 0xCC);
/* 0BL 0BR 1FL 1FR 2BL 2BR 3FL 3FR */
__m256 permuted1 = _mm256_permute2f128_ps(in0, in2, 0x21);
/* 0FL 0FR 1BL 1BR 2FL 2FR 3BL 3BR */
/* + 0BL 0BR 1FL 1FR 2BL 2BR 3FL 3FR */
/* = 0L 0R 1L 1R 2L 2R 3L 3R */
__m256 out = _mm256_add_ps(permuted0, permuted1);
out = _mm256_add_ps(out, fc_distributed);
out = _mm256_mul_ps(out, two_fifths_v);
_mm256_storeu_ps(dst, out);
i -= 4; src += 24; dst += 8;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float front_center_distributed = src[2] * 0.5f;
dst[0] = (src[0] + front_center_distributed + src[4]) * two_fifths_f; /* left */
dst[1] = (src[1] + front_center_distributed + src[5]) * two_fifths_f; /* right */
i--; src += 6; dst+=2;
}
cvt->len_cvt /= 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
#endif
#if HAVE_SSE_INTRINSICS
/* Convert from 5.1 to stereo. Average left and right, distribute center, discard LFE. */
static void SDLCALL
SDL_Convert51ToStereo_SSE(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i = cvt->len_cvt / (sizeof (float) * 6);
const float two_fifths_f = 1.0f / 2.5f;
const __m128 two_fifths_v = _mm_set1_ps(two_fifths_f);
const __m128 half = _mm_set1_ps(0.5f);
LOG_DEBUG_CONVERT("5.1", "stereo (using SSE)");
SDL_assert(format == AUDIO_F32SYS);
/* SDL's 5.1 layout: FL+FR+FC+LFE+BL+BR */
/* Just use unaligned load/stores, if the memory at runtime is */
/* aligned it'll be just as fast on modern processors */
while (i >= 2) {
/* Two 5.1 samples (12 floats) fit nicely in three 128bit */
/* registers. Using shuffles they can be rearranged so that */
/* the conversion math can be vectorized. */
__m128 in0 = _mm_loadu_ps(src); /* 0FL 0FR 0FC 0LF */
__m128 in1 = _mm_loadu_ps(src + 4); /* 0BL 0BR 1FL 1FR */
__m128 in2 = _mm_loadu_ps(src + 8); /* 1FC 1LF 1BL 1BR */
/* 0FC 0FC 1FC 1FC */
__m128 fc_distributed = _mm_mul_ps(half, _mm_shuffle_ps(in0, in2, _MM_SHUFFLE(0, 0, 2, 2)));
/* 0FL 0FR 1BL 1BR */
__m128 blended = _mm_shuffle_ps(in0, in2, _MM_SHUFFLE(3, 2, 1, 0));
/* 0FL 0FR 1BL 1BR */
/* + 0BL 0BR 1FL 1FR */
/* = 0L 0R 1L 1R */
__m128 out = _mm_add_ps(blended, in1);
out = _mm_add_ps(out, fc_distributed);
out = _mm_mul_ps(out, two_fifths_v);
_mm_storeu_ps(dst, out);
i -= 2; src += 12; dst += 4;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float front_center_distributed = src[2] * 0.5f;
dst[0] = (src[0] + front_center_distributed + src[4]) * two_fifths_f; /* left */
dst[1] = (src[1] + front_center_distributed + src[5]) * two_fifths_f; /* right */
i--; src += 6; dst+=2;
}
cvt->len_cvt /= 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
#endif
#if HAVE_NEON_INTRINSICS
/* Convert from 5.1 to stereo. Average left and right, distribute center, discard LFE. */
static void SDLCALL
SDL_Convert51ToStereo_NEON(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i = cvt->len_cvt / (sizeof (float) * 6);
const float two_fifths_f = 1.0f / 2.5f;
const float32x4_t two_fifths_v = vdupq_n_f32(two_fifths_f);
const float32x4_t half = vdupq_n_f32(0.5f);
LOG_DEBUG_CONVERT("5.1", "stereo (using NEON)");
SDL_assert(format == AUDIO_F32SYS);
/* SDL's 5.1 layout: FL+FR+FC+LFE+BL+BR */
/* Just use unaligned load/stores, it's the same NEON instructions and
hopefully even unaligned NEON is faster than the scalar fallback. */
while (i >= 2) {
/* Two 5.1 samples (12 floats) fit nicely in three 128bit */
/* registers. Using shuffles they can be rearranged so that */
/* the conversion math can be vectorized. */
const float32x4_t in0 = vld1q_f32(src); /* 0FL 0FR 0FC 0LF */
const float32x4_t in1 = vld1q_f32(src + 4); /* 0BL 0BR 1FL 1FR */
const float32x4_t in2 = vld1q_f32(src + 8); /* 1FC 1LF 1BL 1BR */
/* 0FC 0FC 1FC 1FC */
const float32x4_t fc_distributed = vmulq_f32(half, vcombine_f32(vdup_lane_f32(vget_high_f32(in0), 0), vdup_lane_f32(vget_low_f32(in2), 0)));
/* 0FL 0FR 1BL 1BR */
const float32x4_t blended = vcombine_f32(vget_low_f32(in0), vget_high_f32(in2));
/* 0FL 0FR 1BL 1BR */
/* + 0BL 0BR 1FL 1FR */
/* = 0L 0R 1L 1R */
float32x4_t out = vaddq_f32(blended, in1);
out = vaddq_f32(out, fc_distributed);
out = vmulq_f32(out, two_fifths_v);
vst1q_f32(dst, out);
i -= 2; src += 12; dst += 4;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
const float front_center_distributed = src[2] * 0.5f;
dst[0] = (src[0] + front_center_distributed + src[4]) * two_fifths_f; /* left */
dst[1] = (src[1] + front_center_distributed + src[5]) * two_fifths_f; /* right */
i--; src += 6; dst+=2;
}
cvt->len_cvt /= 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
#endif
#endif
/* Channel conversion is now mostly following this scheme, borrowed from FNA
(which is following the scheme of XNA)...
https://github.com/FNA-XNA/FAudio/blob/master/src/matrix_defaults.inl */
/* CONVERT FROM MONO... */
/* Mono duplicates to stereo and all other channels are silenced. */
#define CVT_MONO_TO(toname, tonamestr, num_channels, zeroingcode) \
static void SDLCALL SDL_ConvertMonoTo##toname(SDL_AudioCVT * cvt, SDL_AudioFormat format) { \
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 1; \
float *dst = ((float *) (cvt->buf + cvt->len_cvt * num_channels)) - num_channels; \
int i; \
LOG_DEBUG_CONVERT("mono", tonamestr); \
SDL_assert(format == AUDIO_F32SYS); \
SDL_assert(num_channels >= 2); \
for (i = cvt->len_cvt / sizeof (float); i; i--, src--, dst -= num_channels) { \
dst[0] = dst[1] = *src; \
zeroingcode; \
} \
cvt->len_cvt *= num_channels; \
if (cvt->filters[++cvt->filter_index]) { \
cvt->filters[cvt->filter_index] (cvt, format); \
} \
}
CVT_MONO_TO(Stereo, "stereo", 2, {});
CVT_MONO_TO(21, "2.1", 3, { dst[2] = 0.0f; });
CVT_MONO_TO(Quad, "quad", 4, { dst[2] = dst[3] = 0.0f; });
CVT_MONO_TO(41, "4.1", 5, { dst[2] = dst[3] = dst[4] = 0.0f; });
CVT_MONO_TO(51, "5.1", 6, { dst[2] = dst[3] = dst[4] = dst[5] = 0.0f; });
CVT_MONO_TO(61, "6.1", 7, { dst[2] = dst[3] = dst[4] = dst[5] = dst[6] = 0.0f; });
CVT_MONO_TO(71, "7.1", 8, { dst[2] = dst[3] = dst[4] = dst[5] = dst[6] = dst[7] = 0.0f; });
#undef CVT_MONO_TO
/* CONVERT FROM STEREO... */
/* Stereo duplicates to two front speakers and all other channels are silenced. */
#if HAVE_SSE3_INTRINSICS
/* Convert from stereo to mono. Average left and right. */
static void SDLCALL
SDL_ConvertStereoToMono_SSE3(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const __m128 divby2 = _mm_set1_ps(0.5f);
float *dst = (float *) cvt->buf;
const float *src = dst;
int i = cvt->len_cvt / 8;
LOG_DEBUG_CONVERT("stereo", "mono (using SSE3)");
SDL_assert(format == AUDIO_F32SYS);
/* Do SSE blocks as long as we have 16 bytes available.
