Hash :
76e9d64b
Author :
Date :
2023-03-10T08:13:51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/*
Simple DirectMedia Layer
Copyright (C) 1997-2023 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "../SDL_internal.h"
/* Functions for audio drivers to perform runtime conversion of audio format */
#include "SDL.h"
#include "SDL_audio.h"
#include "SDL_audio_c.h"
#include "SDL_loadso.h"
#include "../SDL_dataqueue.h"
#include "SDL_cpuinfo.h"
#define DEBUG_AUDIOSTREAM 0
#ifdef __ARM_NEON
#define HAVE_NEON_INTRINSICS 1
#endif
#ifdef __SSE__
#define HAVE_SSE_INTRINSICS 1
#endif
#ifdef __SSE3__
#define HAVE_SSE3_INTRINSICS 1
#endif
#if defined(HAVE_IMMINTRIN_H) && !defined(SDL_DISABLE_IMMINTRIN_H)
#define HAVE_AVX_INTRINSICS 1
#endif
#if defined __clang__
#if (!__has_attribute(target))
#undef HAVE_AVX_INTRINSICS
#endif
#if (defined(_MSC_VER) || defined(__SCE__)) && !defined(__AVX__)
#undef HAVE_AVX_INTRINSICS
#endif
#elif defined __GNUC__
#if (__GNUC__ < 4) || (__GNUC__ == 4 && __GNUC_MINOR__ < 9)
#undef HAVE_AVX_INTRINSICS
#endif
#endif
/*
* CHANNEL LAYOUTS AS SDL EXPECTS THEM:
*
* (Even if the platform expects something else later, that
* SDL will swizzle between the app and the platform).
*
* Abbreviations:
* - FRONT=single mono speaker
* - FL=front left speaker
* - FR=front right speaker
* - FC=front center speaker
* - BL=back left speaker
* - BR=back right speaker
* - SR=surround right speaker
* - SL=surround left speaker
* - BC=back center speaker
* - LFE=low-frequency speaker
*
* These are listed in the order they are laid out in
* memory, so "FL+FR" means "the front left speaker is
* layed out in memory first, then the front right, then
* it repeats for the next audio frame".
*
* 1 channel (mono) layout: FRONT
* 2 channels (stereo) layout: FL+FR
* 3 channels (2.1) layout: FL+FR+LFE
* 4 channels (quad) layout: FL+FR+BL+BR
* 5 channels (4.1) layout: FL+FR+LFE+BL+BR
* 6 channels (5.1) layout: FL+FR+FC+LFE+BL+BR
* 7 channels (6.1) layout: FL+FR+FC+LFE+BC+SL+SR
* 8 channels (7.1) layout: FL+FR+FC+LFE+BL+BR+SL+SR
*/
#if HAVE_SSE3_INTRINSICS
/* Convert from stereo to mono. Average left and right. */
static void SDLCALL SDL_ConvertStereoToMono_SSE3(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const __m128 divby2 = _mm_set1_ps(0.5f);
float *dst = (float *)cvt->buf;
const float *src = dst;
int i = cvt->len_cvt / 8;
LOG_DEBUG_CONVERT("stereo", "mono (using SSE3)");
SDL_assert(format == AUDIO_F32SYS);
/* Do SSE blocks as long as we have 16 bytes available.
Just use unaligned load/stores, if the memory at runtime is
aligned it'll be just as fast on modern processors */
while (i >= 4) { /* 4 * float32 */
_mm_storeu_ps(dst, _mm_mul_ps(_mm_hadd_ps(_mm_loadu_ps(src), _mm_loadu_ps(src + 4)), divby2));
i -= 4;
src += 8;
dst += 4;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (src[0] + src[1]) * 0.5f;
dst++;
i--;
src += 2;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, format);
}
}
#endif
#if HAVE_SSE_INTRINSICS
/* Convert from mono to stereo. Duplicate to stereo left and right. */
static void SDLCALL SDL_ConvertMonoToStereo_SSE(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
float *dst = ((float *)(cvt->buf + (cvt->len_cvt * 2))) - 8;
const float *src = ((const float *)(cvt->buf + cvt->len_cvt)) - 4;
int i = cvt->len_cvt / sizeof(float);
LOG_DEBUG_CONVERT("mono", "stereo (using SSE)");
SDL_assert(format == AUDIO_F32SYS);
/* Do SSE blocks as long as we have 16 bytes available.
Just use unaligned load/stores, if the memory at runtime is
aligned it'll be just as fast on modern processors */
/* convert backwards, since output is growing in-place. */
while (i >= 4) { /* 4 * float32 */
const __m128 input = _mm_loadu_ps(src); /* A B C D */
_mm_storeu_ps(dst, _mm_unpacklo_ps(input, input)); /* A A B B */
_mm_storeu_ps(dst + 4, _mm_unpackhi_ps(input, input)); /* C C D D */
i -= 4;
src -= 4;
dst -= 8;
}
/* Finish off any leftovers with scalar operations. */
src += 3;
dst += 6; /* adjust for smaller buffers. */
while (i) { /* convert backwards, since output is growing in-place. */
const float srcFC = src[0];
dst[1] /* FR */ = srcFC;
dst[0] /* FL */ = srcFC;
i--;
src--;
dst -= 2;
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, format);
}
}
#endif
/* Include the autogenerated channel converters... */
#include "SDL_audio_channel_converters.h"
/* SDL's resampler uses a "bandlimited interpolation" algorithm:
https://ccrma.stanford.edu/~jos/resample/ */
#include "SDL_audio_resampler_filter.h"
static Sint32 ResamplerPadding(const Sint32 inrate, const Sint32 outrate)
{
/* This function uses integer arithmetics to avoid precision loss caused
* by large floating point numbers. Sint32 is needed for the large number
* multiplication. The integers are assumed to be non-negative so that
* division rounds by truncation. */
if (inrate == outrate) {
return 0;
}
if (inrate > outrate) {
return (RESAMPLER_SAMPLES_PER_ZERO_CROSSING * inrate + outrate - 1) / outrate;
}
return RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
}
/* lpadding and rpadding are expected to be buffers of (ResamplePadding(inrate, outrate) * chans * sizeof(float)) bytes. */
static int SDL_ResampleAudio(const int chans, const int inrate, const int outrate,
const float *lpadding, const float *rpadding,
const float *inbuf, const int inbuflen,
float *outbuf, const int outbuflen)
{
/* This function uses integer arithmetics to avoid precision loss caused
* by large floating point numbers. For some operations, Sint32 or Sint64
* are needed for the large number multiplications. The input integers are
* assumed to be non-negative so that division rounds by truncation and
* modulo is always non-negative. Note that the operator order is important
* for these integer divisions. */
const int paddinglen = ResamplerPadding(inrate, outrate);
const int framelen = chans * (int)sizeof(float);
const int inframes = inbuflen / framelen;
/* outbuflen isn't total to write, it's total available. */
const int wantedoutframes = (int)((Sint64)inframes * outrate / inrate);
const int maxoutframes = outbuflen / framelen;
const int outframes = SDL_min(wantedoutframes, maxoutframes);
float *dst = outbuf;
int i, j, chan;
for (i = 0; i < outframes; i++) {
const int srcindex = (int)((Sint64)i * inrate / outrate);
/* Calculating the following way avoids subtraction or modulo of large
* floats which have low result precision.
