1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
/*
Simple DirectMedia Layer
Copyright (C) 1997-2019 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#if defined(__clang_analyzer__) && !defined(SDL_DISABLE_ANALYZE_MACROS)
#define SDL_DISABLE_ANALYZE_MACROS 1
#endif
#include "../SDL_internal.h"
/* This file contains portable memory management functions for SDL */
#include "SDL_stdinc.h"
#include "SDL_atomic.h"
#include "SDL_error.h"
#ifndef HAVE_MALLOC
#define LACKS_SYS_TYPES_H
#define LACKS_STDIO_H
#define LACKS_STRINGS_H
#define LACKS_STRING_H
#define LACKS_STDLIB_H
#define ABORT
#define USE_LOCKS 1
#define USE_DL_PREFIX
/*
This is a version (aka dlmalloc) of malloc/free/realloc written by
Doug Lea and released to the public domain, as explained at
http://creativecommons.org/licenses/publicdomain. Send questions,
comments, complaints, performance data, etc to dl@cs.oswego.edu
* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
Note: There may be an updated version of this malloc obtainable at
ftp://gee.cs.oswego.edu/pub/misc/malloc.c
Check before installing!
* Quickstart
This library is all in one file to simplify the most common usage:
ftp it, compile it (-O3), and link it into another program. All of
the compile-time options default to reasonable values for use on
most platforms. You might later want to step through various
compile-time and dynamic tuning options.
For convenience, an include file for code using this malloc is at:
ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
You don't really need this .h file unless you call functions not
defined in your system include files. The .h file contains only the
excerpts from this file needed for using this malloc on ANSI C/C++
systems, so long as you haven't changed compile-time options about
naming and tuning parameters. If you do, then you can create your
own malloc.h that does include all settings by cutting at the point
indicated below. Note that you may already by default be using a C
library containing a malloc that is based on some version of this
malloc (for example in linux). You might still want to use the one
in this file to customize settings or to avoid overheads associated
with library versions.
* Vital statistics:
Supported pointer/size_t representation: 4 or 8 bytes
size_t MUST be an unsigned type of the same width as
pointers. (If you are using an ancient system that declares
size_t as a signed type, or need it to be a different width
than pointers, you can use a previous release of this malloc
(e.g. 2.7.2) supporting these.)
Alignment: 8 bytes (default)
This suffices for nearly all current machines and C compilers.
However, you can define MALLOC_ALIGNMENT to be wider than this
if necessary (up to 128bytes), at the expense of using more space.
Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
8 or 16 bytes (if 8byte sizes)
Each malloced chunk has a hidden word of overhead holding size
and status information, and additional cross-check word
if FOOTERS is defined.
Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
8-byte ptrs: 32 bytes (including overhead)
Even a request for zero bytes (i.e., malloc(0)) returns a
pointer to something of the minimum allocatable size.
The maximum overhead wastage (i.e., number of extra bytes
allocated than were requested in malloc) is less than or equal
to the minimum size, except for requests >= mmap_threshold that
are serviced via mmap(), where the worst case wastage is about
32 bytes plus the remainder from a system page (the minimal
mmap unit); typically 4096 or 8192 bytes.
Security: static-safe; optionally more or less
The "security" of malloc refers to the ability of malicious
code to accentuate the effects of errors (for example, freeing
space that is not currently malloc'ed or overwriting past the
ends of chunks) in code that calls malloc. This malloc
guarantees not to modify any memory locations below the base of
heap, i.e., static variables, even in the presence of usage
errors. The routines additionally detect most improper frees
and reallocs. All this holds as long as the static bookkeeping
for malloc itself is not corrupted by some other means. This
is only one aspect of security -- these checks do not, and
cannot, detect all possible programming errors.
If FOOTERS is defined nonzero, then each allocated chunk
carries an additional check word to verify that it was malloced
from its space. These check words are the same within each
execution of a program using malloc, but differ across
executions, so externally crafted fake chunks cannot be
freed. This improves security by rejecting frees/reallocs that
could corrupt heap memory, in addition to the checks preventing
writes to statics that are always on. This may further improve
security at the expense of time and space overhead. (Note that
FOOTERS may also be worth using with MSPACES.)
By default detected errors cause the program to abort (calling
"abort()"). You can override this to instead proceed past
errors by defining PROCEED_ON_ERROR. In this case, a bad free
has no effect, and a malloc that encounters a bad address
caused by user overwrites will ignore the bad address by
dropping pointers and indices to all known memory. This may
be appropriate for programs that should continue if at all
possible in the face of programming errors, although they may
run out of memory because dropped memory is never reclaimed.
If you don't like either of these options, you can define
CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
else. And if if you are sure that your program using malloc has
no errors or vulnerabilities, you can define INSECURE to 1,
which might (or might not) provide a small performance improvement.
Thread-safety: NOT thread-safe unless USE_LOCKS defined
When USE_LOCKS is defined, each public call to malloc, free,
etc is surrounded with either a pthread mutex or a win32
spinlock (depending on WIN32). This is not especially fast, and
can be a major bottleneck. It is designed only to provide
minimal protection in concurrent environments, and to provide a
basis for extensions. If you are using malloc in a concurrent
program, consider instead using ptmalloc, which is derived from
a version of this malloc. (See http://www.malloc.de).
System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
This malloc can use unix sbrk or any emulation (invoked using
the CALL_MORECORE macro) and/or mmap/munmap or any emulation
(invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
memory. On most unix systems, it tends to work best if both
MORECORE and MMAP are enabled. On Win32, it uses emulations
based on VirtualAlloc. It also uses common C library functions
like memset.
Compliance: I believe it is compliant with the Single Unix Specification
(See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
others as well.
* Overview of algorithms
This is not the fastest, most space-conserving, most portable, or
most tunable malloc ever written. However it is among the fastest
while also being among the most space-conserving, portable and
tunable. Consistent balance across these factors results in a good
general-purpose allocator for malloc-intensive programs.
In most ways, this malloc is a best-fit allocator. Generally, it
chooses the best-fitting existing chunk for a request, with ties
broken in approximately least-recently-used order. (This strategy
normally maintains low fragmentation.) However, for requests less
than 256bytes, it deviates from best-fit when there is not an
exactly fitting available chunk by preferring to use space adjacent
to that used for the previous small request, as well as by breaking
ties in approximately most-recently-used order. (These enhance
locality of series of small allocations.) And for very large requests
(>= 256Kb by default), it relies on system memory mapping
facilities, if supported. (This helps avoid carrying around and
possibly fragmenting memory used only for large chunks.)
All operations (except malloc_stats and mallinfo) have execution
times that are bounded by a constant factor of the number of bits in
a size_t, not counting any clearing in calloc or copying in realloc,
or actions surrounding MORECORE and MMAP that have times
proportional to the number of non-contiguous regions returned by
system allocation routines, which is often just 1.
The implementation is not very modular and seriously overuses
macros. Perhaps someday all C compilers will do as good a job
inlining modular code as can now be done by brute-force expansion,
but now, enough of them seem not to.
Some compilers issue a lot of warnings about code that is
dead/unreachable only on some platforms, and also about intentional
uses of negation on unsigned types. All known cases of each can be
ignored.
For a longer but out of date high-level description, see
http://gee.cs.oswego.edu/dl/html/malloc.html
* MSPACES
If MSPACES is defined, then in addition to malloc, free, etc.,
this file also defines mspace_malloc, mspace_free, etc. These
are versions of malloc routines that take an "mspace" argument
obtained using create_mspace, to control all internal bookkeeping.
If ONLY_MSPACES is defined, only these versions are compiled.
So if you would like to use this allocator for only some allocations,
and your system malloc for others, you can compile with
ONLY_MSPACES and then do something like...
static mspace mymspace = create_mspace(0,0); // for example
#define mymalloc(bytes) mspace_malloc(mymspace, bytes)
(Note: If you only need one instance of an mspace, you can instead
use "USE_DL_PREFIX" to relabel the global malloc.)