Just use unaligned load/stores, if the memory at runtime is
aligned it'll be just as fast on modern processors */
while (i >= 4) { /* 4 * float32 */
_mm_storeu_ps(dst, _mm_mul_ps(_mm_hadd_ps(_mm_loadu_ps(src), _mm_loadu_ps(src+4)), divby2));
i -= 4; src += 8; dst += 4;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (src[0] + src[1]) * 0.5f;
dst++; i--; src += 2;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
#endif
/* Convert from stereo to mono. Average left and right. */
static void SDLCALL
SDL_ConvertStereoToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("stereo", "mono");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 2); i; --i, src += 2) {
*(dst++) = (src[0] + src[1]) * 0.5f;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
#define CVT_STEREO_TO(toname, tonamestr, num_channels, zeroingcode) \
static void SDLCALL SDL_ConvertStereoTo##toname(SDL_AudioCVT * cvt, SDL_AudioFormat format) { \
int i; \
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 2; \
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 2) * num_channels))) - num_channels; \
LOG_DEBUG_CONVERT("stereo", tonamestr); \
SDL_assert(format == AUDIO_F32SYS); \
SDL_assert(num_channels >= 3); \
for (i = cvt->len_cvt / (sizeof (float) * 2); i; --i, dst -= num_channels, src -= 2) { \
dst[0] = src[0]; \
dst[1] = src[1]; \
zeroingcode; \
} \
cvt->len_cvt = (cvt->len_cvt / 2) * num_channels; \
if (cvt->filters[++cvt->filter_index]) { \
cvt->filters[cvt->filter_index] (cvt, format); \
} \
}
CVT_STEREO_TO(21, "2.1", 3, { dst[2] = 0.0f; });
CVT_STEREO_TO(Quad, "quad", 4, { dst[2] = dst[3] = 0.0f; });
CVT_STEREO_TO(41, "4.1", 5, { dst[2] = dst[3] = dst[4] = 0.0f; });
CVT_STEREO_TO(51, "5.1", 6, { dst[2] = dst[3] = dst[4] = dst[5] = 0.0f; });
CVT_STEREO_TO(61, "6.1", 7, { dst[2] = dst[3] = dst[4] = dst[5] = dst[6] = 0.0f; });
CVT_STEREO_TO(71, "7.1", 8, { dst[2] = dst[3] = dst[4] = dst[5] = dst[6] = dst[7] = 0.0f; });
#undef CVT_STEREO_TO
/* CONVERT FROM 2.1... */
/* 2.1 duplicates to two front speakers (and LFE when available) and all other channels are silenced. */
/* Convert from 2.1 to mono. Average left and right, drop LFE. */
static void SDLCALL
SDL_Convert21ToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("2.1", "mono");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 2); i; --i, src += 3) {
*(dst++) = (src[0] + src[1]) * 0.5f;
}
cvt->len_cvt /= 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
#define CVT_21_TO(toname, tonamestr, num_channels, customcode) \
static void SDLCALL SDL_Convert21To##toname(SDL_AudioCVT * cvt, SDL_AudioFormat format) { \
int i; \
float lf, rf, lfe; \
const float *src = (const float *) (cvt->buf + cvt->len_cvt); \
float *dst = (float *) (cvt->buf + ((cvt->len_cvt / 3) * num_channels)); \
LOG_DEBUG_CONVERT("2.1", tonamestr); \
SDL_assert(format == AUDIO_F32SYS); \
SDL_assert(num_channels >= 2); \
for (i = cvt->len_cvt / (sizeof (float) * 3); i; --i) { \
dst -= num_channels; \
src -= 2; \
lf = src[0]; \
rf = src[1]; \
lfe = src[2]; \
dst[0] = lf; \
dst[1] = rf; \
customcode; \
} \
cvt->len_cvt = (cvt->len_cvt / 3) * num_channels; \
if (cvt->filters[++cvt->filter_index]) { \
cvt->filters[cvt->filter_index] (cvt, format); \
} \
}
CVT_21_TO(Stereo, "stereo", 2, { (void) lfe; });
CVT_21_TO(Quad, "quad", 4, { (void) lfe; dst[2] = dst[3] = 0.0f; });
CVT_21_TO(41, "4.1", 5, { dst[2] = lfe; dst[3] = dst[4] = 0.0f; });
CVT_21_TO(51, "5.1", 6, { dst[2] = 0.0f; dst[3] = lfe; dst[4] = dst[5] = 0.0f; });
CVT_21_TO(61, "6.1", 7, { dst[2] = 0.0f; dst[3] = lfe; dst[4] = dst[5] = dst[6] = 0.0f; });
CVT_21_TO(71, "7.1", 8, { dst[2] = 0.0f; dst[3] = lfe; dst[4] = dst[5] = dst[6] = dst[7] = 0.0f; });
#undef CVT_21_TO
/* CONVERT FROM QUAD... */
static void SDLCALL
SDL_ConvertQuadToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("quad", "mono");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: could benefit from SIMD */
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src += 4) {
*(dst++) = (src[0] + src[1] + src[3] + src[4]) * 0.25f;
}
cvt->len_cvt /= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_ConvertQuadToStereo(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("quad", "stereo");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: could benefit from SIMD */
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src += 4) {
const float fl = src[0];
const float fr = src[1];
const float bl = src[2];
const float br = src[3];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right)...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.421000004f) + (bl * 0.358999997f) + (br * 0.219999999f);
*(dst++) = (fr * 0.421000004f) + (br * 0.358999997f) + (bl * 0.219999999f);
}
cvt->len_cvt = (cvt->len_cvt / 4) * 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_ConvertQuadTo21(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("quad", "2.1");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: could benefit from SIMD */
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src += 4) {
const float fl = src[0];
const float fr = src[1];
const float bl = src[2];
const float br = src[3];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right)...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.421000004f) + (bl * 0.358999997f) + (br * 0.219999999f);
*(dst++) = (fr * 0.421000004f) + (br * 0.358999997f) + (bl * 0.219999999f);
*(dst++) = 0.0f; /* lfe */
}
cvt->len_cvt = (cvt->len_cvt / 4) * 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_ConvertQuadTo41(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 4;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 4) * 5))) - 5;
int i;
LOG_DEBUG_CONVERT("quad", "4.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src -= 4, dst -= 5) {
dst[4] = src[3];
dst[3] = src[2];
dst[2] = 0.0f; /* LFE */
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 4) * 5;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_ConvertQuadTo51(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 4;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 4) * 6))) - 6;
int i;
LOG_DEBUG_CONVERT("quad", "5.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src -= 4, dst -= 6) {
dst[5] = src[3];
dst[4] = src[2];
dst[3] = 0.0f; /* LFE */
dst[2] = 0.0f; /* FC */
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 4) * 6;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_ConvertQuadTo61(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 4;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 4) * 7))) - 7;
int i;
LOG_DEBUG_CONVERT("quad", "6.1");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: I'm skeptical XNA/FNA's conversion is right, here. */
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src -= 4, dst -= 7) {
const float bl = src[2];
const float br = src[3];
dst[6] = br * 0.796000004f;
dst[5] = bl * 0.796000004f;
dst[4] = (bl + br) * 0.5f; /* average BL+BR to BC */
dst[3] = 0.0f; /* LFE */
dst[2] = 0.0f; /* FC */
dst[1] = src[1] * 0.939999998f;
dst[0] = src[0] * 0.939999998f;
}
cvt->len_cvt = (cvt->len_cvt / 4) * 7;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_ConvertQuadTo71(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 4;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 4) * 8))) - 8;
int i;
LOG_DEBUG_CONVERT("quad", "7.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 4); i; --i, src -= 4, dst -= 8) {
dst[7] = 0.0f; /* SR */
dst[6] = 0.0f; /* SL */
dst[5] = src[3];
dst[4] = src[2];
dst[3] = 0.0f; /* LFE */
dst[2] = 0.0f; /* FC */
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 4) * 8;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* CONVERT FROM 4.1... */
static void SDLCALL
SDL_Convert41ToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("4.1", "mono");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src += 5) {
*(dst++) = (src[0] + src[1] + src[3] + src[4]) * 0.25f;
}
cvt->len_cvt /= 5;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert41ToStereo(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("4.1", "stereo");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src += 5) {
const float fl = src[0];
const float fr = src[1];
const float bl = src[3];
const float br = src[4];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.374222219f) + (bl * 0.319111109f) + (br * 0.195555553f);
*(dst++) = (fr * 0.374222219f) + (br * 0.319111109f) + (bl * 0.195555553f);
}
cvt->len_cvt = (cvt->len_cvt / 5) * 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert41To21(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("4.1", "2.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src += 5) {
const float fl = src[0];
const float fr = src[1];
const float lfe = src[2];
const float bl = src[3];
const float br = src[4];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.374222219f) + (bl * 0.319111109f) + (br * 0.195555553f);
*(dst++) = (fr * 0.374222219f) + (br * 0.319111109f) + (bl * 0.195555553f);
*(dst++) = lfe;
}
cvt->len_cvt = (cvt->len_cvt / 5) * 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert41ToQuad(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("4.1", "quad");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src += 5) {
/* !!! FIXME: FNA/XNA mixes a little of the LFE into every channel...but this can't possibly be right, right...? I just drop the LFE and copy the channels. */
*(dst++) = src[0];
*(dst++) = src[1];
*(dst++) = src[3];
*(dst++) = src[4];
}
cvt->len_cvt = (cvt->len_cvt / 5) * 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert41To51(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 5;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 5) * 6))) - 6;