* interpolation1
* = (i / outrate * inrate) - floor(i / outrate * inrate)
* = mod(i / outrate * inrate, 1)
* = mod(i * inrate, outrate) / outrate */
const int srcfraction = ((Sint64)i) * inrate % outrate;
const float interpolation1 = ((float)srcfraction) / ((float)outrate);
const int filterindex1 = ((Sint32)srcfraction) * RESAMPLER_SAMPLES_PER_ZERO_CROSSING / outrate;
const float interpolation2 = 1.0f - interpolation1;
const int filterindex2 = ((Sint32)(outrate - srcfraction)) * RESAMPLER_SAMPLES_PER_ZERO_CROSSING / outrate;
for (chan = 0; chan < chans; chan++) {
float outsample = 0.0f;
/* do this twice to calculate the sample, once for the "left wing" and then same for the right. */
for (j = 0; (filterindex1 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
const int filt_ind = filterindex1 + j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
const int srcframe = srcindex - j;
/* !!! FIXME: we can bubble this conditional out of here by doing a pre loop. */
const float insample = (srcframe < 0) ? lpadding[((paddinglen + srcframe) * chans) + chan] : inbuf[(srcframe * chans) + chan];
outsample += (float) (insample * (ResamplerFilter[filt_ind] + (interpolation1 * ResamplerFilterDifference[filt_ind])));
}
/* Do the right wing! */
for (j = 0; (filterindex2 + (j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING)) < RESAMPLER_FILTER_SIZE; j++) {
const int filt_ind = filterindex2 + j * RESAMPLER_SAMPLES_PER_ZERO_CROSSING;
const int srcframe = srcindex + 1 + j;
/* !!! FIXME: we can bubble this conditional out of here by doing a post loop. */
const float insample = (srcframe >= inframes) ? rpadding[((srcframe - inframes) * chans) + chan] : inbuf[(srcframe * chans) + chan];
outsample += (float) (insample * (ResamplerFilter[filt_ind] + (interpolation2 * ResamplerFilterDifference[filt_ind])));
}
*(dst++) = outsample;
}
}
return outframes * chans * sizeof(float);
}
int SDL_ConvertAudio(SDL_AudioCVT *cvt)
{
/* !!! FIXME: (cvt) should be const; stack-copy it here. */
/* !!! FIXME: (actually, we can't...len_cvt needs to be updated. Grr.) */
/* Make sure there's data to convert */
if (cvt->buf == NULL) {
return SDL_SetError("No buffer allocated for conversion");
}
/* Return okay if no conversion is necessary */
cvt->len_cvt = cvt->len;
if (cvt->filters[0] == NULL) {
return 0;
}
/* Set up the conversion and go! */
cvt->filter_index = 0;
cvt->filters[0](cvt, cvt->src_format);
return 0;
}
static void SDLCALL SDL_Convert_Byteswap(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
#if DEBUG_CONVERT
SDL_Log("SDL_AUDIO_CONVERT: Converting byte order\n");
#endif
switch (SDL_AUDIO_BITSIZE(format)) {
#define CASESWAP(b) \
case b: \
{ \
Uint##b *ptr = (Uint##b *)cvt->buf; \
int i; \
for (i = cvt->len_cvt / sizeof(*ptr); i; --i, ++ptr) { \
*ptr = SDL_Swap##b(*ptr); \
} \
break; \
}
CASESWAP(16);
CASESWAP(32);
CASESWAP(64);
#undef CASESWAP
default:
SDL_assert(!"unhandled byteswap datatype!");
break;
}
if (cvt->filters[++cvt->filter_index]) {
/* flip endian flag for data. */
if (format & SDL_AUDIO_MASK_ENDIAN) {
format &= ~SDL_AUDIO_MASK_ENDIAN;
} else {
format |= SDL_AUDIO_MASK_ENDIAN;
}
cvt->filters[cvt->filter_index](cvt, format);
}
}
static int SDL_AddAudioCVTFilter(SDL_AudioCVT *cvt, SDL_AudioFilter filter)
{
if (cvt->filter_index >= SDL_AUDIOCVT_MAX_FILTERS) {
return SDL_SetError("Too many filters needed for conversion, exceeded maximum of %d", SDL_AUDIOCVT_MAX_FILTERS);
}
SDL_assert(filter != NULL);
cvt->filters[cvt->filter_index++] = filter;
cvt->filters[cvt->filter_index] = NULL; /* Moving terminator */
return 0;
}
static int SDL_BuildAudioTypeCVTToFloat(SDL_AudioCVT *cvt, const SDL_AudioFormat src_fmt)
{
int retval = 0; /* 0 == no conversion necessary. */
if ((SDL_AUDIO_ISBIGENDIAN(src_fmt) != 0) == (SDL_BYTEORDER == SDL_LIL_ENDIAN) && SDL_AUDIO_BITSIZE(src_fmt) > 8) {
if (SDL_AddAudioCVTFilter(cvt, SDL_Convert_Byteswap) < 0) {
return -1;
}
retval = 1; /* added a converter. */
}
if (!SDL_AUDIO_ISFLOAT(src_fmt)) {
const Uint16 src_bitsize = SDL_AUDIO_BITSIZE(src_fmt);
const Uint16 dst_bitsize = 32;
SDL_AudioFilter filter = NULL;
switch (src_fmt & ~SDL_AUDIO_MASK_ENDIAN) {
case AUDIO_S8:
filter = SDL_Convert_S8_to_F32;
break;
case AUDIO_U8:
filter = SDL_Convert_U8_to_F32;
break;
case AUDIO_S16:
filter = SDL_Convert_S16_to_F32;
break;
case AUDIO_U16:
filter = SDL_Convert_U16_to_F32;
break;
case AUDIO_S32:
filter = SDL_Convert_S32_to_F32;
break;
default:
SDL_assert(!"Unexpected audio format!");
break;
}
if (!filter) {
return SDL_SetError("No conversion from source format to float available");
}
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
return -1;
}
if (src_bitsize < dst_bitsize) {
const int mult = (dst_bitsize / src_bitsize);
cvt->len_mult *= mult;
cvt->len_ratio *= mult;
} else if (src_bitsize > dst_bitsize) {
const int div = (src_bitsize / dst_bitsize);
cvt->len_ratio /= div;
}
retval = 1; /* added a converter. */
}
return retval;
}