You can similarly create thread-local allocators by storing
mspaces as thread-locals. For example:
static __thread mspace tlms = 0;
void* tlmalloc(size_t bytes) {
if (tlms == 0) tlms = create_mspace(0, 0);
return mspace_malloc(tlms, bytes);
}
void tlfree(void* mem) { mspace_free(tlms, mem); }
Unless FOOTERS is defined, each mspace is completely independent.
You cannot allocate from one and free to another (although
conformance is only weakly checked, so usage errors are not always
caught). If FOOTERS is defined, then each chunk carries around a tag
indicating its originating mspace, and frees are directed to their
originating spaces.
------------------------- Compile-time options ---------------------------
Be careful in setting #define values for numerical constants of type
size_t. On some systems, literal values are not automatically extended
to size_t precision unless they are explicitly casted.
WIN32 default: defined if _WIN32 defined
Defining WIN32 sets up defaults for MS environment and compilers.
Otherwise defaults are for unix.
MALLOC_ALIGNMENT default: (size_t)8
Controls the minimum alignment for malloc'ed chunks. It must be a
power of two and at least 8, even on machines for which smaller
alignments would suffice. It may be defined as larger than this
though. Note however that code and data structures are optimized for
the case of 8-byte alignment.
MSPACES default: 0 (false)
If true, compile in support for independent allocation spaces.
This is only supported if HAVE_MMAP is true.
ONLY_MSPACES default: 0 (false)
If true, only compile in mspace versions, not regular versions.
USE_LOCKS default: 0 (false)
Causes each call to each public routine to be surrounded with
pthread or WIN32 mutex lock/unlock. (If set true, this can be
overridden on a per-mspace basis for mspace versions.)
FOOTERS default: 0
If true, provide extra checking and dispatching by placing
information in the footers of allocated chunks. This adds
space and time overhead.
INSECURE default: 0
If true, omit checks for usage errors and heap space overwrites.
USE_DL_PREFIX default: NOT defined
Causes compiler to prefix all public routines with the string 'dl'.
This can be useful when you only want to use this malloc in one part
of a program, using your regular system malloc elsewhere.
ABORT default: defined as abort()
Defines how to abort on failed checks. On most systems, a failed
check cannot die with an "assert" or even print an informative
message, because the underlying print routines in turn call malloc,
which will fail again. Generally, the best policy is to simply call
abort(). It's not very useful to do more than this because many
errors due to overwriting will show up as address faults (null, odd
addresses etc) rather than malloc-triggered checks, so will also
abort. Also, most compilers know that abort() does not return, so
can better optimize code conditionally calling it.
PROCEED_ON_ERROR default: defined as 0 (false)
Controls whether detected bad addresses cause them to bypassed
rather than aborting. If set, detected bad arguments to free and
realloc are ignored. And all bookkeeping information is zeroed out
upon a detected overwrite of freed heap space, thus losing the
ability to ever return it from malloc again, but enabling the
application to proceed. If PROCEED_ON_ERROR is defined, the
static variable malloc_corruption_error_count is compiled in
and can be examined to see if errors have occurred. This option
generates slower code than the default abort policy.
DEBUG default: NOT defined
The DEBUG setting is mainly intended for people trying to modify
this code or diagnose problems when porting to new platforms.
However, it may also be able to better isolate user errors than just
using runtime checks. The assertions in the check routines spell
out in more detail the assumptions and invariants underlying the
algorithms. The checking is fairly extensive, and will slow down
execution noticeably. Calling malloc_stats or mallinfo with DEBUG
set will attempt to check every non-mmapped allocated and free chunk
in the course of computing the summaries.
ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
Debugging assertion failures can be nearly impossible if your
version of the assert macro causes malloc to be called, which will
lead to a cascade of further failures, blowing the runtime stack.
ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
which will usually make debugging easier.
MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
The action to take before "return 0" when malloc fails to be able to
return memory because there is none available.
HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
True if this system supports sbrk or an emulation of it.
MORECORE default: sbrk
The name of the sbrk-style system routine to call to obtain more
memory. See below for guidance on writing custom MORECORE
functions. The type of the argument to sbrk/MORECORE varies across
systems. It cannot be size_t, because it supports negative
arguments, so it is normally the signed type of the same width as
size_t (sometimes declared as "intptr_t"). It doesn't much matter
though. Internally, we only call it with arguments less than half
the max value of a size_t, which should work across all reasonable
possibilities, although sometimes generating compiler warnings. See
near the end of this file for guidelines for creating a custom
version of MORECORE.
MORECORE_CONTIGUOUS default: 1 (true)
If true, take advantage of fact that consecutive calls to MORECORE
with positive arguments always return contiguous increasing
addresses. This is true of unix sbrk. It does not hurt too much to
set it true anyway, since malloc copes with non-contiguities.
Setting it false when definitely non-contiguous saves time
and possibly wasted space it would take to discover this though.
MORECORE_CANNOT_TRIM default: NOT defined
True if MORECORE cannot release space back to the system when given
negative arguments. This is generally necessary only if you are
using a hand-crafted MORECORE function that cannot handle negative
arguments.
HAVE_MMAP default: 1 (true)
True if this system supports mmap or an emulation of it. If so, and
HAVE_MORECORE is not true, MMAP is used for all system
allocation. If set and HAVE_MORECORE is true as well, MMAP is
primarily used to directly allocate very large blocks. It is also
used as a backup strategy in cases where MORECORE fails to provide
space from system. Note: A single call to MUNMAP is assumed to be
able to unmap memory that may have be allocated using multiple calls
to MMAP, so long as they are adjacent.
HAVE_MREMAP default: 1 on linux, else 0
If true realloc() uses mremap() to re-allocate large blocks and
extend or shrink allocation spaces.
MMAP_CLEARS default: 1 on unix
True if mmap clears memory so calloc doesn't need to. This is true
for standard unix mmap using /dev/zero.
USE_BUILTIN_FFS default: 0 (i.e., not used)
Causes malloc to use the builtin ffs() function to compute indices.
Some compilers may recognize and intrinsify ffs to be faster than the
supplied C version. Also, the case of x86 using gcc is special-cased
to an asm instruction, so is already as fast as it can be, and so
this setting has no effect. (On most x86s, the asm version is only
slightly faster than the C version.)
malloc_getpagesize default: derive from system includes, or 4096.
The system page size. To the extent possible, this malloc manages
memory from the system in page-size units. This may be (and
usually is) a function rather than a constant. This is ignored
if WIN32, where page size is determined using getSystemInfo during
initialization.
USE_DEV_RANDOM default: 0 (i.e., not used)
Causes malloc to use /dev/random to initialize secure magic seed for
stamping footers. Otherwise, the current time is used.
NO_MALLINFO default: 0
If defined, don't compile "mallinfo". This can be a simple way
of dealing with mismatches between system declarations and
those in this file.
MALLINFO_FIELD_TYPE default: size_t
The type of the fields in the mallinfo struct. This was originally
defined as "int" in SVID etc, but is more usefully defined as
size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
REALLOC_ZERO_BYTES_FREES default: not defined
This should be set if a call to realloc with zero bytes should
be the same as a call to free. Some people think it should. Otherwise,
since this malloc returns a unique pointer for malloc(0), so does
realloc(p, 0).
LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
LACKS_STDLIB_H default: NOT defined unless on WIN32
Define these if your system does not have these header files.
You might need to manually insert some of the declarations they provide.
DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
system_info.dwAllocationGranularity in WIN32,
otherwise 64K.
Also settable using mallopt(M_GRANULARITY, x)
The unit for allocating and deallocating memory from the system. On
most systems with contiguous MORECORE, there is no reason to
make this more than a page. However, systems with MMAP tend to
either require or encourage larger granularities. You can increase
this value to prevent system allocation functions to be called so
often, especially if they are slow. The value must be at least one
page and must be a power of two. Setting to 0 causes initialization
to either page size or win32 region size. (Note: In previous
versions of malloc, the equivalent of this option was called
"TOP_PAD")
DEFAULT_TRIM_THRESHOLD default: 2MB
Also settable using mallopt(M_TRIM_THRESHOLD, x)
The maximum amount of unused top-most memory to keep before
releasing via malloc_trim in free(). Automatic trimming is mainly
useful in long-lived programs using contiguous MORECORE. Because
trimming via sbrk can be slow on some systems, and can sometimes be
wasteful (in cases where programs immediately afterward allocate
more large chunks) the value should be high enough so that your
overall system performance would improve by releasing this much
memory. As a rough guide, you might set to a value close to the
average size of a process (program) running on your system.