int i;
LOG_DEBUG_CONVERT("4.1", "5.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src -= 5, dst -= 6) {
dst[5] = src[4];
dst[4] = src[3];
dst[3] = src[2];
dst[2] = 0.0f; /* FC */
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 5) * 6;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert41To61(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 5;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 4) * 7))) - 7;
int i;
LOG_DEBUG_CONVERT("4.1", "6.1");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: I'm skeptical XNA/FNA's conversion is right, here. */
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src -= 5, dst -= 7) {
const float bl = src[3];
const float br = src[4];
dst[6] = br * 0.796000004f;
dst[5] = bl * 0.796000004f;
dst[4] = (bl + br) * 0.5f; /* average BL+BR to BC */
dst[3] = src[2];
dst[2] = 0.0f; /* FC */
dst[1] = src[1] * 0.939999998f;
dst[0] = src[0] * 0.939999998f;
}
cvt->len_cvt = (cvt->len_cvt / 5) * 7;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert41To71(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 5;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 5) * 8))) - 8;
int i;
LOG_DEBUG_CONVERT("4.1", "7.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 5); i; --i, src -= 5, dst -= 8) {
dst[7] = 0.0f; /* SR */
dst[6] = 0.0f; /* SL */
dst[5] = src[4];
dst[4] = src[3];
dst[3] = src[2];
dst[2] = 0.0f; /* FC */
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 5) * 8;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* CONVERT FROM 5.1... */
static void SDLCALL
SDL_Convert51ToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("5.1", "mono");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src += 6) {
*(dst++) = (src[0] + src[1] + src[2] + src[4] + src[5]) * 0.200000003f;
}
cvt->len_cvt /= 6;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert51ToStereo(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("5.1", "stereo");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src += 6) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float bl = src[4];
const float br = src[5];
const float extra = 0.090909094f / 4.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * (0.294545442f+extra)) + (fc * (0.208181813f+extra)) + (bl * (0.251818180f+extra)) + (br * (0.154545456f+extra));
*(dst++) = (fr * (0.294545442f+extra)) + (fc * (0.208181813f+extra)) + (br * (0.251818180f+extra)) + (bl * (0.154545456f+extra));
}
cvt->len_cvt = (cvt->len_cvt / 6) * 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert51To21(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("5.1", "2.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src += 6) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bl = src[4];
const float br = src[5];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.324000001f) + (fc * 0.229000002f) + (bl * 0.277000010f) + (br * 0.170000002f);
*(dst++) = (fr * 0.324000001f) + (fc * 0.229000002f) + (br * 0.277000010f) + (bl * 0.170000002f);
*(dst++) = lfe;
}
cvt->len_cvt = (cvt->len_cvt / 6) * 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert51ToQuad(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("5.1", "quad");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src += 6) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float bl = src[4];
const float br = src[5];
const float extra = 0.047619049f / 2.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
*(dst++) = (fl * (0.558095276f+extra)) + (fc * (0.394285709f+extra));
*(dst++) = (fr * (0.558095276f+extra)) + (fc * (0.394285709f+extra));
*(dst++) = bl; /* !!! FIXME: XNA/FNA quiets the back speakers here to ~58%, but I'm copying them through. Not sure why they do it like that. */
*(dst++) = br; /* !!! FIXME: XNA/FNA quiets the back speakers here to ~58%, but I'm copying them through. Not sure why they do it like that. */
}
cvt->len_cvt = (cvt->len_cvt / 6) * 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert51To41(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("5.1", "4.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src += 6) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bl = src[4];
const float br = src[5];
*(dst++) = (fl * 0.586000025f) + (fc * 0.414000005f);
*(dst++) = (fr * 0.586000025f) + (fc * 0.414000005f);
*(dst++) = lfe;
*(dst++) = bl; /* !!! FIXME: XNA/FNA quiets the back speakers here to ~58%, but I'm copying them through. Not sure why they do it like that. */
*(dst++) = br; /* !!! FIXME: XNA/FNA quiets the back speakers here to ~58%, but I'm copying them through. Not sure why they do it like that. */
}
cvt->len_cvt = (cvt->len_cvt / 6) * 5;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert51To61(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 6;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 6) * 7))) - 7;
int i;
LOG_DEBUG_CONVERT("5.1", "6.1");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: I'm skeptical XNA/FNA's conversion is right, here. Why is it quieting the back speakers instead of copying them through as-is? */
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src -= 6, dst -= 7) {
const float bl = src[4];
const float br = src[5];
dst[6] = br * 0.796000004f;
dst[5] = bl * 0.796000004f;
dst[4] = (bl + br) * 0.5f; /* average BL+BR to BC */
dst[3] = src[3];
dst[2] = src[2] * 0.939999998f;
dst[1] = src[1] * 0.939999998f;
dst[0] = src[0] * 0.939999998f;
}
cvt->len_cvt = (cvt->len_cvt / 6) * 7;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert51To71(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 6;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 6) * 8))) - 8;
int i;
LOG_DEBUG_CONVERT("5.1", "7.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 6); i; --i, src -= 6, dst -= 8) {
dst[7] = 0.0f; /* SR */
dst[6] = 0.0f; /* SL */
dst[5] = src[5];
dst[4] = src[4];
dst[3] = src[3];
dst[2] = src[2];
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 6) * 8;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* CONVERT FROM 6.1... */
static void SDLCALL
SDL_Convert61ToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("6.1", "mono");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src += 7) {
*(dst++) = (src[0] + src[1] + src[2] + src[4] + src[5] + src[6]) * 0.166666672f;
}
cvt->len_cvt /= 7;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert61ToStereo(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("6.1", "stereo");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src += 7) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float bc = src[4];
const float sl = src[5];
const float sr = src[6];
const float extra = 0.076923080f / 5.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * (0.247384623f+extra)) + (fc * (0.174461529f+extra)) + (bc * (0.174461529f+extra)) + (sl * (0.226153851f+extra)) + (sr * (0.100615382f+extra));
*(dst++) = (fr * (0.247384623f+extra)) + (fc * (0.174461529f+extra)) + (bc * (0.174461529f+extra)) + (sr * (0.226153851f+extra)) + (sl * (0.100615382f+extra));
}
cvt->len_cvt = (cvt->len_cvt / 7) * 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert61To21(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("6.1", "2.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src += 7) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bc = src[4];
const float sl = src[5];
const float sr = src[6];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.247384623f) + (fc * 0.174461529f) + (bc * 0.174461529f) + (sl * 0.226153851f) + (sr * 0.100615382f);
*(dst++) = (fr * 0.247384623f) + (fc * 0.174461529f) + (bc * 0.174461529f) + (sr * 0.226153851f) + (sl * 0.100615382f);
*(dst++) = lfe;
}
cvt->len_cvt = (cvt->len_cvt / 7) * 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert61ToQuad(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("6.1", "quad");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src += 7) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float bc = src[4];
const float sl = src[5];
const float sr = src[6];
const float extra = 0.040000003f / 3.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
const float extra2 = 0.040000003f / 2.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
*(dst++) = (fl * (0.463679999f+extra)) + (fc * (0.327360004f+extra)) + (sl * (0.168960005f+extra));
*(dst++) = (fr * (0.463679999f+extra)) + (fc * (0.327360004f+extra)) + (sr * (0.168960005f+extra));
*(dst++) = (bc * (0.327360004f+extra2)) + (sl * (0.431039989f+extra2));
*(dst++) = (bc * (0.327360004f+extra2)) + (sr * (0.431039989f+extra2));
}
cvt->len_cvt = (cvt->len_cvt / 7) * 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert61To41(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("6.1", "4.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src += 7) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bc = src[4];
const float sl = src[5];
const float sr = src[6];
*(dst++) = (fl * 0.483000010f) + (fc * 0.340999991f) + (sl * 0.175999999f);
*(dst++) = (fr * 0.483000010f) + (fc * 0.340999991f) + (sr * 0.175999999f);
*(dst++) = lfe;
*(dst++) = (bc * 0.340999991f) + (sl * 0.449000001f);
*(dst++) = (bc * 0.340999991f) + (sr * 0.449000001f);
}
cvt->len_cvt = (cvt->len_cvt / 7) * 5;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert61To51(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("6.1", "5.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src += 7) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bc = src[4];
const float sl = src[5];
const float sr = src[6];
/* !!! FIXME: XNA/FNA quiets the front speakers a bunch, but leaves the back speakers at about the same volume. I'm not sure that's right. */