static int SDL_BuildAudioTypeCVTFromFloat(SDL_AudioCVT *cvt, const SDL_AudioFormat dst_fmt)
{
int retval = 0; /* 0 == no conversion necessary. */
if (!SDL_AUDIO_ISFLOAT(dst_fmt)) {
const Uint16 dst_bitsize = SDL_AUDIO_BITSIZE(dst_fmt);
const Uint16 src_bitsize = 32;
SDL_AudioFilter filter = NULL;
switch (dst_fmt & ~SDL_AUDIO_MASK_ENDIAN) {
case AUDIO_S8:
filter = SDL_Convert_F32_to_S8;
break;
case AUDIO_U8:
filter = SDL_Convert_F32_to_U8;
break;
case AUDIO_S16:
filter = SDL_Convert_F32_to_S16;
break;
case AUDIO_U16:
filter = SDL_Convert_F32_to_U16;
break;
case AUDIO_S32:
filter = SDL_Convert_F32_to_S32;
break;
default:
SDL_assert(!"Unexpected audio format!");
break;
}
if (!filter) {
return SDL_SetError("No conversion from float to format 0x%.4x available", dst_fmt);
}
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
return -1;
}
if (src_bitsize < dst_bitsize) {
const int mult = (dst_bitsize / src_bitsize);
cvt->len_mult *= mult;
cvt->len_ratio *= mult;
} else if (src_bitsize > dst_bitsize) {
const int div = (src_bitsize / dst_bitsize);
cvt->len_ratio /= div;
}
retval = 1; /* added a converter. */
}
if ((SDL_AUDIO_ISBIGENDIAN(dst_fmt) != 0) == (SDL_BYTEORDER == SDL_LIL_ENDIAN) && SDL_AUDIO_BITSIZE(dst_fmt) > 8) {
if (SDL_AddAudioCVTFilter(cvt, SDL_Convert_Byteswap) < 0) {
return -1;
}
retval = 1; /* added a converter. */
}
return retval;
}
#ifdef HAVE_LIBSAMPLERATE_H
static void SDL_ResampleCVT_SRC(SDL_AudioCVT *cvt, const int chans, const SDL_AudioFormat format)
{
const float *src = (const float *)cvt->buf;
const int srclen = cvt->len_cvt;
float *dst = (float *)(cvt->buf + srclen);
const int dstlen = (cvt->len * cvt->len_mult) - srclen;
const int framelen = sizeof(float) * chans;
int result = 0;
SRC_DATA data;
SDL_zero(data);
data.data_in = (float *)src; /* Older versions of libsamplerate had a non-const pointer, but didn't write to it */
data.input_frames = srclen / framelen;
data.data_out = dst;
data.output_frames = dstlen / framelen;
data.src_ratio = cvt->rate_incr;
result = SRC_src_simple(&data, SRC_converter, chans); /* Simple API converts the whole buffer at once. No need for initialization. */
/* !!! FIXME: Handle library failures? */
#ifdef DEBUG_CONVERT
if (result != 0) {
SDL_Log("src_simple() failed: %s", SRC_src_strerror(result));
}
#endif
cvt->len_cvt = data.output_frames_gen * framelen;
SDL_memmove(cvt->buf, dst, cvt->len_cvt);
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, format);
}
}
#endif /* HAVE_LIBSAMPLERATE_H */
static void SDL_ResampleCVT(SDL_AudioCVT *cvt, const int chans, const SDL_AudioFormat format)
{
/* !!! FIXME in 2.1: there are ten slots in the filter list, and the theoretical maximum we use is six (seven with NULL terminator).
!!! FIXME in 2.1: We need to store data for this resampler, because the cvt structure doesn't store the original sample rates,
!!! FIXME in 2.1: so we steal the ninth and tenth slot. :( */
const int inrate = (int)(size_t)cvt->filters[SDL_AUDIOCVT_MAX_FILTERS - 1];
const int outrate = (int)(size_t)cvt->filters[SDL_AUDIOCVT_MAX_FILTERS];
const float *src = (const float *)cvt->buf;
const int srclen = cvt->len_cvt;
/*float *dst = (float *) cvt->buf;
const int dstlen = (cvt->len * cvt->len_mult);*/
/* !!! FIXME: remove this if we can get the resampler to work in-place again. */
float *dst = (float *)(cvt->buf + srclen);
const int dstlen = (cvt->len * cvt->len_mult) - srclen;
const int requestedpadding = ResamplerPadding(inrate, outrate);
int paddingsamples;
float *padding;
if (requestedpadding < SDL_MAX_SINT32 / chans) {
paddingsamples = requestedpadding * chans;
} else {
paddingsamples = 0;
}
SDL_assert(format == AUDIO_F32SYS);
/* we keep no streaming state here, so pad with silence on both ends. */
padding = (float *)SDL_calloc(paddingsamples ? paddingsamples : 1, sizeof(float));
if (padding == NULL) {
SDL_OutOfMemory();
return;
}
cvt->len_cvt = SDL_ResampleAudio(chans, inrate, outrate, padding, padding, src, srclen, dst, dstlen);
SDL_free(padding);
SDL_memmove(cvt->buf, dst, cvt->len_cvt); /* !!! FIXME: remove this if we can get the resampler to work in-place again. */
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, format);
}
}
/* !!! FIXME: We only have this macro salsa because SDL_AudioCVT doesn't
!!! FIXME: store channel info, so we have to have function entry
!!! FIXME: points for each supported channel count and multiple
!!! FIXME: vs arbitrary. When we rev the ABI, clean this up. */
#define RESAMPLER_FUNCS(chans) \
static void SDLCALL \
SDL_ResampleCVT_c##chans(SDL_AudioCVT *cvt, SDL_AudioFormat format) \
{ \
SDL_ResampleCVT(cvt, chans, format); \
}
RESAMPLER_FUNCS(1)
RESAMPLER_FUNCS(2)
RESAMPLER_FUNCS(4)
RESAMPLER_FUNCS(6)
RESAMPLER_FUNCS(8)
#undef RESAMPLER_FUNCS
#ifdef HAVE_LIBSAMPLERATE_H
#define RESAMPLER_FUNCS(chans) \
static void SDLCALL \
SDL_ResampleCVT_SRC_c##chans(SDL_AudioCVT *cvt, SDL_AudioFormat format) \
{ \
SDL_ResampleCVT_SRC(cvt, chans, format); \
}