Releasing this much memory would allow such a process to run in
memory. Generally, it is worth tuning trim thresholds when a
program undergoes phases where several large chunks are allocated
and released in ways that can reuse each other's storage, perhaps
mixed with phases where there are no such chunks at all. The trim
value must be greater than page size to have any useful effect. To
disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
some people use of mallocing a huge space and then freeing it at
program startup, in an attempt to reserve system memory, doesn't
have the intended effect under automatic trimming, since that memory
will immediately be returned to the system.
DEFAULT_MMAP_THRESHOLD default: 256K
Also settable using mallopt(M_MMAP_THRESHOLD, x)
The request size threshold for using MMAP to directly service a
request. Requests of at least this size that cannot be allocated
using already-existing space will be serviced via mmap. (If enough
normal freed space already exists it is used instead.) Using mmap
segregates relatively large chunks of memory so that they can be
individually obtained and released from the host system. A request
serviced through mmap is never reused by any other request (at least
not directly; the system may just so happen to remap successive
requests to the same locations). Segregating space in this way has
the benefits that: Mmapped space can always be individually released
back to the system, which helps keep the system level memory demands
of a long-lived program low. Also, mapped memory doesn't become
`locked' between other chunks, as can happen with normally allocated
chunks, which means that even trimming via malloc_trim would not
release them. However, it has the disadvantage that the space
cannot be reclaimed, consolidated, and then used to service later
requests, as happens with normal chunks. The advantages of mmap
nearly always outweigh disadvantages for "large" chunks, but the
value of "large" may vary across systems. The default is an
empirically derived value that works well in most systems. You can
disable mmap by setting to MAX_SIZE_T.
*/
#ifndef WIN32
#ifdef _WIN32
#define WIN32 1
#endif /* _WIN32 */
#endif /* WIN32 */
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#define HAVE_MMAP 1
#define HAVE_MORECORE 0
#define LACKS_UNISTD_H
#define LACKS_SYS_PARAM_H
#define LACKS_SYS_MMAN_H
#define LACKS_STRING_H
#define LACKS_STRINGS_H
#define LACKS_SYS_TYPES_H
#define LACKS_ERRNO_H
#define LACKS_FCNTL_H
#define MALLOC_FAILURE_ACTION
#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
#endif /* WIN32 */
#ifdef __OS2__
#define INCL_DOS
#include <os2.h>
#define HAVE_MMAP 1
#define HAVE_MORECORE 0
#define LACKS_SYS_MMAN_H
#endif /* __OS2__ */
#if defined(DARWIN) || defined(_DARWIN)
/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
#ifndef HAVE_MORECORE
#define HAVE_MORECORE 0
#define HAVE_MMAP 1
#endif /* HAVE_MORECORE */
#endif /* DARWIN */
#ifndef LACKS_SYS_TYPES_H
#include <sys/types.h> /* For size_t */
#endif /* LACKS_SYS_TYPES_H */
/* The maximum possible size_t value has all bits set */
#define MAX_SIZE_T (~(size_t)0)
#ifndef ONLY_MSPACES
#define ONLY_MSPACES 0
#endif /* ONLY_MSPACES */
#ifndef MSPACES
#if ONLY_MSPACES
#define MSPACES 1
#else /* ONLY_MSPACES */
#define MSPACES 0
#endif /* ONLY_MSPACES */
#endif /* MSPACES */
#ifndef MALLOC_ALIGNMENT
#define MALLOC_ALIGNMENT ((size_t)8U)
#endif /* MALLOC_ALIGNMENT */
#ifndef FOOTERS
#define FOOTERS 0
#endif /* FOOTERS */
#ifndef ABORT
#define ABORT abort()
#endif /* ABORT */
#ifndef ABORT_ON_ASSERT_FAILURE
#define ABORT_ON_ASSERT_FAILURE 1
#endif /* ABORT_ON_ASSERT_FAILURE */
#ifndef PROCEED_ON_ERROR
#define PROCEED_ON_ERROR 0
#endif /* PROCEED_ON_ERROR */
#ifndef USE_LOCKS
#define USE_LOCKS 0
#endif /* USE_LOCKS */
#ifndef INSECURE
#define INSECURE 0
#endif /* INSECURE */
#ifndef HAVE_MMAP
#define HAVE_MMAP 1
#endif /* HAVE_MMAP */
#ifndef MMAP_CLEARS
#define MMAP_CLEARS 1
#endif /* MMAP_CLEARS */
#ifndef HAVE_MREMAP
#ifdef linux
#define HAVE_MREMAP 1
#else /* linux */
#define HAVE_MREMAP 0
#endif /* linux */
#endif /* HAVE_MREMAP */
#ifndef MALLOC_FAILURE_ACTION
#define MALLOC_FAILURE_ACTION errno = ENOMEM;
#endif /* MALLOC_FAILURE_ACTION */
#ifndef HAVE_MORECORE
#if ONLY_MSPACES
#define HAVE_MORECORE 0
#else /* ONLY_MSPACES */
#define HAVE_MORECORE 1
#endif /* ONLY_MSPACES */
#endif /* HAVE_MORECORE */
#if !HAVE_MORECORE
#define MORECORE_CONTIGUOUS 0
#else /* !HAVE_MORECORE */
#ifndef MORECORE
#define MORECORE sbrk
#endif /* MORECORE */
#ifndef MORECORE_CONTIGUOUS
#define MORECORE_CONTIGUOUS 1
#endif /* MORECORE_CONTIGUOUS */
#endif /* HAVE_MORECORE */
#ifndef DEFAULT_GRANULARITY
#if MORECORE_CONTIGUOUS
#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
#else /* MORECORE_CONTIGUOUS */
#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
#endif /* MORECORE_CONTIGUOUS */
#endif /* DEFAULT_GRANULARITY */
#ifndef DEFAULT_TRIM_THRESHOLD
#ifndef MORECORE_CANNOT_TRIM
#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
#else /* MORECORE_CANNOT_TRIM */
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#endif /* MORECORE_CANNOT_TRIM */
#endif /* DEFAULT_TRIM_THRESHOLD */
#ifndef DEFAULT_MMAP_THRESHOLD
#if HAVE_MMAP
#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
#else /* HAVE_MMAP */
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
#endif /* HAVE_MMAP */
#endif /* DEFAULT_MMAP_THRESHOLD */
#ifndef USE_BUILTIN_FFS
#define USE_BUILTIN_FFS 0
#endif /* USE_BUILTIN_FFS */
#ifndef USE_DEV_RANDOM
#define USE_DEV_RANDOM 0
#endif /* USE_DEV_RANDOM */
#ifndef NO_MALLINFO
#define NO_MALLINFO 0
#endif /* NO_MALLINFO */
#ifndef MALLINFO_FIELD_TYPE
#define MALLINFO_FIELD_TYPE size_t
#endif /* MALLINFO_FIELD_TYPE */
#ifndef memset
#define memset SDL_memset
#endif
#ifndef memcpy
#define memcpy SDL_memcpy
#endif
/*
mallopt tuning options. SVID/XPG defines four standard parameter
numbers for mallopt, normally defined in malloc.h. None of these
are used in this malloc, so setting them has no effect. But this
malloc does support the following options.
*/
#define M_TRIM_THRESHOLD (-1)
#define M_GRANULARITY (-2)
#define M_MMAP_THRESHOLD (-3)
/* ------------------------ Mallinfo declarations ------------------------ */
#if !NO_MALLINFO
/*
This version of malloc supports the standard SVID/XPG mallinfo
routine that returns a struct containing usage properties and
statistics. It should work on any system that has a
/usr/include/malloc.h defining struct mallinfo. The main
declaration needed is the mallinfo struct that is returned (by-copy)
by mallinfo(). The malloinfo struct contains a bunch of fields that
are not even meaningful in this version of malloc. These fields are
are instead filled by mallinfo() with other numbers that might be of
interest.
HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
/usr/include/malloc.h file that includes a declaration of struct
mallinfo. If so, it is included; else a compliant version is
declared below. These must be precisely the same for mallinfo() to
work. The original SVID version of this struct, defined on most
systems with mallinfo, declares all fields as ints. But some others
define as unsigned long. If your system defines the fields using a
type of different width than listed here, you MUST #include your
system version and #define HAVE_USR_INCLUDE_MALLOC_H.
*/
/* #define HAVE_USR_INCLUDE_MALLOC_H */
#ifdef HAVE_USR_INCLUDE_MALLOC_H
#include "/usr/include/malloc.h"
#else /* HAVE_USR_INCLUDE_MALLOC_H */
struct mallinfo
{
MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
MALLINFO_FIELD_TYPE smblks; /* always 0 */
MALLINFO_FIELD_TYPE hblks; /* always 0 */
MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
MALLINFO_FIELD_TYPE fordblks; /* total free space */
MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
};
#endif /* HAVE_USR_INCLUDE_MALLOC_H */
#endif /* NO_MALLINFO */
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
#if !ONLY_MSPACES
/* ------------------- Declarations of public routines ------------------- */
#ifndef USE_DL_PREFIX
#define dlcalloc calloc
#define dlfree free
#define dlmalloc malloc
#define dlmemalign memalign
#define dlrealloc realloc
#define dlvalloc valloc
#define dlpvalloc pvalloc
#define dlmallinfo mallinfo
#define dlmallopt mallopt
#define dlmalloc_trim malloc_trim
#define dlmalloc_stats malloc_stats
#define dlmalloc_usable_size malloc_usable_size
#define dlmalloc_footprint malloc_footprint
#define dlmalloc_max_footprint malloc_max_footprint
#define dlindependent_calloc independent_calloc
#define dlindependent_comalloc independent_comalloc
#endif /* USE_DL_PREFIX */
/*
malloc(size_t n)
Returns a pointer to a newly allocated chunk of at least n bytes, or
null if no space is available, in which case errno is set to ENOMEM
on ANSI C systems.
If n is zero, malloc returns a minimum-sized chunk. (The minimum
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
systems.) Note that size_t is an unsigned type, so calls with
arguments that would be negative if signed are interpreted as
requests for huge amounts of space, which will often fail. The
maximum supported value of n differs across systems, but is in all
cases less than the maximum representable value of a size_t.
*/
void *dlmalloc(size_t);
/*
free(void* p)
Releases the chunk of memory pointed to by p, that had been previously
allocated using malloc or a related routine such as realloc.
It has no effect if p is null. If p was not malloced or already
freed, free(p) will by default cause the current program to abort.
*/
void dlfree(void *);
/*
calloc(size_t n_elements, size_t element_size);
Returns a pointer to n_elements * element_size bytes, with all locations
set to zero.
*/
void *dlcalloc(size_t, size_t);
/*
realloc(void* p, size_t n)
Returns a pointer to a chunk of size n that contains the same data
as does chunk p up to the minimum of (n, p's size) bytes, or null
if no space is available.
The returned pointer may or may not be the same as p. The algorithm
prefers extending p in most cases when possible, otherwise it
employs the equivalent of a malloc-copy-free sequence.
If p is null, realloc is equivalent to malloc.
If space is not available, realloc returns null, errno is set (if on
ANSI) and p is NOT freed.
if n is for fewer bytes than already held by p, the newly unused
space is lopped off and freed if possible. realloc with a size
argument of zero (re)allocates a minimum-sized chunk.
The old unix realloc convention of allowing the last-free'd chunk
to be used as an argument to realloc is not supported.
*/
void *dlrealloc(void *, size_t);
/*
memalign(size_t alignment, size_t n);
Returns a pointer to a newly allocated chunk of n bytes, aligned
in accord with the alignment argument.
The alignment argument should be a power of two. If the argument is
not a power of two, the nearest greater power is used.
8-byte alignment is guaranteed by normal malloc calls, so don't
bother calling memalign with an argument of 8 or less.
Overreliance on memalign is a sure way to fragment space.
*/
void *dlmemalign(size_t, size_t);
/*
valloc(size_t n);
Equivalent to memalign(pagesize, n), where pagesize is the page
size of the system. If the pagesize is unknown, 4096 is used.
*/
void *dlvalloc(size_t);
/*
mallopt(int parameter_number, int parameter_value)
Sets tunable parameters The format is to provide a
(parameter-number, parameter-value) pair. mallopt then sets the
corresponding parameter to the argument value if it can (i.e., so
long as the value is meaningful), and returns 1 if successful else
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
normally defined in malloc.h. None of these are use in this malloc,
so setting them has no effect. But this malloc also supports other
options in mallopt. See below for details. Briefly, supported
parameters are as follows (listed defaults are for "typical"
configurations).
Symbol param # default allowed param values
M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
M_GRANULARITY -2 page size any power of 2 >= page size
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
*/
int dlmallopt(int, int);
/*
malloc_footprint();
Returns the number of bytes obtained from the system. The total
number of bytes allocated by malloc, realloc etc., is less than this
value. Unlike mallinfo, this function returns only a precomputed
result, so can be called frequently to monitor memory consumption.
Even if locks are otherwise defined, this function does not use them,
so results might not be up to date.
*/
size_t dlmalloc_footprint(void);
/*
malloc_max_footprint();
Returns the maximum number of bytes obtained from the system. This
value will be greater than current footprint if deallocated space
has been reclaimed by the system. The peak number of bytes allocated
by malloc, realloc etc., is less than this value. Unlike mallinfo,
this function returns only a precomputed result, so can be called
frequently to monitor memory consumption. Even if locks are
otherwise defined, this function does not use them, so results might
not be up to date.
*/
size_t dlmalloc_max_footprint(void);
#if !NO_MALLINFO
/*
mallinfo()
Returns (by copy) a struct containing various summary statistics:
arena: current total non-mmapped bytes allocated from system
ordblks: the number of free chunks
smblks: always zero.
hblks: current number of mmapped regions
hblkhd: total bytes held in mmapped regions
usmblks: the maximum total allocated space. This will be greater
than current total if trimming has occurred.
fsmblks: always zero
uordblks: current total allocated space (normal or mmapped)
fordblks: total free space
keepcost: the maximum number of bytes that could ideally be released
back to system via malloc_trim. ("ideally" means that
it ignores page restrictions etc.)
Because these fields are ints, but internal bookkeeping may
be kept as longs, the reported values may wrap around zero and
thus be inaccurate.
*/
struct mallinfo dlmallinfo(void);
#endif /* NO_MALLINFO */
/*
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
independent_calloc is similar to calloc, but instead of returning a
single cleared space, it returns an array of pointers to n_elements
independent elements that can hold contents of size elem_size, each
of which starts out cleared, and can be independently freed,
realloc'ed etc. The elements are guaranteed to be adjacently
allocated (this is not guaranteed to occur with multiple callocs or
mallocs), which may also improve cache locality in some
applications.
The "chunks" argument is optional (i.e., may be null, which is
probably the most typical usage). If it is null, the returned array
is itself dynamically allocated and should also be freed when it is
no longer needed. Otherwise, the chunks array must be of at least
n_elements in length. It is filled in with the pointers to the
chunks.
In either case, independent_calloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and "chunks"
is null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use regular calloc and assign pointers into this
space to represent elements. (In this case though, you cannot
independently free elements.)
independent_calloc simplifies and speeds up implementations of many
kinds of pools. It may also be useful when constructing large data
structures that initially have a fixed number of fixed-sized nodes,
but the number is not known at compile time, and some of the nodes
may later need to be freed. For example:
struct Node { int item; struct Node* next; };
struct Node* build_list() {
struct Node** pool;
int n = read_number_of_nodes_needed();
if (n <= 0) return 0;
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
if (pool == 0) die();
// organize into a linked list...
struct Node* first = pool[0];
for (i = 0; i < n-1; ++i)
pool[i]->next = pool[i+1];
free(pool); // Can now free the array (or not, if it is needed later)
return first;
}
*/
void **dlindependent_calloc(size_t, size_t, void **);
/*
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
independent_comalloc allocates, all at once, a set of n_elements
chunks with sizes indicated in the "sizes" array. It returns
an array of pointers to these elements, each of which can be
independently freed, realloc'ed etc. The elements are guaranteed to
be adjacently allocated (this is not guaranteed to occur with
multiple callocs or mallocs), which may also improve cache locality
in some applications.