*(dst++) = (fl * 0.611000001f) + (sl * 0.223000005f);
*(dst++) = (fr * 0.611000001f) + (sr * 0.223000005f);
*(dst++) = (fc * 0.611000001f); /* !!! FIXME: XNA/FNA silence the FC speaker to ~61%, but I'm not sure this is right. */
*(dst++) = lfe;
*(dst++) = (bc * 0.432000011f) + (sl * 0.568000019f);
*(dst++) = (bc * 0.432000011f) + (sr * 0.568000019f);
}
cvt->len_cvt = (cvt->len_cvt / 7) * 6;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert61To71(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
const float *src = ((const float *) (cvt->buf + cvt->len_cvt)) - 7;
float *dst = ((float *) (cvt->buf + ((cvt->len_cvt / 7) * 8))) - 8;
int i;
LOG_DEBUG_CONVERT("6.1", "7.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 7); i; --i, src -= 7, dst -= 8) {
const float bc = src[4];
dst[7] = src[6];
dst[6] = src[5];
dst[5] = (bc * 0.707000017f);
dst[4] = (bc * 0.707000017f);
dst[3] = src[3];
dst[2] = src[2];
dst[1] = src[1];
dst[0] = src[0];
}
cvt->len_cvt = (cvt->len_cvt / 7) * 8;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
/* CONVERT FROM 7.1... */
static void SDLCALL
SDL_Convert71ToMono(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "mono");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: we can probably SIMD this. */
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
*(dst++) = (src[0] + src[1] + src[2] + src[4] + src[5] + src[6] + src[7]) * 0.143142849f;
}
cvt->len_cvt /= 8;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert71ToStereo(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "stereo");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: we can probably SIMD this. */
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float bl = src[4];
const float br = src[5];
const float sl = src[6];
const float sr = src[7];
const float extra = 0.066666670f / 6.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * (0.211866662f+extra)) + (fc * (0.150266662f+extra)) + (bl * (0.181066677f+extra)) + (br * (0.111066669f+extra)) + (sl * (0.194133341f+extra)) + (sr * (0.085866667f+extra));
*(dst++) = (fr * (0.211866662f+extra)) + (fc * (0.150266662f+extra)) + (br * (0.181066677f+extra)) + (bl * (0.111066669f+extra)) + (sr * (0.194133341f+extra)) + (sl * (0.085866667f+extra));
}
cvt->len_cvt = (cvt->len_cvt / 8) * 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert71To21(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "2.1");
SDL_assert(format == AUDIO_F32SYS);
/* !!! FIXME: we can probably SIMD this. */
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bl = src[4];
const float br = src[5];
const float sl = src[6];
const float sr = src[7];
/* !!! FIXME: FNA/XNA mixes a little of the back right into the left (and back left into the right) and a little of the LFE...but this can't possibly be right, right...? */
*(dst++) = (fl * 0.211866662f) + (fc * 0.150266662f) + (bl * 0.181066677f) + (br * 0.111066669f) + (sl * 0.194133341f) + (sr * 0.085866667f);
*(dst++) = (fr * 0.211866662f) + (fc * 0.150266662f) + (br * 0.181066677f) + (bl * 0.111066669f) + (sr * 0.194133341f) + (sl * 0.085866667f);
*(dst++) = lfe;
}
cvt->len_cvt = (cvt->len_cvt / 8) * 3;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert71ToQuad(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "quad");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float bl = src[4];
const float br = src[5];
const float sl = src[6];
const float sr = src[7];
const float extra = 0.034482758f / 3.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
const float extra2 = 0.034482758f / 2.0f; /* this was the LFE distribution, we'll just split it between the other channels for now. */
*(dst++) = (fl * (0.466344833f+extra)) + (fc * (0.329241365f+extra)) + (sl * (0.169931039f+extra));
*(dst++) = (fr * (0.466344833f+extra)) + (fc * (0.329241365f+extra)) + (sr * (0.169931039f+extra));
*(dst++) = (bl * (0.466344833f+extra2)) + (sl * (0.433517247f+extra2));
*(dst++) = (br * (0.466344833f+extra2)) + (sr * (0.433517247f+extra2));
}
cvt->len_cvt = (cvt->len_cvt / 8) * 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert71To41(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "4.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bl = src[4];
const float br = src[5];
const float sl = src[6];
const float sr = src[7];
*(dst++) = (fl * 0.483000010f) + (fc * 0.340999991f) + (sl * 0.175999999f);
*(dst++) = (fr * 0.483000010f) + (fc * 0.340999991f) + (sr * 0.175999999f);
*(dst++) = lfe;
*(dst++) = (bl * 0.483000010f) + (sl * 0.449000001f);
*(dst++) = (br * 0.483000010f) + (sr * 0.449000001f);
}
cvt->len_cvt = (cvt->len_cvt / 8) * 5;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert71To51(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "5.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bl = src[4];
const float br = src[5];
const float sl = src[6];
const float sr = src[7];
/* !!! FIXME: XNA/FNA quiets the front speakers a bunch, but leaves the back speakers at about the same volume. I'm not sure that's right. */
*(dst++) = (fl * 0.518000007f) + (sl * 0.188999996f);
*(dst++) = (fr * 0.518000007f) + (sr * 0.188999996f);
*(dst++) = (fc * 0.518000007f); /* !!! FIXME: XNA/FNA silence the FC speaker to ~51%, but I'm not sure this is right. */
*(dst++) = lfe;
*(dst++) = (bl * 0.518000007f) + (sl * 0.188999996f);
*(dst++) = (br * 0.518000007f) + (sr * 0.188999996f);
}
cvt->len_cvt = (cvt->len_cvt / 8) * 6;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static void SDLCALL
SDL_Convert71To61(SDL_AudioCVT * cvt, SDL_AudioFormat format)
{
float *dst = (float *) cvt->buf;
const float *src = dst;
int i;
LOG_DEBUG_CONVERT("7.1", "6.1");
SDL_assert(format == AUDIO_F32SYS);
for (i = cvt->len_cvt / (sizeof (float) * 8); i; --i, src += 8) {
const float fl = src[0];
const float fr = src[1];
const float fc = src[2];
const float lfe = src[3];
const float bl = src[4];
const float br = src[5];
const float sl = src[6];
const float sr = src[7];
/* !!! FIXME: XNA/FNA quiets the front speakers a bunch, but leaves the back speakers at about the same volume. I'm not sure that's right. */
*(dst++) = (fl * 0.541000009f);
*(dst++) = (fr * 0.541000009f);
*(dst++) = (fc * 0.541000009f); /* !!! FIXME: XNA/FNA silence the FC speaker to ~61%, but I'm not sure this is right. */
*(dst++) = lfe;
*(dst++) = (bl * 0.287999988f) + (br * 0.287999988f);
*(dst++) = (bl * 0.458999991f) + (sl * 0.541000009f);
*(dst++) = (br * 0.458999991f) + (sr * 0.541000009f);
}
cvt->len_cvt = (cvt->len_cvt / 8) * 6;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index] (cvt, format);
}
}
static const SDL_AudioFilter channel_converters[8][8] = { /* from][to] */
{ NULL, SDL_ConvertMonoToStereo, SDL_ConvertMonoTo21, SDL_ConvertMonoToQuad, SDL_ConvertMonoTo41, SDL_ConvertMonoTo51, SDL_ConvertMonoTo61, SDL_ConvertMonoTo71 },
{ SDL_ConvertStereoToMono, NULL, SDL_ConvertStereoTo21, SDL_ConvertStereoToQuad, SDL_ConvertStereoTo41, SDL_ConvertStereoTo51, SDL_ConvertStereoTo61, SDL_ConvertStereoTo71 },
{ SDL_Convert21ToMono, SDL_Convert21ToStereo, NULL, SDL_Convert21ToQuad, SDL_Convert21To41, SDL_Convert21To51, SDL_Convert21To61, SDL_Convert21To71 },
{ SDL_ConvertQuadToMono, SDL_ConvertQuadToStereo, SDL_ConvertQuadTo21, NULL, SDL_ConvertQuadTo41, SDL_ConvertQuadTo51, SDL_ConvertQuadTo61, SDL_ConvertQuadTo71 },
{ SDL_Convert41ToMono, SDL_Convert41ToStereo, SDL_Convert41To21, SDL_Convert41ToQuad, NULL, SDL_Convert41To51, SDL_Convert41To61, SDL_Convert41To71 },
{ SDL_Convert51ToMono, SDL_Convert51ToStereo, SDL_Convert51To21, SDL_Convert51ToQuad, SDL_Convert51To41, NULL, SDL_Convert51To61, SDL_Convert51To71 },
{ SDL_Convert61ToMono, SDL_Convert61ToStereo, SDL_Convert61To21, SDL_Convert61ToQuad, SDL_Convert61To41, SDL_Convert61To51, NULL, SDL_Convert61To71 },
{ SDL_Convert71ToMono, SDL_Convert71ToStereo, SDL_Convert71To21, SDL_Convert71ToQuad, SDL_Convert71To41, SDL_Convert71To51, SDL_Convert71To61, NULL }
};
/* SDL's resampler uses a "bandlimited interpolation" algorithm:
https://ccrma.stanford.edu/~jos/resample/ */
#include "SDL_audio_resampler_filter.h"
static int
ResamplerPadding(const int inrate, const int outrate)
{
if (inrate == outrate) {
return 0;
}
if (inrate > outrate) {
return (int) SDL_ceilf(((float) (RESAMPLER_SAMPLES_PER_ZERO_CROSSING * inrate) / ((float) outrate)));
}
return RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
}
/* lpadding and rpadding are expected to be buffers of (ResamplePadding(inrate, outrate) * chans * sizeof (float)) bytes. */
static int
SDL_ResampleAudio(const int chans, const int inrate, const int outrate,
const float *lpadding, const float *rpadding,
const float *inbuf, const int inbuflen,
float *outbuf, const int outbuflen)
{
/* Note that this used to be double, but it looks like we can get by with float in most cases at
almost twice the speed on Intel processors, and orders of magnitude more
on CPUs that need a software fallback for double calculations. */
typedef float ResampleFloatType;
const ResampleFloatType finrate = (ResampleFloatType) inrate;
const ResampleFloatType outtimeincr = ((ResampleFloatType) 1.0f) / ((ResampleFloatType) outrate);
const ResampleFloatType ratio = ((float) outrate) / ((float) inrate);
const int paddinglen = ResamplerPadding(inrate, outrate);
const int framelen = chans * (int)sizeof (float);
const int inframes = inbuflen / framelen;
const int wantedoutframes = (int) ((inbuflen / framelen) * ratio); /* outbuflen isn't total to write, it's total available. */
const int maxoutframes = outbuflen / framelen;
const int outframes = SDL_min(wantedoutframes, maxoutframes);