RESAMPLER_FUNCS(1)
RESAMPLER_FUNCS(2)
RESAMPLER_FUNCS(4)
RESAMPLER_FUNCS(6)
RESAMPLER_FUNCS(8)
#undef RESAMPLER_FUNCS
#endif /* HAVE_LIBSAMPLERATE_H */
static SDL_AudioFilter ChooseCVTResampler(const int dst_channels)
{
#ifdef HAVE_LIBSAMPLERATE_H
if (SRC_available) {
switch (dst_channels) {
case 1:
return SDL_ResampleCVT_SRC_c1;
case 2:
return SDL_ResampleCVT_SRC_c2;
case 4:
return SDL_ResampleCVT_SRC_c4;
case 6:
return SDL_ResampleCVT_SRC_c6;
case 8:
return SDL_ResampleCVT_SRC_c8;
default:
break;
}
}
#endif /* HAVE_LIBSAMPLERATE_H */
switch (dst_channels) {
case 1:
return SDL_ResampleCVT_c1;
case 2:
return SDL_ResampleCVT_c2;
case 4:
return SDL_ResampleCVT_c4;
case 6:
return SDL_ResampleCVT_c6;
case 8:
return SDL_ResampleCVT_c8;
default:
break;
}
return NULL;
}
static int SDL_BuildAudioResampleCVT(SDL_AudioCVT *cvt, const int dst_channels,
const int src_rate, const int dst_rate)
{
SDL_AudioFilter filter;
if (src_rate == dst_rate) {
return 0; /* no conversion necessary. */
}
filter = ChooseCVTResampler(dst_channels);
if (filter == NULL) {
return SDL_SetError("No conversion available for these rates");
}
/* Update (cvt) with filter details... */
if (SDL_AddAudioCVTFilter(cvt, filter) < 0) {
return -1;
}
/* !!! FIXME in 2.1: there are ten slots in the filter list, and the theoretical maximum we use is six (seven with NULL terminator).
!!! FIXME in 2.1: We need to store data for this resampler, because the cvt structure doesn't store the original sample rates,
!!! FIXME in 2.1: so we steal the ninth and tenth slot. :( */
if (cvt->filter_index >= (SDL_AUDIOCVT_MAX_FILTERS - 2)) {
return SDL_SetError("Too many filters needed for conversion, exceeded maximum of %d", SDL_AUDIOCVT_MAX_FILTERS - 2);
}
cvt->filters[SDL_AUDIOCVT_MAX_FILTERS - 1] = (SDL_AudioFilter)(uintptr_t)src_rate;
cvt->filters[SDL_AUDIOCVT_MAX_FILTERS] = (SDL_AudioFilter)(uintptr_t)dst_rate;
if (src_rate < dst_rate) {
const double mult = ((double)dst_rate) / ((double)src_rate);
cvt->len_mult *= (int)SDL_ceil(mult);
cvt->len_ratio *= mult;
} else {
cvt->len_ratio /= ((double)src_rate) / ((double)dst_rate);
}
/* !!! FIXME: remove this if we can get the resampler to work in-place again. */
/* the buffer is big enough to hold the destination now, but
we need it large enough to hold a separate scratch buffer. */
cvt->len_mult *= 2;
return 1; /* added a converter. */
}
static SDL_bool SDL_SupportedAudioFormat(const SDL_AudioFormat fmt)
{
switch (fmt) {
case AUDIO_U8:
case AUDIO_S8:
case AUDIO_U16LSB:
case AUDIO_S16LSB:
case AUDIO_U16MSB:
case AUDIO_S16MSB:
case AUDIO_S32LSB:
case AUDIO_S32MSB:
case AUDIO_F32LSB:
case AUDIO_F32MSB:
return SDL_TRUE; /* supported. */
default:
break;
}
return SDL_FALSE; /* unsupported. */
}
static SDL_bool SDL_SupportedChannelCount(const int channels)
{
return ((channels >= 1) && (channels <= 8)) ? SDL_TRUE : SDL_FALSE;
}
/* Creates a set of audio filters to convert from one format to another.
Returns 0 if no conversion is needed, 1 if the audio filter is set up,
or -1 if an error like invalid parameter, unsupported format, etc. occurred.
*/
int SDL_BuildAudioCVT(SDL_AudioCVT *cvt,
SDL_AudioFormat src_format, Uint8 src_channels, int src_rate,
SDL_AudioFormat dst_format, Uint8 dst_channels, int dst_rate)
{
SDL_AudioFilter channel_converter = NULL;
/* Sanity check target pointer */
if (cvt == NULL) {
return SDL_InvalidParamError("cvt");
}
/* Make sure we zero out the audio conversion before error checking */
SDL_zerop(cvt);
if (!SDL_SupportedAudioFormat(src_format)) {
return SDL_SetError("Invalid source format");
}
if (!SDL_SupportedAudioFormat(dst_format)) {
return SDL_SetError("Invalid destination format");
}
if (!SDL_SupportedChannelCount(src_channels)) {
return SDL_SetError("Invalid source channels");
}
if (!SDL_SupportedChannelCount(dst_channels)) {
return SDL_SetError("Invalid destination channels");
}
if (src_rate <= 0) {
return SDL_SetError("Source rate is equal to or less than zero");
}
if (dst_rate <= 0) {
return SDL_SetError("Destination rate is equal to or less than zero");
}
if (src_rate >= SDL_MAX_SINT32 / RESAMPLER_SAMPLES_PER_ZERO_CROSSING) {
return SDL_SetError("Source rate is too high");
}
if (dst_rate >= SDL_MAX_SINT32 / RESAMPLER_SAMPLES_PER_ZERO_CROSSING) {
return SDL_SetError("Destination rate is too high");
}
#if DEBUG_CONVERT
SDL_Log("SDL_AUDIO_CONVERT: Build format %04x->%04x, channels %u->%u, rate %d->%d\n",
src_format, dst_format, src_channels, dst_channels, src_rate, dst_rate);
#endif
/* Start off with no conversion necessary */
cvt->src_format = src_format;
cvt->dst_format = dst_format;
cvt->needed = 0;
cvt->filter_index = 0;
SDL_zeroa(cvt->filters);
cvt->len_mult = 1;
cvt->len_ratio = 1.0;
cvt->rate_incr = ((double)dst_rate) / ((double)src_rate);
/* Make sure we've chosen audio conversion functions (SIMD, scalar, etc.) */
SDL_ChooseAudioConverters();
/* Type conversion goes like this now:
- byteswap to CPU native format first if necessary.