The "chunks" argument is optional (i.e., may be null). If it is null
the returned array is itself dynamically allocated and should also
be freed when it is no longer needed. Otherwise, the chunks array
must be of at least n_elements in length. It is filled in with the
pointers to the chunks.
In either case, independent_comalloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and chunks is
null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use a single regular malloc, and assign pointers at
particular offsets in the aggregate space. (In this case though, you
cannot independently free elements.)
independent_comallac differs from independent_calloc in that each
element may have a different size, and also that it does not
automatically clear elements.
independent_comalloc can be used to speed up allocation in cases
where several structs or objects must always be allocated at the
same time. For example:
struct Head { ... }
struct Foot { ... }
void send_message(char* msg) {
int msglen = strlen(msg);
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
void* chunks[3];
if (independent_comalloc(3, sizes, chunks) == 0)
die();
struct Head* head = (struct Head*)(chunks[0]);
char* body = (char*)(chunks[1]);
struct Foot* foot = (struct Foot*)(chunks[2]);
// ...
}
In general though, independent_comalloc is worth using only for
larger values of n_elements. For small values, you probably won't
detect enough difference from series of malloc calls to bother.
Overuse of independent_comalloc can increase overall memory usage,
since it cannot reuse existing noncontiguous small chunks that
might be available for some of the elements.
*/
void **dlindependent_comalloc(size_t, size_t *, void **);
/*
pvalloc(size_t n);
Equivalent to valloc(minimum-page-that-holds(n)), that is,
round up n to nearest pagesize.
*/
void *dlpvalloc(size_t);
/*
malloc_trim(size_t pad);
If possible, gives memory back to the system (via negative arguments
to sbrk) if there is unused memory at the `high' end of the malloc
pool or in unused MMAP segments. You can call this after freeing
large blocks of memory to potentially reduce the system-level memory
requirements of a program. However, it cannot guarantee to reduce
memory. Under some allocation patterns, some large free blocks of
memory will be locked between two used chunks, so they cannot be
given back to the system.
The `pad' argument to malloc_trim represents the amount of free
trailing space to leave untrimmed. If this argument is zero, only
the minimum amount of memory to maintain internal data structures
will be left. Non-zero arguments can be supplied to maintain enough
trailing space to service future expected allocations without having
to re-obtain memory from the system.
Malloc_trim returns 1 if it actually released any memory, else 0.
*/
int dlmalloc_trim(size_t);
/*
malloc_usable_size(void* p);
Returns the number of bytes you can actually use in
an allocated chunk, which may be more than you requested (although
often not) due to alignment and minimum size constraints.
You can use this many bytes without worrying about
overwriting other allocated objects. This is not a particularly great
programming practice. malloc_usable_size can be more useful in
debugging and assertions, for example:
p = malloc(n);
assert(malloc_usable_size(p) >= 256);
*/
size_t dlmalloc_usable_size(void *);
/*
malloc_stats();
Prints on stderr the amount of space obtained from the system (both
via sbrk and mmap), the maximum amount (which may be more than
current if malloc_trim and/or munmap got called), and the current
number of bytes allocated via malloc (or realloc, etc) but not yet
freed. Note that this is the number of bytes allocated, not the
number requested. It will be larger than the number requested
because of alignment and bookkeeping overhead. Because it includes
alignment wastage as being in use, this figure may be greater than
zero even when no user-level chunks are allocated.
The reported current and maximum system memory can be inaccurate if
a program makes other calls to system memory allocation functions
(normally sbrk) outside of malloc.
malloc_stats prints only the most commonly interesting statistics.
More information can be obtained by calling mallinfo.
*/
void dlmalloc_stats(void);
#endif /* ONLY_MSPACES */
#if MSPACES
/*
mspace is an opaque type representing an independent
region of space that supports mspace_malloc, etc.
*/
typedef void *mspace;
/*
create_mspace creates and returns a new independent space with the
given initial capacity, or, if 0, the default granularity size. It
returns null if there is no system memory available to create the
space. If argument locked is non-zero, the space uses a separate
lock to control access. The capacity of the space will grow
dynamically as needed to service mspace_malloc requests. You can
control the sizes of incremental increases of this space by
compiling with a different DEFAULT_GRANULARITY or dynamically
setting with mallopt(M_GRANULARITY, value).
*/
mspace create_mspace(size_t capacity, int locked);
/*
destroy_mspace destroys the given space, and attempts to return all
of its memory back to the system, returning the total number of
bytes freed. After destruction, the results of access to all memory
used by the space become undefined.
*/
size_t destroy_mspace(mspace msp);
/*
create_mspace_with_base uses the memory supplied as the initial base
of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
space is used for bookkeeping, so the capacity must be at least this
large. (Otherwise 0 is returned.) When this initial space is
exhausted, additional memory will be obtained from the system.
Destroying this space will deallocate all additionally allocated
space (if possible) but not the initial base.
*/
mspace create_mspace_with_base(void *base, size_t capacity, int locked);
/*
mspace_malloc behaves as malloc, but operates within
the given space.
*/
void *mspace_malloc(mspace msp, size_t bytes);
/*
mspace_free behaves as free, but operates within
the given space.
If compiled with FOOTERS==1, mspace_free is not actually needed.
free may be called instead of mspace_free because freed chunks from
any space are handled by their originating spaces.
*/
void mspace_free(mspace msp, void *mem);
/*
mspace_realloc behaves as realloc, but operates within
the given space.
If compiled with FOOTERS==1, mspace_realloc is not actually
needed. realloc may be called instead of mspace_realloc because
realloced chunks from any space are handled by their originating
spaces.
*/
void *mspace_realloc(mspace msp, void *mem, size_t newsize);
/*
mspace_calloc behaves as calloc, but operates within
the given space.
*/
void *mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
/*
mspace_memalign behaves as memalign, but operates within
the given space.
*/
void *mspace_memalign(mspace msp, size_t alignment, size_t bytes);
/*
mspace_independent_calloc behaves as independent_calloc, but
operates within the given space.
*/
void **mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void *chunks[]);
/*
mspace_independent_comalloc behaves as independent_comalloc, but
operates within the given space.
*/
void **mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void *chunks[]);
/*
mspace_footprint() returns the number of bytes obtained from the
system for this space.
*/
size_t mspace_footprint(mspace msp);
/*
mspace_max_footprint() returns the peak number of bytes obtained from the
system for this space.
*/
size_t mspace_max_footprint(mspace msp);
#if !NO_MALLINFO
/*
mspace_mallinfo behaves as mallinfo, but reports properties of
the given space.
*/
struct mallinfo mspace_mallinfo(mspace msp);
#endif /* NO_MALLINFO */
/*
mspace_malloc_stats behaves as malloc_stats, but reports
properties of the given space.
*/
void mspace_malloc_stats(mspace msp);
/*
mspace_trim behaves as malloc_trim, but
operates within the given space.
*/
int mspace_trim(mspace msp, size_t pad);
/*
An alias for mallopt.
*/
int mspace_mallopt(int, int);
#endif /* MSPACES */
#ifdef __cplusplus
}; /* end of extern "C" */
#endif /* __cplusplus */
/*
========================================================================
To make a fully customizable malloc.h header file, cut everything
above this line, put into file malloc.h, edit to suit, and #include it
on the next line, as well as in programs that use this malloc.