ResampleFloatType outtime = 0.0f;
float *dst = outbuf;
int i, j, chan;
for (i = 0; i < outframes; i++) {
const int srcindex = (int) (outtime * inrate);
const ResampleFloatType intime = ((ResampleFloatType) srcindex) / finrate;
const ResampleFloatType innexttime = ((ResampleFloatType) (srcindex + 1)) / finrate;
const ResampleFloatType indeltatime = innexttime - intime;
const ResampleFloatType interpolation1 = (indeltatime == 0.0f) ? 1.0f : (1.0f - ((innexttime - outtime) / indeltatime));
const int filterindex1 = (int) (interpolation1 * RESAMPLER_SAMPLES_PER_ZERO_CROSSING);
const ResampleFloatType interpolation2 = 1.0f - interpolation1;
const int filterindex2 = (int) (interpolation2 * RESAMPLER_SAMPLES_PER_ZERO_CROSSING);
for (chan = 0; chan < chans; chan++) {
float outsample = 0.0f;
/* do this twice to calculate the sample, once for the "left wing" and then same for the right. */
for (j = 0; (filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
const int srcframe = srcindex - j;
/* !!! FIXME: we can bubble this conditional out of here by doing a pre loop. */
const float insample = (srcframe < 0) ? lpadding[((paddinglen + srcframe) * chans) + chan] : inbuf[(srcframe * chans) + chan];
outsample += (float)(insample * (ResamplerFilter[filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)] + (interpolation1 * ResamplerFilterDifference[filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)])));
}
/* Do the right wing! */
for (j = 0; (filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
const int jsamples = j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
const int srcframe = srcindex + 1 + j;
/* !!! FIXME: we can bubble this conditional out of here by doing a post loop. */
const float insample = (srcframe >= inframes) ? rpadding[((srcframe - inframes) * chans) + chan] : inbuf[(srcframe * chans) + chan];
outsample += (float)(insample * (ResamplerFilter[filterindex2 + jsamples] + (interpolation2 * ResamplerFilterDifference[filterindex2 + jsamples])));
}
*(dst++) = outsample;
}
outtime += outtimeincr;
}
return outframes * chans * sizeof (float);
}
int
SDL_ConvertAudio(SDL_AudioCVT * cvt)
{
/* !!! FIXME: (cvt) should be const; stack-copy it here. */
/* !!! FIXME: (actually, we can't...len_cvt needs to be updated. Grr.) */
/* Make sure there's data to convert */
if (cvt->buf == NULL) {
return SDL_SetError("No buffer allocated for conversion");
}
/* Return okay if no conversion is necessary */
cvt->len_cvt = cvt->len;
if (cvt->filters[0] == NULL) {
return 0;
}
/* Set up the conversion and go! */
cvt->filter_index = 0;
cvt->filters[0] (cvt, cvt->src_format);
return 0;
}
static void SDLCALL
SDL_Convert_Byteswap(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
#if DEBUG_CONVERT
printf("Converting byte order\n");
#endif
switch (SDL_AUDIO_BITSIZE(format)) {
#define CASESWAP(b) \
case b: { \
Uint##b *ptr = (Uint##b *) cvt->buf; \
int i; \
for (i = cvt->len_cvt / sizeof (*ptr); i; --i, ++ptr) { \
*ptr = SDL_Swap##b(*ptr); \
} \
break; \
}
CASESWAP(16);
CASESWAP(32);
CASESWAP(64);
#undef CASESWAP
default: SDL_assert(!"unhandled byteswap datatype!"); break;
}
if (cvt->filters[++cvt->filter_index]) {
/* flip endian flag for data. */
if (format & SDL_AUDIO_MASK_ENDIAN) {
format &= ~SDL_AUDIO_MASK_ENDIAN;
} else {
format |= SDL_AUDIO_MASK_ENDIAN;
}
cvt->filters[cvt->filter_index](cvt, format);
}
}
static int
SDL_AddAudioCVTFilter(SDL_AudioCVT *cvt, const SDL_AudioFilter filter)
{
if (cvt->filter_index >= SDL_AUDIOCVT_MAX_FILTERS) {
return SDL_SetError("Too many filters needed for conversion, exceeded maximum of %d", SDL_AUDIOCVT_MAX_FILTERS);
}
SDL_assert(filter != NULL);
cvt->filters[cvt->filter_index++] = filter;
cvt->filters[cvt->filter_index] = NULL; /* Moving terminator */
return 0;
}
static int
SDL_BuildAudioTypeCVTToFloat(SDL_AudioCVT *cvt, const SDL_AudioFormat src_fmt)
{
int retval = 0; /* 0 == no conversion necessary. */
if ((SDL_AUDIO_ISBIGENDIAN(src_fmt) != 0) == (SDL_BYTEORDER == SDL_LIL_ENDIAN) && SDL_AUDIO_BITSIZE(src_fmt) > 8) {
if (SDL_AddAudioCVTFilter(cvt, SDL_Convert_Byteswap) < 0) {
return -1;
}
retval = 1; /* added a converter. */
}
if (!SDL_AUDIO_ISFLOAT(src_fmt)) {
const Uint16 src_bitsize = SDL_AUDIO_BITSIZE(src_fmt);
const Uint16 dst_bitsize = 32;
SDL_AudioFilter filter = NULL;
switch (src_fmt & ~SDL_AUDIO_MASK_ENDIAN) {
case AUDIO_S8: filter = SDL_Convert_S8_to_F32; break;
case AUDIO_U8: filter = SDL_Convert_U8_to_F32; break;
case AUDIO_S16: filter = SDL_Convert_S16_to_F32; break;
case AUDIO_U16: filter = SDL_Convert_U16_to_F32; break;
case AUDIO_S32: filter = SDL_Convert_S32_to_F32; break;
default: SDL_assert(!"Unexpected audio format!"); break;
}
if (!filter) {
return SDL_SetError("No conversion from source format to float available");
}
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
return -1;
}
if (src_bitsize < dst_bitsize) {
const int mult = (dst_bitsize / src_bitsize);
cvt->len_mult *= mult;
cvt->len_ratio *= mult;
} else if (src_bitsize > dst_bitsize) {
cvt->len_ratio /= (src_bitsize / dst_bitsize);
}
retval = 1; /* added a converter. */
}
return retval;
}
static int
SDL_BuildAudioTypeCVTFromFloat(SDL_AudioCVT *cvt, const SDL_AudioFormat dst_fmt)
{
int retval = 0; /* 0 == no conversion necessary. */
if (!SDL_AUDIO_ISFLOAT(dst_fmt)) {
const Uint16 dst_bitsize = SDL_AUDIO_BITSIZE(dst_fmt);
const Uint16 src_bitsize = 32;
SDL_AudioFilter filter = NULL;
switch (dst_fmt & ~SDL_AUDIO_MASK_ENDIAN) {
case AUDIO_S8: filter = SDL_Convert_F32_to_S8; break;
case AUDIO_U8: filter = SDL_Convert_F32_to_U8; break;
case AUDIO_S16: filter = SDL_Convert_F32_to_S16; break;
case AUDIO_U16: filter = SDL_Convert_F32_to_U16; break;
case AUDIO_S32: filter = SDL_Convert_F32_to_S32; break;
default: SDL_assert(!"Unexpected audio format!"); break;
}
if (!filter) {
return SDL_SetError("No conversion from float to format 0x%.4x available", dst_fmt);
}
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
return -1;
}
if (src_bitsize < dst_bitsize) {
const int mult = (dst_bitsize / src_bitsize);
cvt->len_mult *= mult;
cvt->len_ratio *= mult;
} else if (src_bitsize > dst_bitsize) {
cvt->len_ratio /= (src_bitsize / dst_bitsize);
}
retval = 1; /* added a converter. */
}
if ((SDL_AUDIO_ISBIGENDIAN(dst_fmt) != 0) == (SDL_BYTEORDER == SDL_LIL_ENDIAN) && SDL_AUDIO_BITSIZE(dst_fmt) > 8) {
if (SDL_AddAudioCVTFilter(cvt, SDL_Convert_Byteswap) < 0) {
return -1;
}
retval = 1; /* added a converter. */
}
return retval;
}
static void
SDL_ResampleCVT(SDL_AudioCVT *cvt, const int chans, const SDL_AudioFormat format)
{
/* !!! FIXME in 2.1: there are ten slots in the filter list, and the theoretical maximum we use is six (seven with NULL terminator).
!!! FIXME in 2.1: We need to store data for this resampler, because the cvt structure doesn't store the original sample rates,
!!! FIXME in 2.1: so we steal the ninth and tenth slot. :( */
const int inrate = (int) (size_t) cvt->filters[SDL_AUDIOCVT_MAX_FILTERS-1];
const int outrate = (int) (size_t) cvt->filters[SDL_AUDIOCVT_MAX_FILTERS];
const float *src = (const float *) cvt->buf;
const int srclen = cvt->len_cvt;
/*float *dst = (float *) cvt->buf;
const int dstlen = (cvt->len * cvt->len_mult);*/
/* !!! FIXME: remove this if we can get the resampler to work in-place again. */
float *dst = (float *) (cvt->buf + srclen);
const int dstlen = (cvt->len * cvt->len_mult) - srclen;
const int requestedpadding = ResamplerPadding(inrate, outrate);
int paddingsamples;
float *padding;
if (requestedpadding < SDL_MAX_SINT32 / chans) {
paddingsamples = requestedpadding * chans;
} else {
paddingsamples = 0;
}
SDL_assert(format == AUDIO_F32SYS);
/* we keep no streaming state here, so pad with silence on both ends. */
padding = (float *) SDL_calloc(paddingsamples ? paddingsamples : 1, sizeof (float));
if (!padding) {
SDL_OutOfMemory();
return;
}
cvt->len_cvt = SDL_ResampleAudio(chans, inrate, outrate, padding, padding, src, srclen, dst, dstlen);
SDL_free(padding);
SDL_memmove(cvt->buf, dst, cvt->len_cvt); /* !!! FIXME: remove this if we can get the resampler to work in-place again. */
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, format);
}
}
/* !!! FIXME: We only have this macro salsa because SDL_AudioCVT doesn't
!!! FIXME: store channel info, so we have to have function entry
!!! FIXME: points for each supported channel count and multiple
!!! FIXME: vs arbitrary. When we rev the ABI, clean this up. */
#define RESAMPLER_FUNCS(chans) \
static void SDLCALL \
SDL_ResampleCVT_c##chans(SDL_AudioCVT *cvt, SDL_AudioFormat format) { \
SDL_ResampleCVT(cvt, chans, format); \
}
RESAMPLER_FUNCS(1)
RESAMPLER_FUNCS(2)
RESAMPLER_FUNCS(4)
RESAMPLER_FUNCS(6)
RESAMPLER_FUNCS(8)
#undef RESAMPLER_FUNCS
static SDL_AudioFilter
ChooseCVTResampler(const int dst_channels)
{
switch (dst_channels) {
case 1: return SDL_ResampleCVT_c1;
case 2: return SDL_ResampleCVT_c2;
case 4: return SDL_ResampleCVT_c4;
case 6: return SDL_ResampleCVT_c6;
case 8: return SDL_ResampleCVT_c8;
default: break;
}
return NULL;
}
static int
SDL_BuildAudioResampleCVT(SDL_AudioCVT * cvt, const int dst_channels,
const int src_rate, const int dst_rate)
{
SDL_AudioFilter filter;
if (src_rate == dst_rate) {
return 0; /* no conversion necessary. */
}
filter = ChooseCVTResampler(dst_channels);
if (filter == NULL) {
return SDL_SetError("No conversion available for these rates");
}
/* Update (cvt) with filter details... */
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
return -1;
}
/* !!! FIXME in 2.1: there are ten slots in the filter list, and the theoretical maximum we use is six (seven with NULL terminator).