- convert to native Float32 if necessary.
- resample and change channel count if necessary.
- convert to final data format.
- byteswap back to foreign format if necessary.
The expectation is we can process data faster in float32
(possibly with SIMD), and making several passes over the same
buffer is likely to be CPU cache-friendly, avoiding the
biggest performance hit in modern times. Previously we had
(script-generated) custom converters for every data type and
it was a bloat on SDL compile times and final library size. */
/* see if we can skip float conversion entirely. */
if (src_rate == dst_rate && src_channels == dst_channels) {
if (src_format == dst_format) {
return 0;
}
/* just a byteswap needed? */
if ((src_format & ~SDL_AUDIO_MASK_ENDIAN) == (dst_format & ~SDL_AUDIO_MASK_ENDIAN)) {
if (SDL_AUDIO_BITSIZE(dst_format) == 8) {
return 0;
}
if (SDL_AddAudioCVTFilter(cvt, SDL_Convert_Byteswap) < 0) {
return -1;
}
cvt->needed = 1;
return 1;
}
}
/* Convert data types, if necessary. Updates (cvt). */
if (SDL_BuildAudioTypeCVTToFloat(cvt, src_format) < 0) {
return -1; /* shouldn't happen, but just in case... */
}
/* Channel conversion */
/* SDL_SupportedChannelCount should have caught these asserts, or we added a new format and forgot to update the table. */
SDL_assert(src_channels <= SDL_arraysize(channel_converters));
SDL_assert(dst_channels <= SDL_arraysize(channel_converters[0]));
channel_converter = channel_converters[src_channels - 1][dst_channels - 1];
if ((channel_converter == NULL) != (src_channels == dst_channels)) {
/* All combinations of supported channel counts should have been handled by now, but let's be defensive */
return SDL_SetError("Invalid channel combination");
} else if (channel_converter != NULL) {
/* swap in some SIMD versions for a few of these. */
if (channel_converter == SDL_ConvertStereoToMono) {
SDL_AudioFilter filter = NULL;
#if HAVE_SSE3_INTRINSICS
if (!filter && SDL_HasSSE3()) {
filter = SDL_ConvertStereoToMono_SSE3;
}
#endif
if (filter) {
channel_converter = filter;
}
} else if (channel_converter == SDL_ConvertMonoToStereo) {
SDL_AudioFilter filter = NULL;
#if HAVE_SSE_INTRINSICS
if (!filter && SDL_HasSSE()) {
filter = SDL_ConvertMonoToStereo_SSE;
}
#endif
if (filter) {
channel_converter = filter;
}
}
if (SDL_AddAudioCVTFilter(cvt, channel_converter) < 0) {
return -1;
}
if (src_channels < dst_channels) {
cvt->len_mult = ((cvt->len_mult * dst_channels) + (src_channels - 1)) / src_channels;
}
cvt->len_ratio = (cvt->len_ratio * dst_channels) / src_channels;
src_channels = dst_channels;
}
/* Do rate conversion, if necessary. Updates (cvt). */
if (SDL_BuildAudioResampleCVT(cvt, dst_channels, src_rate, dst_rate) < 0) {
return -1; /* shouldn't happen, but just in case... */
}
/* Move to final data type. */
if (SDL_BuildAudioTypeCVTFromFloat(cvt, dst_format) < 0) {
return -1; /* shouldn't happen, but just in case... */
}
cvt->needed = (cvt->filter_index != 0);
return cvt->needed;
}
typedef int (*SDL_ResampleAudioStreamFunc)(SDL_AudioStream *stream, const void *inbuf, const int inbuflen, void *outbuf, const int outbuflen);
typedef void (*SDL_ResetAudioStreamResamplerFunc)(SDL_AudioStream *stream);
typedef void (*SDL_CleanupAudioStreamResamplerFunc)(SDL_AudioStream *stream);
struct _SDL_AudioStream
{
SDL_AudioCVT cvt_before_resampling;
SDL_AudioCVT cvt_after_resampling;
SDL_DataQueue *queue;
SDL_bool first_run;
Uint8 *staging_buffer;
int staging_buffer_size;
int staging_buffer_filled;
Uint8 *work_buffer_base; /* maybe unaligned pointer from SDL_realloc(). */
int work_buffer_len;
int src_sample_frame_size;
SDL_AudioFormat src_format;
Uint8 src_channels;
int src_rate;
int dst_sample_frame_size;
SDL_AudioFormat dst_format;
Uint8 dst_channels;
int dst_rate;
double rate_incr;
Uint8 pre_resample_channels;
int packetlen;
int resampler_padding_samples;
float *resampler_padding;
void *resampler_state;
SDL_ResampleAudioStreamFunc resampler_func;
SDL_ResetAudioStreamResamplerFunc reset_resampler_func;
SDL_CleanupAudioStreamResamplerFunc cleanup_resampler_func;
};
static Uint8 *EnsureStreamBufferSize(SDL_AudioStream *stream, int newlen)
{
Uint8 *ptr;
size_t offset;
if (stream->work_buffer_len >= newlen) {
ptr = stream->work_buffer_base;
} else {
ptr = (Uint8 *)SDL_realloc(stream->work_buffer_base, (size_t)newlen + 32);
if (ptr == NULL) {
SDL_OutOfMemory();
return NULL;
}
/* Make sure we're aligned to 16 bytes for SIMD code. */
stream->work_buffer_base = ptr;
stream->work_buffer_len = newlen;
}
offset = ((size_t)ptr) & 15;
return offset ? ptr + (16 - offset) : ptr;
}
#ifdef HAVE_LIBSAMPLERATE_H
static int SDL_ResampleAudioStream_SRC(SDL_AudioStream *stream, const void *_inbuf, const int inbuflen, void *_outbuf, const int outbuflen)
{
const float *inbuf = (const float *)_inbuf;
float *outbuf = (float *)_outbuf;
const int framelen = sizeof(float) * stream->pre_resample_channels;
SRC_STATE *state = (SRC_STATE *)stream->resampler_state;
SRC_DATA data;
int result;
SDL_assert(inbuf != ((const float *)outbuf)); /* SDL_AudioStreamPut() shouldn't allow in-place resamples. */
data.data_in = (float *)inbuf; /* Older versions of libsamplerate had a non-const pointer, but didn't write to it */
data.input_frames = inbuflen / framelen;
data.input_frames_used = 0;
data.data_out = outbuf;
data.output_frames = outbuflen / framelen;
data.end_of_input = 0;
data.src_ratio = stream->rate_incr;
result = SRC_src_process(state, &data);
if (result != 0) {
SDL_SetError("src_process() failed: %s", SRC_src_strerror(result));
return 0;
}
/* If this fails, we need to store them off somewhere */
SDL_assert(data.input_frames_used == data.input_frames);
return data.output_frames_gen * (sizeof(float) * stream->pre_resample_channels);
}
static void SDL_ResetAudioStreamResampler_SRC(SDL_AudioStream *stream)
{
SRC_src_reset((SRC_STATE *)stream->resampler_state);
}
static void SDL_CleanupAudioStreamResampler_SRC(SDL_AudioStream *stream)
{