========================================================================
*/
/* #include "malloc.h" */
/*------------------------------ internal #includes ---------------------- */
#ifdef _MSC_VER
#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
#endif /* _MSC_VER */
#ifndef LACKS_STDIO_H
#include <stdio.h> /* for printing in malloc_stats */
#endif
#ifndef LACKS_ERRNO_H
#include <errno.h> /* for MALLOC_FAILURE_ACTION */
#endif /* LACKS_ERRNO_H */
#if FOOTERS
#include <time.h> /* for magic initialization */
#endif /* FOOTERS */
#ifndef LACKS_STDLIB_H
#include <stdlib.h> /* for abort() */
#endif /* LACKS_STDLIB_H */
#ifdef DEBUG
#if ABORT_ON_ASSERT_FAILURE
#define assert(x) if(!(x)) ABORT
#else /* ABORT_ON_ASSERT_FAILURE */
#include <assert.h>
#endif /* ABORT_ON_ASSERT_FAILURE */
#else /* DEBUG */
#define assert(x)
#endif /* DEBUG */
#ifndef LACKS_STRING_H
#include <string.h> /* for memset etc */
#endif /* LACKS_STRING_H */
#if USE_BUILTIN_FFS
#ifndef LACKS_STRINGS_H
#include <strings.h> /* for ffs */
#endif /* LACKS_STRINGS_H */
#endif /* USE_BUILTIN_FFS */
#if HAVE_MMAP
#ifndef LACKS_SYS_MMAN_H
#include <sys/mman.h> /* for mmap */
#endif /* LACKS_SYS_MMAN_H */
#ifndef LACKS_FCNTL_H
#include <fcntl.h>
#endif /* LACKS_FCNTL_H */
#endif /* HAVE_MMAP */
#if HAVE_MORECORE
#ifndef LACKS_UNISTD_H
#include <unistd.h> /* for sbrk */
#else /* LACKS_UNISTD_H */
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
extern void *sbrk(ptrdiff_t);
#endif /* FreeBSD etc */
#endif /* LACKS_UNISTD_H */
#endif /* HAVE_MMAP */
#ifndef WIN32
#ifndef malloc_getpagesize
# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
# ifndef _SC_PAGE_SIZE
# define _SC_PAGE_SIZE _SC_PAGESIZE
# endif
# endif
# ifdef _SC_PAGE_SIZE
# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
# else
# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
extern size_t getpagesize();
# define malloc_getpagesize getpagesize()
# else
# ifdef WIN32 /* use supplied emulation of getpagesize */
# define malloc_getpagesize getpagesize()
# else
# ifndef LACKS_SYS_PARAM_H
# include <sys/param.h>
# endif
# ifdef EXEC_PAGESIZE
# define malloc_getpagesize EXEC_PAGESIZE
# else
# ifdef NBPG
# ifndef CLSIZE
# define malloc_getpagesize NBPG
# else
# define malloc_getpagesize (NBPG * CLSIZE)
# endif
# else
# ifdef NBPC
# define malloc_getpagesize NBPC
# else
# ifdef PAGESIZE
# define malloc_getpagesize PAGESIZE
# else /* just guess */
# define malloc_getpagesize ((size_t)4096U)
# endif
# endif
# endif
# endif
# endif
# endif
# endif
#endif
#endif
/* ------------------- size_t and alignment properties -------------------- */
/* The byte and bit size of a size_t */
#define SIZE_T_SIZE (sizeof(size_t))
#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
/* Some constants coerced to size_t */
/* Annoying but necessary to avoid errors on some plaftorms */
#define SIZE_T_ZERO ((size_t)0)
#define SIZE_T_ONE ((size_t)1)
#define SIZE_T_TWO ((size_t)2)
#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
/* The bit mask value corresponding to MALLOC_ALIGNMENT */
#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
/* True if address a has acceptable alignment */
#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
/* the number of bytes to offset an address to align it */
#define align_offset(A)\
((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
/* -------------------------- MMAP preliminaries ------------------------- */
/*
If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
checks to fail so compiler optimizer can delete code rather than
using so many "#if"s.
*/
/* MORECORE and MMAP must return MFAIL on failure */
#define MFAIL ((void*)(MAX_SIZE_T))
#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
#if !HAVE_MMAP
#define IS_MMAPPED_BIT (SIZE_T_ZERO)
#define USE_MMAP_BIT (SIZE_T_ZERO)
#define CALL_MMAP(s) MFAIL
#define CALL_MUNMAP(a, s) (-1)
#define DIRECT_MMAP(s) MFAIL
#else /* HAVE_MMAP */
#define IS_MMAPPED_BIT (SIZE_T_ONE)
#define USE_MMAP_BIT (SIZE_T_ONE)
#if !defined(WIN32) && !defined (__OS2__)
#define CALL_MUNMAP(a, s) munmap((a), (s))
#define MMAP_PROT (PROT_READ|PROT_WRITE)
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif /* MAP_ANON */
#ifdef MAP_ANONYMOUS
#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
#else /* MAP_ANONYMOUS */
/*
Nearly all versions of mmap support MAP_ANONYMOUS, so the following
is unlikely to be needed, but is supplied just in case.
*/
#define MMAP_FLAGS (MAP_PRIVATE)
static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
(dev_zero_fd = open("/dev/zero", O_RDWR), \
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
#endif /* MAP_ANONYMOUS */
#define DIRECT_MMAP(s) CALL_MMAP(s)
#elif defined(__OS2__)
/* OS/2 MMAP via DosAllocMem */
static void* os2mmap(size_t size) {
void* ptr;
if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) &&
DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE))
return MFAIL;
return ptr;
}
#define os2direct_mmap(n) os2mmap(n)
/* This function supports releasing coalesed segments */
static int os2munmap(void* ptr, size_t size) {
while (size) {
ULONG ulSize = size;
ULONG ulFlags = 0;
if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0)
return -1;
if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 ||
ulSize > size)
return -1;
if (DosFreeMem(ptr) != 0)
return -1;
ptr = ( void * ) ( ( char * ) ptr + ulSize );
size -= ulSize;
}
return 0;
}
#define CALL_MMAP(s) os2mmap(s)
#define CALL_MUNMAP(a, s) os2munmap((a), (s))
#define DIRECT_MMAP(s) os2direct_mmap(s)
#else /* WIN32 */
/* Win32 MMAP via VirtualAlloc */
static void *
win32mmap(size_t size)
{
void *ptr =
VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
return (ptr != 0) ? ptr : MFAIL;
}
/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
static void *
win32direct_mmap(size_t size)
{
void *ptr = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN,
PAGE_READWRITE);
return (ptr != 0) ? ptr : MFAIL;
}
/* This function supports releasing coalesed segments */
static int
win32munmap(void *ptr, size_t size)
{
MEMORY_BASIC_INFORMATION minfo;
char *cptr = ptr;
while (size) {
if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
return -1;
if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
minfo.State != MEM_COMMIT || minfo.RegionSize > size)
return -1;
if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
return -1;
cptr += minfo.RegionSize;
size -= minfo.RegionSize;
}
return 0;
}
#define CALL_MMAP(s) win32mmap(s)
#define CALL_MUNMAP(a, s) win32munmap((a), (s))
#define DIRECT_MMAP(s) win32direct_mmap(s)
#endif /* WIN32 */
#endif /* HAVE_MMAP */
#if HAVE_MMAP && HAVE_MREMAP
#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
#else /* HAVE_MMAP && HAVE_MREMAP */
#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
#endif /* HAVE_MMAP && HAVE_MREMAP */
#if HAVE_MORECORE
#define CALL_MORECORE(S) MORECORE(S)
#else /* HAVE_MORECORE */
#define CALL_MORECORE(S) MFAIL
#endif /* HAVE_MORECORE */
/* mstate bit set if continguous morecore disabled or failed */
#define USE_NONCONTIGUOUS_BIT (4U)
/* segment bit set in create_mspace_with_base */
#define EXTERN_BIT (8U)
/* --------------------------- Lock preliminaries ------------------------ */
#if USE_LOCKS
/*
When locks are defined, there are up to two global locks:
* If HAVE_MORECORE, morecore_mutex protects sequences of calls to
MORECORE. In many cases sys_alloc requires two calls, that should
not be interleaved with calls by other threads. This does not
protect against direct calls to MORECORE by other threads not
using this lock, so there is still code to cope the best we can on
interference.