!!! FIXME in 2.1: We need to store data for this resampler, because the cvt structure doesn't store the original sample rates,
!!! FIXME in 2.1: so we steal the ninth and tenth slot. :( */
if (cvt->filter_index >= (SDL_AUDIOCVT_MAX_FILTERS-2)) {
return SDL_SetError("Too many filters needed for conversion, exceeded maximum of %d", SDL_AUDIOCVT_MAX_FILTERS-2);
}
cvt->filters[SDL_AUDIOCVT_MAX_FILTERS-1] = (SDL_AudioFilter) (uintptr_t) src_rate;
cvt->filters[SDL_AUDIOCVT_MAX_FILTERS] = (SDL_AudioFilter) (uintptr_t) dst_rate;
if (src_rate < dst_rate) {
const double mult = ((double) dst_rate) / ((double) src_rate);
cvt->len_mult *= (int) SDL_ceil(mult);
cvt->len_ratio *= mult;
} else {
cvt->len_ratio /= ((double) src_rate) / ((double) dst_rate);
}
/* !!! FIXME: remove this if we can get the resampler to work in-place again. */
/* the buffer is big enough to hold the destination now, but
we need it large enough to hold a separate scratch buffer. */
cvt->len_mult *= 2;
return 1; /* added a converter. */
}
static SDL_bool
SDL_SupportedAudioFormat(const SDL_AudioFormat fmt)
{
switch (fmt) {
case AUDIO_U8:
case AUDIO_S8:
case AUDIO_U16LSB:
case AUDIO_S16LSB:
case AUDIO_U16MSB:
case AUDIO_S16MSB:
case AUDIO_S32LSB:
case AUDIO_S32MSB:
case AUDIO_F32LSB:
case AUDIO_F32MSB:
return SDL_TRUE; /* supported. */
default:
break;
}
return SDL_FALSE; /* unsupported. */
}
static SDL_bool
SDL_SupportedChannelCount(const int channels)
{
return ((channels >= 1) && (channels <= 8)) ? SDL_TRUE : SDL_FALSE;
}
/* Creates a set of audio filters to convert from one format to another.
Returns 0 if no conversion is needed, 1 if the audio filter is set up,
or -1 if an error like invalid parameter, unsupported format, etc. occurred.
*/
int
SDL_BuildAudioCVT(SDL_AudioCVT * cvt,
SDL_AudioFormat src_fmt, Uint8 src_channels, int src_rate,
SDL_AudioFormat dst_fmt, Uint8 dst_channels, int dst_rate)
{
SDL_AudioFilter channel_converter = NULL;
/* Sanity check target pointer */
if (cvt == NULL) {
return SDL_InvalidParamError("cvt");
}
/* Make sure we zero out the audio conversion before error checking */
SDL_zerop(cvt);
if (!SDL_SupportedAudioFormat(src_fmt)) {
return SDL_SetError("Invalid source format");
}
if (!SDL_SupportedAudioFormat(dst_fmt)) {
return SDL_SetError("Invalid destination format");
}
if (!SDL_SupportedChannelCount(src_channels)) {
return SDL_SetError("Invalid source channels");
}
if (!SDL_SupportedChannelCount(dst_channels)) {
return SDL_SetError("Invalid destination channels");
}
if (src_rate <= 0) {
return SDL_SetError("Source rate is equal to or less than zero");
}
if (dst_rate <= 0) {
return SDL_SetError("Destination rate is equal to or less than zero");
}
if (src_rate >= SDL_MAX_SINT32 / RESAMPLER_SAMPLES_PER_ZERO_CROSSING) {
return SDL_SetError("Source rate is too high");
}
if (dst_rate >= SDL_MAX_SINT32 / RESAMPLER_SAMPLES_PER_ZERO_CROSSING) {
return SDL_SetError("Destination rate is too high");
}
#if DEBUG_CONVERT
printf("Build format %04x->%04x, channels %u->%u, rate %d->%d\n",
src_fmt, dst_fmt, src_channels, dst_channels, src_rate, dst_rate);
#endif
/* Start off with no conversion necessary */
cvt->src_format = src_fmt;
cvt->dst_format = dst_fmt;
cvt->needed = 0;
cvt->filter_index = 0;
SDL_zeroa(cvt->filters);
cvt->len_mult = 1;
cvt->len_ratio = 1.0;
cvt->rate_incr = ((double) dst_rate) / ((double) src_rate);
/* Make sure we've chosen audio conversion functions (SIMD, scalar, etc.) */
SDL_ChooseAudioConverters();
/* Type conversion goes like this now:
- byteswap to CPU native format first if necessary.
- convert to native Float32 if necessary.
- resample and change channel count if necessary.
- convert to final data format.
- byteswap back to foreign format if necessary.
The expectation is we can process data faster in float32
(possibly with SIMD), and making several passes over the same
buffer is likely to be CPU cache-friendly, avoiding the
biggest performance hit in modern times. Previously we had
(script-generated) custom converters for every data type and
it was a bloat on SDL compile times and final library size. */
/* see if we can skip float conversion entirely. */
if (src_rate == dst_rate && src_channels == dst_channels) {
if (src_fmt == dst_fmt) {
return 0;
}
/* just a byteswap needed? */
if ((src_fmt & ~SDL_AUDIO_MASK_ENDIAN) == (dst_fmt & ~SDL_AUDIO_MASK_ENDIAN)) {
if (SDL_AUDIO_BITSIZE(dst_fmt) == 8) {
return 0;
}
if (SDL_AddAudioCVTFilter(cvt, SDL_Convert_Byteswap) < 0) {
return -1;
}
cvt->needed = 1;
return 1;
}
}
/* Convert data types, if necessary. Updates (cvt). */
if (SDL_BuildAudioTypeCVTToFloat(cvt, src_fmt) < 0) {
return -1; /* shouldn't happen, but just in case... */
}
/* Channel conversion */
/* SDL_SupportedChannelCount should have caught these asserts, or we added a new format and forgot to update the table. */
SDL_assert(src_channels <= SDL_arraysize(channel_converters));
SDL_assert(dst_channels <= SDL_arraysize(channel_converters[0]));
channel_converter = channel_converters[src_channels-1][dst_channels-1];
if ((channel_converter == NULL) != (src_channels == dst_channels)) {
/* All combinations of supported channel counts should have been handled by now, but let's be defensive */
return SDL_SetError("Invalid channel combination");
} else if (channel_converter != NULL) {
/* swap in some SIMD versions for a few of these. */
if (channel_converter == SDL_Convert51ToStereo) {
SDL_AudioFilter filter = NULL;
#if 0 /* !!! FIXME: these have not been updated for the new formulas */
#if HAVE_AVX_INTRINSICS
if (!filter && SDL_HasAVX()) { filter = SDL_Convert51ToStereo_AVX; }
#endif
#if HAVE_SSE_INTRINSICS
if (!filter && SDL_HasSSE()) { filter = SDL_Convert51ToStereo_SSE; }
#endif
#if HAVE_NEON_INTRINSICS
if (!filter && SDL_HasNEON()) { filter = SDL_Convert51ToStereo_NEON; }
#endif
#endif
if (filter) { channel_converter = filter; }
} else if (channel_converter == SDL_ConvertStereoToMono) {
SDL_AudioFilter filter = NULL;
#if HAVE_SSE3_INTRINSICS
if (!filter && SDL_HasSSE3()) { filter = SDL_ConvertStereoToMono_SSE3; }
#endif
if (filter) { channel_converter = filter; }
}
if (SDL_AddAudioCVTFilter(cvt, channel_converter) < 0) {
return -1;
}
if (src_channels < dst_channels) {
cvt->len_mult = ((cvt->len_mult * dst_channels) + (src_channels-1)) / src_channels;
}
cvt->len_ratio = (cvt->len_ratio * dst_channels) / src_channels;
src_channels = dst_channels;
}
/* Do rate conversion, if necessary. Updates (cvt). */
if (SDL_BuildAudioResampleCVT(cvt, dst_channels, src_rate, dst_rate) < 0) {
return -1; /* shouldn't happen, but just in case... */
}
/* Move to final data type. */
if (SDL_BuildAudioTypeCVTFromFloat(cvt, dst_fmt) < 0) {
return -1; /* shouldn't happen, but just in case... */
}
cvt->needed = (cvt->filter_index != 0);
return (cvt->needed);
}
typedef int (*SDL_ResampleAudioStreamFunc)(SDL_AudioStream *stream, const void *inbuf, const int inbuflen, void *outbuf, const int outbuflen);
typedef void (*SDL_ResetAudioStreamResamplerFunc)(SDL_AudioStream *stream);
typedef void (*SDL_CleanupAudioStreamResamplerFunc)(SDL_AudioStream *stream);
struct _SDL_AudioStream
{
SDL_AudioCVT cvt_before_resampling;
SDL_AudioCVT cvt_after_resampling;
SDL_DataQueue *queue;
SDL_bool first_run;
Uint8 *staging_buffer;
int staging_buffer_size;
int staging_buffer_filled;
Uint8 *work_buffer_base; /* maybe unaligned pointer from SDL_realloc(). */
int work_buffer_len;
int src_sample_frame_size;
SDL_AudioFormat src_format;
Uint8 src_channels;
int src_rate;
int dst_sample_frame_size;
SDL_AudioFormat dst_format;
Uint8 dst_channels;
int dst_rate;
double rate_incr;
Uint8 pre_resample_channels;
int packetlen;
int resampler_padding_samples;
float *resampler_padding;
void *resampler_state;
SDL_ResampleAudioStreamFunc resampler_func;
SDL_ResetAudioStreamResamplerFunc reset_resampler_func;
SDL_CleanupAudioStreamResamplerFunc cleanup_resampler_func;
};
static Uint8 *
EnsureStreamBufferSize(SDL_AudioStream *stream, const int newlen)
{
Uint8 *ptr;
size_t offset;
if (stream->work_buffer_len >= newlen) {
ptr = stream->work_buffer_base;
} else {
ptr = (Uint8 *) SDL_realloc(stream->work_buffer_base, newlen + 32);
if (!ptr) {
SDL_OutOfMemory();
return NULL;
}
/* Make sure we're aligned to 16 bytes for SIMD code. */
stream->work_buffer_base = ptr;
stream->work_buffer_len = newlen;
}
offset = ((size_t) ptr) & 15;
return offset ? ptr + (16 - offset) : ptr;
}
#ifdef HAVE_LIBSAMPLERATE_H
static int
SDL_ResampleAudioStream_SRC(SDL_AudioStream *stream, const void *_inbuf, const int inbuflen, void *_outbuf, const int outbuflen)