SRC_STATE *state = (SRC_STATE *)stream->resampler_state;
if (state) {
SRC_src_delete(state);
}
stream->resampler_state = NULL;
stream->resampler_func = NULL;
stream->reset_resampler_func = NULL;
stream->cleanup_resampler_func = NULL;
}
static SDL_bool SetupLibSampleRateResampling(SDL_AudioStream *stream)
{
int result = 0;
SRC_STATE *state = NULL;
if (SRC_available) {
state = SRC_src_new(SRC_converter, stream->pre_resample_channels, &result);
if (state == NULL) {
SDL_SetError("src_new() failed: %s", SRC_src_strerror(result));
}
}
if (state == NULL) {
SDL_CleanupAudioStreamResampler_SRC(stream);
return SDL_FALSE;
}
stream->resampler_state = state;
stream->resampler_func = SDL_ResampleAudioStream_SRC;
stream->reset_resampler_func = SDL_ResetAudioStreamResampler_SRC;
stream->cleanup_resampler_func = SDL_CleanupAudioStreamResampler_SRC;
return SDL_TRUE;
}
#endif /* HAVE_LIBSAMPLERATE_H */
static int SDL_ResampleAudioStream(SDL_AudioStream *stream, const void *_inbuf, const int inbuflen, void *_outbuf, const int outbuflen)
{
const Uint8 *inbufend = ((const Uint8 *)_inbuf) + inbuflen;
const float *inbuf = (const float *)_inbuf;
float *outbuf = (float *)_outbuf;
const int chans = (int)stream->pre_resample_channels;
const int inrate = stream->src_rate;
const int outrate = stream->dst_rate;
const int paddingsamples = stream->resampler_padding_samples;
const int paddingbytes = paddingsamples * sizeof(float);
float *lpadding = (float *)stream->resampler_state;
const float *rpadding = (const float *)inbufend; /* we set this up so there are valid padding samples at the end of the input buffer. */
const int cpy = SDL_min(inbuflen, paddingbytes);
int retval;
SDL_assert(inbuf != ((const float *)outbuf)); /* SDL_AudioStreamPut() shouldn't allow in-place resamples. */
retval = SDL_ResampleAudio(chans, inrate, outrate, lpadding, rpadding, inbuf, inbuflen, outbuf, outbuflen);
/* update our left padding with end of current input, for next run. */
SDL_memcpy((lpadding + paddingsamples) - (cpy / sizeof(float)), inbufend - cpy, cpy);
return retval;
}
static void SDL_ResetAudioStreamResampler(SDL_AudioStream *stream)
{
/* set all the padding to silence. */
const int len = stream->resampler_padding_samples;
SDL_memset(stream->resampler_state, '\0', len * sizeof(float));
}
static void SDL_CleanupAudioStreamResampler(SDL_AudioStream *stream)
{
SDL_free(stream->resampler_state);
}
SDL_AudioStream *
SDL_NewAudioStream(const SDL_AudioFormat src_format,
const Uint8 src_channels,
const int src_rate,
const SDL_AudioFormat dst_format,
const Uint8 dst_channels,
const int dst_rate)
{
int packetlen = 4096; /* !!! FIXME: good enough for now. */
Uint8 pre_resample_channels;
SDL_AudioStream *retval;
if (src_channels == 0) {
SDL_InvalidParamError("src_channels");
return NULL;
}
if (dst_channels == 0) {
SDL_InvalidParamError("dst_channels");
return NULL;
}
retval = (SDL_AudioStream *)SDL_calloc(1, sizeof(SDL_AudioStream));
if (retval == NULL) {
SDL_OutOfMemory();
return NULL;
}
/* If increasing channels, do it after resampling, since we'd just
do more work to resample duplicate channels. If we're decreasing, do
it first so we resample the interpolated data instead of interpolating
the resampled data (!!! FIXME: decide if that works in practice, though!). */
pre_resample_channels = SDL_min(src_channels, dst_channels);
retval->first_run = SDL_TRUE;
retval->src_sample_frame_size = (SDL_AUDIO_BITSIZE(src_format) / 8) * src_channels;
retval->src_format = src_format;
retval->src_channels = src_channels;
retval->src_rate = src_rate;
retval->dst_sample_frame_size = (SDL_AUDIO_BITSIZE(dst_format) / 8) * dst_channels;
retval->dst_format = dst_format;
retval->dst_channels = dst_channels;
retval->dst_rate = dst_rate;
retval->pre_resample_channels = pre_resample_channels;
retval->packetlen = packetlen;
retval->rate_incr = ((double)dst_rate) / ((double)src_rate);
retval->resampler_padding_samples = ResamplerPadding(retval->src_rate, retval->dst_rate) * pre_resample_channels;
retval->resampler_padding = (float *)SDL_calloc(retval->resampler_padding_samples ? retval->resampler_padding_samples : 1, sizeof(float));
if (retval->resampler_padding == NULL) {
SDL_FreeAudioStream(retval);
SDL_OutOfMemory();
return NULL;
}
retval->staging_buffer_size = ((retval->resampler_padding_samples / retval->pre_resample_channels) * retval->src_sample_frame_size);
if (retval->staging_buffer_size > 0) {
retval->staging_buffer = (Uint8 *)SDL_malloc(retval->staging_buffer_size);
if (retval->staging_buffer == NULL) {
SDL_FreeAudioStream(retval);
SDL_OutOfMemory();
return NULL;
}
}
/* Not resampling? It's an easy conversion (and maybe not even that!) */
if (src_rate == dst_rate) {
retval->cvt_before_resampling.needed = SDL_FALSE;
if (SDL_BuildAudioCVT(&retval->cvt_after_resampling, src_format, src_channels, dst_rate, dst_format, dst_channels, dst_rate) < 0) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
}
} else {
/* Don't resample at first. Just get us to Float32 format. */
/* !!! FIXME: convert to int32 on devices without hardware float. */
if (SDL_BuildAudioCVT(&retval->cvt_before_resampling, src_format, src_channels, src_rate, AUDIO_F32SYS, pre_resample_channels, src_rate) < 0) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
}
#ifdef HAVE_LIBSAMPLERATE_H
SetupLibSampleRateResampling(retval);
#endif
if (!retval->resampler_func) {
retval->resampler_state = SDL_calloc(retval->resampler_padding_samples, sizeof(float));
if (!retval->resampler_state) {
SDL_FreeAudioStream(retval);
SDL_OutOfMemory();
return NULL;
}
retval->resampler_func = SDL_ResampleAudioStream;
retval->reset_resampler_func = SDL_ResetAudioStreamResampler;
retval->cleanup_resampler_func = SDL_CleanupAudioStreamResampler;
}
/* Convert us to the final format after resampling. */
if (SDL_BuildAudioCVT(&retval->cvt_after_resampling, AUDIO_F32SYS, pre_resample_channels, dst_rate, dst_format, dst_channels, dst_rate) < 0) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_BuildAudioCVT should have called SDL_SetError. */
