Hash :
6cf06575
        
        Author :
  
        
        Date :
2017-11-04T15:53:19
        
      
Updated math code from the uClibc 0.9.33 release
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* cos(x)
 * Return cosine function of x.
 *
 * kernel function:
 *	__kernel_sin		... sine function on [-pi/4,pi/4]
 *	__kernel_cos		... cosine function on [-pi/4,pi/4]
 *	__ieee754_rem_pio2	... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *	in [-pi/4 , +pi/4], and let n = k mod 4.
 *	We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *	    0	       S	   C		 T
 *	    1	       C	  -S		-1/T
 *	    2	      -S	  -C		 T
 *	    3	      -C	   S		-1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded
 */
#include "math_libm.h"
#include "math_private.h"
double cos(double x)
{
	double y[2],z=0.0;
	int32_t n, ix;
    /* High word of x. */
	GET_HIGH_WORD(ix,x);
    /* |x| ~< pi/4 */
	ix &= 0x7fffffff;
	if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
    /* cos(Inf or NaN) is NaN */
	else if (ix>=0x7ff00000) return x-x;
    /* argument reduction needed */
	else {
	    n = __ieee754_rem_pio2(x,y);
	    switch(n&3) {
		case 0: return  __kernel_cos(y[0],y[1]);
		case 1: return -__kernel_sin(y[0],y[1],1);
		case 2: return -__kernel_cos(y[0],y[1]);
		default:
		        return  __kernel_sin(y[0],y[1],1);
	    }
	}
}
libm_hidden_def(cos)