{
const float *inbuf = (const float *) _inbuf;
float *outbuf = (float *) _outbuf;
const int framelen = sizeof(float) * stream->pre_resample_channels;
SRC_STATE *state = (SRC_STATE *)stream->resampler_state;
SRC_DATA data;
int result;
SDL_assert(inbuf != ((const float *) outbuf)); /* SDL_AudioStreamPut() shouldn't allow in-place resamples. */
data.data_in = (float *)inbuf; /* Older versions of libsamplerate had a non-const pointer, but didn't write to it */
data.input_frames = inbuflen / framelen;
data.input_frames_used = 0;
data.data_out = outbuf;
data.output_frames = outbuflen / framelen;
data.end_of_input = 0;
data.src_ratio = stream->rate_incr;
result = SRC_src_process(state, &data);
if (result != 0) {
SDL_SetError("src_process() failed: %s", SRC_src_strerror(result));
return 0;
}
/* If this fails, we need to store them off somewhere */
SDL_assert(data.input_frames_used == data.input_frames);
return data.output_frames_gen * (sizeof(float) * stream->pre_resample_channels);
}
static void
SDL_ResetAudioStreamResampler_SRC(SDL_AudioStream *stream)
{
SRC_src_reset((SRC_STATE *)stream->resampler_state);
}
static void
SDL_CleanupAudioStreamResampler_SRC(SDL_AudioStream *stream)
{
SRC_STATE *state = (SRC_STATE *)stream->resampler_state;
if (state) {
SRC_src_delete(state);
}
stream->resampler_state = NULL;
stream->resampler_func = NULL;
stream->reset_resampler_func = NULL;
stream->cleanup_resampler_func = NULL;
}
static SDL_bool
SetupLibSampleRateResampling(SDL_AudioStream *stream)
{
int result = 0;
SRC_STATE *state = NULL;
if (SRC_available) {
state = SRC_src_new(SRC_converter, stream->pre_resample_channels, &result);
if (!state) {
SDL_SetError("src_new() failed: %s", SRC_src_strerror(result));
}
}
if (!state) {
SDL_CleanupAudioStreamResampler_SRC(stream);
return SDL_FALSE;
}
stream->resampler_state = state;
stream->resampler_func = SDL_ResampleAudioStream_SRC;
stream->reset_resampler_func = SDL_ResetAudioStreamResampler_SRC;
stream->cleanup_resampler_func = SDL_CleanupAudioStreamResampler_SRC;
return SDL_TRUE;
}
#endif /* HAVE_LIBSAMPLERATE_H */
static int
SDL_ResampleAudioStream(SDL_AudioStream *stream, const void *_inbuf, const int inbuflen, void *_outbuf, const int outbuflen)
{
const Uint8 *inbufend = ((const Uint8 *) _inbuf) + inbuflen;
const float *inbuf = (const float *) _inbuf;
float *outbuf = (float *) _outbuf;
const int chans = (int) stream->pre_resample_channels;
const int inrate = stream->src_rate;
const int outrate = stream->dst_rate;
const int paddingsamples = stream->resampler_padding_samples;
const int paddingbytes = paddingsamples * sizeof (float);
float *lpadding = (float *) stream->resampler_state;
const float *rpadding = (const float *) inbufend; /* we set this up so there are valid padding samples at the end of the input buffer. */
const int cpy = SDL_min(inbuflen, paddingbytes);
int retval;
SDL_assert(inbuf != ((const float *) outbuf)); /* SDL_AudioStreamPut() shouldn't allow in-place resamples. */
retval = SDL_ResampleAudio(chans, inrate, outrate, lpadding, rpadding, inbuf, inbuflen, outbuf, outbuflen);
/* update our left padding with end of current input, for next run. */
SDL_memcpy((lpadding + paddingsamples) - (cpy / sizeof (float)), inbufend - cpy, cpy);
return retval;
}
static void
SDL_ResetAudioStreamResampler(SDL_AudioStream *stream)
{
/* set all the padding to silence. */
const int len = stream->resampler_padding_samples;
SDL_memset(stream->resampler_state, '\0', len * sizeof (float));
}
static void
SDL_CleanupAudioStreamResampler(SDL_AudioStream *stream)
{
SDL_free(stream->resampler_state);
}
SDL_AudioStream *
SDL_NewAudioStream(const SDL_AudioFormat src_format,
const Uint8 src_channels,
const int src_rate,
const SDL_AudioFormat dst_format,
const Uint8 dst_channels,
const int dst_rate)
{
const int packetlen = 4096; /* !!! FIXME: good enough for now. */
Uint8 pre_resample_channels;
SDL_AudioStream *retval;
retval = (SDL_AudioStream *) SDL_calloc(1, sizeof (SDL_AudioStream));
if (!retval) {
SDL_OutOfMemory();
return NULL;
}
/* If increasing channels, do it after resampling, since we'd just
do more work to resample duplicate channels. If we're decreasing, do
it first so we resample the interpolated data instead of interpolating
the resampled data (!!! FIXME: decide if that works in practice, though!). */
pre_resample_channels = SDL_min(src_channels, dst_channels);
retval->first_run = SDL_TRUE;
retval->src_sample_frame_size = (SDL_AUDIO_BITSIZE(src_format) / 8) * src_channels;
retval->src_format = src_format;
retval->src_channels = src_channels;
retval->src_rate = src_rate;
retval->dst_sample_frame_size = (SDL_AUDIO_BITSIZE(dst_format) / 8) * dst_channels;
retval->dst_format = dst_format;
retval->dst_channels = dst_channels;
retval->dst_rate = dst_rate;
retval->pre_resample_channels = pre_resample_channels;
retval->packetlen = packetlen;
retval->rate_incr = ((double) dst_rate) / ((double) src_rate);
retval->resampler_padding_samples = ResamplerPadding(retval->src_rate, retval->dst_rate) * pre_resample_channels;
retval->resampler_padding = (float *) SDL_calloc(retval->resampler_padding_samples ? retval->resampler_padding_samples : 1, sizeof (float));
if (retval->resampler_padding == NULL) {
SDL_FreeAudioStream(retval);
SDL_OutOfMemory();
return NULL;
}
retval->staging_buffer_size = ((retval->resampler_padding_samples / retval->pre_resample_channels) * retval->src_sample_frame_size);
if (retval->staging_buffer_size > 0) {
retval->staging_buffer = (Uint8 *) SDL_malloc(retval->staging_buffer_size);
if (retval->staging_buffer == NULL) {
SDL_FreeAudioStream(retval);
SDL_OutOfMemory();
return NULL;
}
}
/* Not resampling? It's an easy conversion (and maybe not even that!) */
if (src_rate == dst_rate) {
retval->cvt_before_resampling.needed = SDL_FALSE;
if (SDL_BuildAudioCVT(&retval->cvt_after_resampling, src_format, src_channels, dst_rate, dst_format, dst_channels, dst_rate) < 0) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
}
} else {
/* Don't resample at first. Just get us to Float32 format. */
/* !!! FIXME: convert to int32 on devices without hardware float. */
if (SDL_BuildAudioCVT(&retval->cvt_before_resampling, src_format, src_channels, src_rate, AUDIO_F32SYS, pre_resample_channels, src_rate) < 0) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
}
#ifdef HAVE_LIBSAMPLERATE_H
SetupLibSampleRateResampling(retval);
#endif
if (!retval->resampler_func) {
retval->resampler_state = SDL_calloc(retval->resampler_padding_samples, sizeof (float));
if (!retval->resampler_state) {
SDL_FreeAudioStream(retval);
SDL_OutOfMemory();
return NULL;
}
retval->resampler_func = SDL_ResampleAudioStream;
retval->reset_resampler_func = SDL_ResetAudioStreamResampler;
retval->cleanup_resampler_func = SDL_CleanupAudioStreamResampler;
}
/* Convert us to the final format after resampling. */
if (SDL_BuildAudioCVT(&retval->cvt_after_resampling, AUDIO_F32SYS, pre_resample_channels, dst_rate, dst_format, dst_channels, dst_rate) < 0) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
}
}
retval->queue = SDL_NewDataQueue(packetlen, packetlen * 2);
if (!retval->queue) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_NewDataQueue should have called SDL_SetError. */
}
return retval;
}
static int
SDL_AudioStreamPutInternal(SDL_AudioStream *stream, const void *buf, int len, int *maxputbytes)
{
int buflen = len;
int workbuflen;
Uint8 *workbuf;
Uint8 *resamplebuf = NULL;
int resamplebuflen = 0;
int neededpaddingbytes;
int paddingbytes;
/* !!! FIXME: several converters can take advantage of SIMD, but only
!!! FIXME: if the data is aligned to 16 bytes. EnsureStreamBufferSize()
!!! FIXME: guarantees the buffer will align, but the
!!! FIXME: converters will iterate over the data backwards if
!!! FIXME: the output grows, and this means we won't align if buflen
!!! FIXME: isn't a multiple of 16. In these cases, we should chop off
!!! FIXME: a few samples at the end and convert them separately. */
/* no padding prepended on first run. */
neededpaddingbytes = stream->resampler_padding_samples * sizeof (float);
paddingbytes = stream->first_run ? 0 : neededpaddingbytes;
stream->first_run = SDL_FALSE;
/* Make sure the work buffer can hold all the data we need at once... */
workbuflen = buflen;
if (stream->cvt_before_resampling.needed) {
workbuflen *= stream->cvt_before_resampling.len_mult;
}
if (stream->dst_rate != stream->src_rate) {
/* resamples can't happen in place, so make space for second buf. */
const int framesize = stream->pre_resample_channels * sizeof (float);