}
}
retval->queue = SDL_NewDataQueue(packetlen, (size_t)packetlen * 2);
if (!retval->queue) {
SDL_FreeAudioStream(retval);
return NULL; /* SDL_NewDataQueue should have called SDL_SetError. */
}
return retval;
}
static int SDL_AudioStreamPutInternal(SDL_AudioStream *stream, const void *buf, int len, int *maxputbytes)
{
int buflen = len;
int workbuflen;
Uint8 *workbuf;
Uint8 *resamplebuf = NULL;
int resamplebuflen = 0;
int neededpaddingbytes;
int paddingbytes;
/* !!! FIXME: several converters can take advantage of SIMD, but only
!!! FIXME: if the data is aligned to 16 bytes. EnsureStreamBufferSize()
!!! FIXME: guarantees the buffer will align, but the
!!! FIXME: converters will iterate over the data backwards if
!!! FIXME: the output grows, and this means we won't align if buflen
!!! FIXME: isn't a multiple of 16. In these cases, we should chop off
!!! FIXME: a few samples at the end and convert them separately. */
/* no padding prepended on first run. */
neededpaddingbytes = stream->resampler_padding_samples * sizeof(float);
paddingbytes = stream->first_run ? 0 : neededpaddingbytes;
stream->first_run = SDL_FALSE;
/* Make sure the work buffer can hold all the data we need at once... */
workbuflen = buflen;
if (stream->cvt_before_resampling.needed) {
workbuflen *= stream->cvt_before_resampling.len_mult;
}
if (stream->dst_rate != stream->src_rate) {
/* resamples can't happen in place, so make space for second buf. */
const int framesize = stream->pre_resample_channels * sizeof(float);
const int frames = workbuflen / framesize;
resamplebuflen = ((int)SDL_ceil(frames * stream->rate_incr)) * framesize;
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: will resample %d bytes to %d (ratio=%.6f)\n", workbuflen, resamplebuflen, stream->rate_incr);
#endif
workbuflen += resamplebuflen;
}
if (stream->cvt_after_resampling.needed) {
/* !!! FIXME: buffer might be big enough already? */
workbuflen *= stream->cvt_after_resampling.len_mult;
}
workbuflen += neededpaddingbytes;
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: Putting %d bytes of preconverted audio, need %d byte work buffer\n", buflen, workbuflen);
#endif
workbuf = EnsureStreamBufferSize(stream, workbuflen);
if (workbuf == NULL) {
return -1; /* probably out of memory. */
}
resamplebuf = workbuf; /* default if not resampling. */
SDL_memcpy(workbuf + paddingbytes, buf, buflen);
if (stream->cvt_before_resampling.needed) {
stream->cvt_before_resampling.buf = workbuf + paddingbytes;
stream->cvt_before_resampling.len = buflen;
if (SDL_ConvertAudio(&stream->cvt_before_resampling) == -1) {
return -1; /* uhoh! */
}
buflen = stream->cvt_before_resampling.len_cvt;
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: After initial conversion we have %d bytes\n", buflen);
#endif
}
if (stream->dst_rate != stream->src_rate) {
/* save off some samples at the end; they are used for padding now so
the resampler is coherent and then used at the start of the next
put operation. Prepend last put operation's padding, too. */
/* prepend prior put's padding. :P */
if (paddingbytes) {
SDL_memcpy(workbuf, stream->resampler_padding, paddingbytes);
buflen += paddingbytes;
}
/* save off the data at the end for the next run. */
SDL_memcpy(stream->resampler_padding, workbuf + (buflen - neededpaddingbytes), neededpaddingbytes);
resamplebuf = workbuf + buflen; /* skip to second piece of workbuf. */
SDL_assert(buflen >= neededpaddingbytes);
if (buflen > neededpaddingbytes) {
buflen = stream->resampler_func(stream, workbuf, buflen - neededpaddingbytes, resamplebuf, resamplebuflen);
} else {
buflen = 0;
}
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: After resampling we have %d bytes\n", buflen);
#endif
}
if (stream->cvt_after_resampling.needed && (buflen > 0)) {
stream->cvt_after_resampling.buf = resamplebuf;
stream->cvt_after_resampling.len = buflen;
if (SDL_ConvertAudio(&stream->cvt_after_resampling) == -1) {
return -1; /* uhoh! */
}
buflen = stream->cvt_after_resampling.len_cvt;
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: After final conversion we have %d bytes\n", buflen);
#endif
}
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: Final output is %d bytes\n", buflen);
#endif
if (maxputbytes) {
const int maxbytes = *maxputbytes;
if (buflen > maxbytes) {
buflen = maxbytes;
}
*maxputbytes -= buflen;
}
/* resamplebuf holds the final output, even if we didn't resample. */
return buflen ? SDL_WriteToDataQueue(stream->queue, resamplebuf, buflen) : 0;
}
int SDL_AudioStreamPut(SDL_AudioStream *stream, const void *buf, int len)
{
/* !!! FIXME: several converters can take advantage of SIMD, but only
!!! FIXME: if the data is aligned to 16 bytes. EnsureStreamBufferSize()
!!! FIXME: guarantees the buffer will align, but the
!!! FIXME: converters will iterate over the data backwards if
!!! FIXME: the output grows, and this means we won't align if buflen
!!! FIXME: isn't a multiple of 16. In these cases, we should chop off
!!! FIXME: a few samples at the end and convert them separately. */
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: wants to put %d preconverted bytes\n", buflen);
#endif
if (stream == NULL) {
return SDL_InvalidParamError("stream");
}
if (buf == NULL) {
return SDL_InvalidParamError("buf");
}
if (len == 0) {
return 0; /* nothing to do. */
}
if ((len % stream->src_sample_frame_size) != 0) {
return SDL_SetError("Can't add partial sample frames");
}
if (!stream->cvt_before_resampling.needed &&
(stream->dst_rate == stream->src_rate) &&
!stream->cvt_after_resampling.needed) {
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: no conversion needed at all, queueing %d bytes.\n", len);
#endif
return SDL_WriteToDataQueue(stream->queue, buf, len);
}
while (len > 0) {
int amount;
/* If we don't have a staging buffer or we're given enough data that
we don't need to store it for later, skip the staging process.