* magic_init_mutex ensures that mparams.magic and other
unique mparams values are initialized only once.
*/
#if !defined(WIN32) && !defined(__OS2__)
/* By default use posix locks */
#include <pthread.h>
#define MLOCK_T pthread_mutex_t
#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
#define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
#define RELEASE_LOCK(l) pthread_mutex_unlock(l)
#if HAVE_MORECORE
static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif /* HAVE_MORECORE */
static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
#elif defined(__OS2__)
#define MLOCK_T HMTX
#define INITIAL_LOCK(l) DosCreateMutexSem(0, l, 0, FALSE)
#define ACQUIRE_LOCK(l) DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT)
#define RELEASE_LOCK(l) DosReleaseMutexSem(*l)
#if HAVE_MORECORE
static MLOCK_T morecore_mutex;
#endif /* HAVE_MORECORE */
static MLOCK_T magic_init_mutex;
#else /* WIN32 */
/*
Because lock-protected regions have bounded times, and there
are no recursive lock calls, we can use simple spinlocks.
*/
#define MLOCK_T long
static int
win32_acquire_lock(MLOCK_T * sl)
{
for (;;) {
#ifdef InterlockedCompareExchangePointer
if (!InterlockedCompareExchange(sl, 1, 0))
return 0;
#else /* Use older void* version */
if (!InterlockedCompareExchange((void **) sl, (void *) 1, (void *) 0))
return 0;
#endif /* InterlockedCompareExchangePointer */
Sleep(0);
}
}
static void
win32_release_lock(MLOCK_T * sl)
{
InterlockedExchange(sl, 0);
}
#define INITIAL_LOCK(l) *(l)=0
#define ACQUIRE_LOCK(l) win32_acquire_lock(l)
#define RELEASE_LOCK(l) win32_release_lock(l)
#if HAVE_MORECORE
static MLOCK_T morecore_mutex;
#endif /* HAVE_MORECORE */
static MLOCK_T magic_init_mutex;
#endif /* WIN32 */
#define USE_LOCK_BIT (2U)
#else /* USE_LOCKS */
#define USE_LOCK_BIT (0U)
#define INITIAL_LOCK(l)
#endif /* USE_LOCKS */
#if USE_LOCKS && HAVE_MORECORE
#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
#else /* USE_LOCKS && HAVE_MORECORE */
#define ACQUIRE_MORECORE_LOCK()
#define RELEASE_MORECORE_LOCK()
#endif /* USE_LOCKS && HAVE_MORECORE */
#if USE_LOCKS
#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
#else /* USE_LOCKS */
#define ACQUIRE_MAGIC_INIT_LOCK()
#define RELEASE_MAGIC_INIT_LOCK()
#endif /* USE_LOCKS */
/* ----------------------- Chunk representations ------------------------ */
/*
(The following includes lightly edited explanations by Colin Plumb.)
The malloc_chunk declaration below is misleading (but accurate and
necessary). It declares a "view" into memory allowing access to
necessary fields at known offsets from a given base.
Chunks of memory are maintained using a `boundary tag' method as
originally described by Knuth. (See the paper by Paul Wilson
ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
techniques.) Sizes of free chunks are stored both in the front of
each chunk and at the end. This makes consolidating fragmented
chunks into bigger chunks fast. The head fields also hold bits
representing whether chunks are free or in use.
Here are some pictures to make it clearer. They are "exploded" to
show that the state of a chunk can be thought of as extending from
the high 31 bits of the head field of its header through the
prev_foot and PINUSE_BIT bit of the following chunk header.
A chunk that's in use looks like:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk (if P = 1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
| Size of this chunk 1| +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- -+
| |
+- -+
| :
+- size - sizeof(size_t) available payload bytes -+
: |
chunk-> +- -+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
| Size of next chunk (may or may not be in use) | +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
And if it's free, it looks like this:
chunk-> +- -+
| User payload (must be in use, or we would have merged!) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
| Size of this chunk 0| +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prev pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :
+- size - sizeof(struct chunk) unused bytes -+
: |
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of this chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
| Size of next chunk (must be in use, or we would have merged)| +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :
+- User payload -+
: |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|
+-+
Note that since we always merge adjacent free chunks, the chunks
adjacent to a free chunk must be in use.
Given a pointer to a chunk (which can be derived trivially from the
payload pointer) we can, in O(1) time, find out whether the adjacent
chunks are free, and if so, unlink them from the lists that they
are on and merge them with the current chunk.
Chunks always begin on even word boundaries, so the mem portion
(which is returned to the user) is also on an even word boundary, and
thus at least double-word aligned.
The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
chunk size (which is always a multiple of two words), is an in-use
bit for the *previous* chunk. If that bit is *clear*, then the
word before the current chunk size contains the previous chunk
size, and can be used to find the front of the previous chunk.
The very first chunk allocated always has this bit set, preventing
access to non-existent (or non-owned) memory. If pinuse is set for
any given chunk, then you CANNOT determine the size of the
previous chunk, and might even get a memory addressing fault when
trying to do so.
The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
the chunk size redundantly records whether the current chunk is
inuse. This redundancy enables usage checks within free and realloc,
and reduces indirection when freeing and consolidating chunks.
Each freshly allocated chunk must have both cinuse and pinuse set.
That is, each allocated chunk borders either a previously allocated
and still in-use chunk, or the base of its memory arena. This is
ensured by making all allocations from the the `lowest' part of any
found chunk. Further, no free chunk physically borders another one,
so each free chunk is known to be preceded and followed by either
inuse chunks or the ends of memory.
Note that the `foot' of the current chunk is actually represented
as the prev_foot of the NEXT chunk. This makes it easier to
deal with alignments etc but can be very confusing when trying
to extend or adapt this code.
The exceptions to all this are
1. The special chunk `top' is the top-most available chunk (i.e.,
the one bordering the end of available memory). It is treated
specially. Top is never included in any bin, is used only if
no other chunk is available, and is released back to the
system if it is very large (see M_TRIM_THRESHOLD). In effect,
the top chunk is treated as larger (and thus less well
fitting) than any other available chunk. The top chunk
doesn't update its trailing size field since there is no next
contiguous chunk that would have to index off it. However,
space is still allocated for it (TOP_FOOT_SIZE) to enable
separation or merging when space is extended.
3. Chunks allocated via mmap, which have the lowest-order bit
(IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
PINUSE_BIT in their head fields. Because they are allocated
one-by-one, each must carry its own prev_foot field, which is
also used to hold the offset this chunk has within its mmapped
region, which is needed to preserve alignment. Each mmapped
chunk is trailed by the first two fields of a fake next-chunk
for sake of usage checks.
*/
struct malloc_chunk
{
size_t prev_foot; /* Size of previous chunk (if free). */
size_t head; /* Size and inuse bits. */
struct malloc_chunk *fd; /* double links -- used only if free. */
struct malloc_chunk *bk;
};
typedef struct malloc_chunk mchunk;
typedef struct malloc_chunk *mchunkptr;
typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */
typedef size_t bindex_t; /* Described below */
typedef unsigned int binmap_t; /* Described below */
typedef unsigned int flag_t; /* The type of various bit flag sets */
/* ------------------- Chunks sizes and alignments ----------------------- */
#define MCHUNK_SIZE (sizeof(mchunk))
#if FOOTERS
#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
#else /* FOOTERS */
#define CHUNK_OVERHEAD (SIZE_T_SIZE)
#endif /* FOOTERS */
/* MMapped chunks need a second word of overhead ... */
#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
/* ... and additional padding for fake next-chunk at foot */
#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
/* The smallest size we can malloc is an aligned minimal chunk */
#define MIN_CHUNK_SIZE\
((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
/* conversion from malloc headers to user pointers, and back */
#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
/* chunk associated with aligned address A */
#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
/* Bounds on request (not chunk) sizes. */
#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
/* pad request bytes into a usable size */
#define pad_request(req) \
(((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
/* pad request, checking for minimum (but not maximum) */
#define request2size(req) \
(((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
/* ------------------ Operations on head and foot fields ----------------- */
/*
The head field of a chunk is or'ed with PINUSE_BIT when previous
adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
use. If the chunk was obtained with mmap, the prev_foot field has
IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
mmapped region to the base of the chunk.