const int frames = workbuflen / framesize;
resamplebuflen = ((int) SDL_ceil(frames * stream->rate_incr)) * framesize;
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: will resample %d bytes to %d (ratio=%.6f)\n", workbuflen, resamplebuflen, stream->rate_incr);
#endif
workbuflen += resamplebuflen;
}
if (stream->cvt_after_resampling.needed) {
/* !!! FIXME: buffer might be big enough already? */
workbuflen *= stream->cvt_after_resampling.len_mult;
}
workbuflen += neededpaddingbytes;
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: Putting %d bytes of preconverted audio, need %d byte work buffer\n", buflen, workbuflen);
#endif
workbuf = EnsureStreamBufferSize(stream, workbuflen);
if (!workbuf) {
return -1; /* probably out of memory. */
}
resamplebuf = workbuf; /* default if not resampling. */
SDL_memcpy(workbuf + paddingbytes, buf, buflen);
if (stream->cvt_before_resampling.needed) {
stream->cvt_before_resampling.buf = workbuf + paddingbytes;
stream->cvt_before_resampling.len = buflen;
if (SDL_ConvertAudio(&stream->cvt_before_resampling) == -1) {
return -1; /* uhoh! */
}
buflen = stream->cvt_before_resampling.len_cvt;
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: After initial conversion we have %d bytes\n", buflen);
#endif
}
if (stream->dst_rate != stream->src_rate) {
/* save off some samples at the end; they are used for padding now so
the resampler is coherent and then used at the start of the next
put operation. Prepend last put operation's padding, too. */
/* prepend prior put's padding. :P */
if (paddingbytes) {
SDL_memcpy(workbuf, stream->resampler_padding, paddingbytes);
buflen += paddingbytes;
}
/* save off the data at the end for the next run. */
SDL_memcpy(stream->resampler_padding, workbuf + (buflen - neededpaddingbytes), neededpaddingbytes);
resamplebuf = workbuf + buflen; /* skip to second piece of workbuf. */
SDL_assert(buflen >= neededpaddingbytes);
if (buflen > neededpaddingbytes) {
buflen = stream->resampler_func(stream, workbuf, buflen - neededpaddingbytes, resamplebuf, resamplebuflen);
} else {
buflen = 0;
}
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: After resampling we have %d bytes\n", buflen);
#endif
}
if (stream->cvt_after_resampling.needed && (buflen > 0)) {
stream->cvt_after_resampling.buf = resamplebuf;
stream->cvt_after_resampling.len = buflen;
if (SDL_ConvertAudio(&stream->cvt_after_resampling) == -1) {
return -1; /* uhoh! */
}
buflen = stream->cvt_after_resampling.len_cvt;
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: After final conversion we have %d bytes\n", buflen);
#endif
}
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: Final output is %d bytes\n", buflen);
#endif
if (maxputbytes) {
const int maxbytes = *maxputbytes;
if (buflen > maxbytes)
buflen = maxbytes;
*maxputbytes -= buflen;
}
/* resamplebuf holds the final output, even if we didn't resample. */
return buflen ? SDL_WriteToDataQueue(stream->queue, resamplebuf, buflen) : 0;
}
int
SDL_AudioStreamPut(SDL_AudioStream *stream, const void *buf, int len)
{
/* !!! FIXME: several converters can take advantage of SIMD, but only
!!! FIXME: if the data is aligned to 16 bytes. EnsureStreamBufferSize()
!!! FIXME: guarantees the buffer will align, but the
!!! FIXME: converters will iterate over the data backwards if
!!! FIXME: the output grows, and this means we won't align if buflen
!!! FIXME: isn't a multiple of 16. In these cases, we should chop off
!!! FIXME: a few samples at the end and convert them separately. */
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: wants to put %d preconverted bytes\n", buflen);
#endif
if (!stream) {
return SDL_InvalidParamError("stream");
}
if (!buf) {
return SDL_InvalidParamError("buf");
}
if (len == 0) {
return 0; /* nothing to do. */
}
if ((len % stream->src_sample_frame_size) != 0) {
return SDL_SetError("Can't add partial sample frames");
}
if (!stream->cvt_before_resampling.needed &&
(stream->dst_rate == stream->src_rate) &&
!stream->cvt_after_resampling.needed) {
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: no conversion needed at all, queueing %d bytes.\n", len);
#endif
return SDL_WriteToDataQueue(stream->queue, buf, len);
}
while (len > 0) {
int amount;
/* If we don't have a staging buffer or we're given enough data that
we don't need to store it for later, skip the staging process.
*/
if (!stream->staging_buffer_filled && len >= stream->staging_buffer_size) {
return SDL_AudioStreamPutInternal(stream, buf, len, NULL);
}
/* If there's not enough data to fill the staging buffer, just save it */
if ((stream->staging_buffer_filled + len) < stream->staging_buffer_size) {
SDL_memcpy(stream->staging_buffer + stream->staging_buffer_filled, buf, len);
stream->staging_buffer_filled += len;
return 0;
}
/* Fill the staging buffer, process it, and continue */
amount = (stream->staging_buffer_size - stream->staging_buffer_filled);
SDL_assert(amount > 0);
SDL_memcpy(stream->staging_buffer + stream->staging_buffer_filled, buf, amount);
stream->staging_buffer_filled = 0;
if (SDL_AudioStreamPutInternal(stream, stream->staging_buffer, stream->staging_buffer_size, NULL) < 0) {
return -1;
}
buf = (void *)((Uint8 *)buf + amount);
len -= amount;
}
return 0;
}
int SDL_AudioStreamFlush(SDL_AudioStream *stream)
{
if (!stream) {
return SDL_InvalidParamError("stream");
}
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: flushing! staging_buffer_filled=%d bytes\n", stream->staging_buffer_filled);
#endif
/* shouldn't use a staging buffer if we're not resampling. */
SDL_assert((stream->dst_rate != stream->src_rate) || (stream->staging_buffer_filled == 0));
if (stream->staging_buffer_filled > 0) {
/* push the staging buffer + silence. We need to flush out not just
the staging buffer, but the piece that the stream was saving off
for right-side resampler padding. */
const SDL_bool first_run = stream->first_run;
const int filled = stream->staging_buffer_filled;
int actual_input_frames = filled / stream->src_sample_frame_size;
if (!first_run)
actual_input_frames += stream->resampler_padding_samples / stream->pre_resample_channels;
if (actual_input_frames > 0) { /* don't bother if nothing to flush. */
/* This is how many bytes we're expecting without silence appended. */
int flush_remaining = ((int) SDL_ceil(actual_input_frames * stream->rate_incr)) * stream->dst_sample_frame_size;
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: flushing with padding to get max %d bytes!\n", flush_remaining);
#endif
SDL_memset(stream->staging_buffer + filled, '\0', stream->staging_buffer_size - filled);
if (SDL_AudioStreamPutInternal(stream, stream->staging_buffer, stream->staging_buffer_size, &flush_remaining) < 0) {
return -1;
}
/* we have flushed out (or initially filled) the pending right-side
resampler padding, but we need to push more silence to guarantee
the staging buffer is fully flushed out, too. */
SDL_memset(stream->staging_buffer, '\0', filled);
if (SDL_AudioStreamPutInternal(stream, stream->staging_buffer, stream->staging_buffer_size, &flush_remaining) < 0) {
return -1;
}
}
}
stream->staging_buffer_filled = 0;
stream->first_run = SDL_TRUE;
return 0;
}
/* get converted/resampled data from the stream */
int
SDL_AudioStreamGet(SDL_AudioStream *stream, void *buf, int len)
{
#if DEBUG_AUDIOSTREAM
printf("AUDIOSTREAM: want to get %d converted bytes\n", len);
#endif
if (!stream) {
return SDL_InvalidParamError("stream");
}
if (!buf) {
return SDL_InvalidParamError("buf");
}
if (len <= 0) {
return 0; /* nothing to do. */
}
if ((len % stream->dst_sample_frame_size) != 0) {
return SDL_SetError("Can't request partial sample frames");
}
return (int) SDL_ReadFromDataQueue(stream->queue, buf, len);
}
/* number of converted/resampled bytes available */
int
SDL_AudioStreamAvailable(SDL_AudioStream *stream)
{
return stream ? (int) SDL_CountDataQueue(stream->queue) : 0;
}
void
SDL_AudioStreamClear(SDL_AudioStream *stream)
{
if (!stream) {
SDL_InvalidParamError("stream");
} else {
SDL_ClearDataQueue(stream->queue, stream->packetlen * 2);
if (stream->reset_resampler_func) {
stream->reset_resampler_func(stream);
}
stream->first_run = SDL_TRUE;
stream->staging_buffer_filled = 0;
}
}
/* dispose of a stream */
void
SDL_FreeAudioStream(SDL_AudioStream *stream)
{
if (stream) {
if (stream->cleanup_resampler_func) {
stream->cleanup_resampler_func(stream);
}
SDL_FreeDataQueue(stream->queue);
SDL_free(stream->staging_buffer);
SDL_free(stream->work_buffer_base);
SDL_free(stream->resampler_padding);
SDL_free(stream);
}
}
/* vi: set ts=4 sw=4 expandtab: */