*/
if (!stream->staging_buffer_filled && len >= stream->staging_buffer_size) {
return SDL_AudioStreamPutInternal(stream, buf, len, NULL);
}
/* If there's not enough data to fill the staging buffer, just save it */
if ((stream->staging_buffer_filled + len) < stream->staging_buffer_size) {
SDL_memcpy(stream->staging_buffer + stream->staging_buffer_filled, buf, len);
stream->staging_buffer_filled += len;
return 0;
}
/* Fill the staging buffer, process it, and continue */
amount = (stream->staging_buffer_size - stream->staging_buffer_filled);
SDL_assert(amount > 0);
SDL_memcpy(stream->staging_buffer + stream->staging_buffer_filled, buf, amount);
stream->staging_buffer_filled = 0;
if (SDL_AudioStreamPutInternal(stream, stream->staging_buffer, stream->staging_buffer_size, NULL) < 0) {
return -1;
}
buf = (void *)((Uint8 *)buf + amount);
len -= amount;
}
return 0;
}
int SDL_AudioStreamFlush(SDL_AudioStream *stream)
{
if (stream == NULL) {
return SDL_InvalidParamError("stream");
}
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: flushing! staging_buffer_filled=%d bytes\n", stream->staging_buffer_filled);
#endif
/* shouldn't use a staging buffer if we're not resampling. */
SDL_assert((stream->dst_rate != stream->src_rate) || (stream->staging_buffer_filled == 0));
if (stream->staging_buffer_filled > 0) {
/* push the staging buffer + silence. We need to flush out not just
the staging buffer, but the piece that the stream was saving off
for right-side resampler padding. */
const SDL_bool first_run = stream->first_run;
const int filled = stream->staging_buffer_filled;
int actual_input_frames = filled / stream->src_sample_frame_size;
if (!first_run) {
actual_input_frames += stream->resampler_padding_samples / stream->pre_resample_channels;
}
if (actual_input_frames > 0) { /* don't bother if nothing to flush. */
/* This is how many bytes we're expecting without silence appended. */
int flush_remaining = ((int)SDL_ceil(actual_input_frames * stream->rate_incr)) * stream->dst_sample_frame_size;
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: flushing with padding to get max %d bytes!\n", flush_remaining);
#endif
SDL_memset(stream->staging_buffer + filled, '\0', stream->staging_buffer_size - filled);
if (SDL_AudioStreamPutInternal(stream, stream->staging_buffer, stream->staging_buffer_size, &flush_remaining) < 0) {
return -1;
}
/* we have flushed out (or initially filled) the pending right-side
resampler padding, but we need to push more silence to guarantee
the staging buffer is fully flushed out, too. */
SDL_memset(stream->staging_buffer, '\0', filled);
if (SDL_AudioStreamPutInternal(stream, stream->staging_buffer, stream->staging_buffer_size, &flush_remaining) < 0) {
return -1;
}
}
}
stream->staging_buffer_filled = 0;
stream->first_run = SDL_TRUE;
return 0;
}
/* get converted/resampled data from the stream */
int SDL_AudioStreamGet(SDL_AudioStream *stream, void *buf, int len)
{
#if DEBUG_AUDIOSTREAM
SDL_Log("AUDIOSTREAM: want to get %d converted bytes\n", len);
#endif
if (stream == NULL) {
return SDL_InvalidParamError("stream");
}
if (buf == NULL) {
return SDL_InvalidParamError("buf");
}
if (len <= 0) {
return 0; /* nothing to do. */
}
if ((len % stream->dst_sample_frame_size) != 0) {
return SDL_SetError("Can't request partial sample frames");
}
return (int)SDL_ReadFromDataQueue(stream->queue, buf, len);
}
/* number of converted/resampled bytes available */
int SDL_AudioStreamAvailable(SDL_AudioStream *stream)
{
return stream ? (int)SDL_CountDataQueue(stream->queue) : 0;
}
void SDL_AudioStreamClear(SDL_AudioStream *stream)
{
if (stream == NULL) {
SDL_InvalidParamError("stream");
} else {
SDL_ClearDataQueue(stream->queue, (size_t)stream->packetlen * 2);
if (stream->reset_resampler_func) {
stream->reset_resampler_func(stream);
}
stream->first_run = SDL_TRUE;
stream->staging_buffer_filled = 0;
}
}
/* dispose of a stream */
void SDL_FreeAudioStream(SDL_AudioStream *stream)
{
if (stream) {
if (stream->cleanup_resampler_func) {
stream->cleanup_resampler_func(stream);
}
SDL_FreeDataQueue(stream->queue);
SDL_free(stream->staging_buffer);
SDL_free(stream->work_buffer_base);
SDL_free(stream->resampler_padding);
SDL_free(stream);
}
}
/* vi: set ts=4 sw=4 expandtab: */