*/
#define PINUSE_BIT (SIZE_T_ONE)
#define CINUSE_BIT (SIZE_T_TWO)
#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
/* Head value for fenceposts */
#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
/* extraction of fields from head words */
#define cinuse(p) ((p)->head & CINUSE_BIT)
#define pinuse(p) ((p)->head & PINUSE_BIT)
#define chunksize(p) ((p)->head & ~(INUSE_BITS))
#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
/* Treat space at ptr +/- offset as a chunk */
#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
/* Ptr to next or previous physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
/* extract next chunk's pinuse bit */
#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
/* Get/set size at footer */
#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
/* Set size, pinuse bit, and foot */
#define set_size_and_pinuse_of_free_chunk(p, s)\
((p)->head = (s|PINUSE_BIT), set_foot(p, s))
/* Set size, pinuse bit, foot, and clear next pinuse */
#define set_free_with_pinuse(p, s, n)\
(clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
#define is_mmapped(p)\
(!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
/* Get the internal overhead associated with chunk p */
#define overhead_for(p)\
(is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
/* Return true if malloced space is not necessarily cleared */
#if MMAP_CLEARS
#define calloc_must_clear(p) (!is_mmapped(p))
#else /* MMAP_CLEARS */
#define calloc_must_clear(p) (1)
#endif /* MMAP_CLEARS */
/* ---------------------- Overlaid data structures ----------------------- */
/*
When chunks are not in use, they are treated as nodes of either
lists or trees.
"Small" chunks are stored in circular doubly-linked lists, and look
like this:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space (may be 0 bytes long) .
. .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Larger chunks are kept in a form of bitwise digital trees (aka
tries) keyed on chunksizes. Because malloc_tree_chunks are only for
free chunks greater than 256 bytes, their size doesn't impose any
constraints on user chunk sizes. Each node looks like:
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to left child (child[0]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to right child (child[1]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to parent |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| bin index of this chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Each tree holding treenodes is a tree of unique chunk sizes. Chunks
of the same size are arranged in a circularly-linked list, with only
the oldest chunk (the next to be used, in our FIFO ordering)
actually in the tree. (Tree members are distinguished by a non-null
parent pointer.) If a chunk with the same size an an existing node
is inserted, it is linked off the existing node using pointers that
work in the same way as fd/bk pointers of small chunks.
Each tree contains a power of 2 sized range of chunk sizes (the
smallest is 0x100 <= x < 0x180), which is is divided in half at each
tree level, with the chunks in the smaller half of the range (0x100
<= x < 0x140 for the top nose) in the left subtree and the larger
half (0x140 <= x < 0x180) in the right subtree. This is, of course,
done by inspecting individual bits.
Using these rules, each node's left subtree contains all smaller
sizes than its right subtree. However, the node at the root of each
subtree has no particular ordering relationship to either. (The
dividing line between the subtree sizes is based on trie relation.)
If we remove the last chunk of a given size from the interior of the
tree, we need to replace it with a leaf node. The tree ordering
rules permit a node to be replaced by any leaf below it.
The smallest chunk in a tree (a common operation in a best-fit
allocator) can be found by walking a path to the leftmost leaf in
the tree. Unlike a usual binary tree, where we follow left child
pointers until we reach a null, here we follow the right child
pointer any time the left one is null, until we reach a leaf with
both child pointers null. The smallest chunk in the tree will be
somewhere along that path.
The worst case number of steps to add, find, or remove a node is
bounded by the number of bits differentiating chunks within
bins. Under current bin calculations, this ranges from 6 up to 21
(for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
is of course much better.
*/
struct malloc_tree_chunk
{
/* The first four fields must be compatible with malloc_chunk */
size_t prev_foot;
size_t head;
struct malloc_tree_chunk *fd;
struct malloc_tree_chunk *bk;
struct malloc_tree_chunk *child[2];
struct malloc_tree_chunk *parent;
bindex_t index;
};
typedef struct malloc_tree_chunk tchunk;
typedef struct malloc_tree_chunk *tchunkptr;
typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */
/* A little helper macro for trees */
#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
/* ----------------------------- Segments -------------------------------- */
/*
Each malloc space may include non-contiguous segments, held in a
list headed by an embedded malloc_segment record representing the
top-most space. Segments also include flags holding properties of
the space. Large chunks that are directly allocated by mmap are not
included in this list. They are instead independently created and
destroyed without otherwise keeping track of them.
Segment management mainly comes into play for spaces allocated by
MMAP. Any call to MMAP might or might not return memory that is
adjacent to an existing segment. MORECORE normally contiguously
extends the current space, so this space is almost always adjacent,
which is simpler and faster to deal with. (This is why MORECORE is
used preferentially to MMAP when both are available -- see
sys_alloc.) When allocating using MMAP, we don't use any of the
hinting mechanisms (inconsistently) supported in various
implementations of unix mmap, or distinguish reserving from
committing memory. Instead, we just ask for space, and exploit
contiguity when we get it. It is probably possible to do
better than this on some systems, but no general scheme seems
to be significantly better.
Management entails a simpler variant of the consolidation scheme
used for chunks to reduce fragmentation -- new adjacent memory is
normally prepended or appended to an existing segment. However,
there are limitations compared to chunk consolidation that mostly
reflect the fact that segment processing is relatively infrequent
(occurring only when getting memory from system) and that we
don't expect to have huge numbers of segments:
* Segments are not indexed, so traversal requires linear scans. (It
would be possible to index these, but is not worth the extra
overhead and complexity for most programs on most platforms.)
* New segments are only appended to old ones when holding top-most
memory; if they cannot be prepended to others, they are held in
different segments.
Except for the top-most segment of an mstate, each segment record
is kept at the tail of its segment. Segments are added by pushing
segment records onto the list headed by &mstate.seg for the
containing mstate.
Segment flags control allocation/merge/deallocation policies:
* If EXTERN_BIT set, then we did not allocate this segment,
and so should not try to deallocate or merge with others.
(This currently holds only for the initial segment passed
into create_mspace_with_base.)
* If IS_MMAPPED_BIT set, the segment may be merged with
other surrounding mmapped segments and trimmed/de-allocated
using munmap.
* If neither bit is set, then the segment was obtained using
MORECORE so can be merged with surrounding MORECORE'd segments
and deallocated/trimmed using MORECORE with negative arguments.
*/
struct malloc_segment
{
char *base; /* base address */
size_t size; /* allocated size */
struct malloc_segment *next; /* ptr to next segment */
flag_t sflags; /* mmap and extern flag */
};
#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
typedef struct malloc_segment msegment;
typedef struct malloc_segment *msegmentptr;
/* ---------------------------- malloc_state ----------------------------- */
/*
A malloc_state holds all of the bookkeeping for a space.
The main fields are:
Top
The topmost chunk of the currently active segment. Its size is
cached in topsize. The actual size of topmost space is
topsize+TOP_FOOT_SIZE, which includes space reserved for adding
fenceposts and segment records if necessary when getting more
space from the system. The size at which to autotrim top is
cached from mparams in trim_check, except that it is disabled if
an autotrim fails.
Designated victim (dv)
This is the preferred chunk for servicing small requests that
don't have exact fits. It is normally the chunk split off most
recently to service another small request. Its size is cached in
dvsize. The link fields of this chunk are not maintained since it
is not kept in a bin.
SmallBins
An array of bin headers for free chunks. These bins hold chunks
with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
chunks of all the same size, spaced 8 bytes apart. To simplify
use in double-linked lists, each bin header acts as a malloc_chunk
pointing to the real first node, if it exists (else pointing to
itself). This avoids special-casing for headers. But to avoid
waste, we allocate only the fd/bk pointers of bins, and then use
repositioning tricks to treat these as the fields of a chunk.
TreeBins
Treebins are pointers to the roots of trees holding a range of
sizes. There are 2 equally spaced treebins for each power of two
from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
larger.
Bin maps
There is one bit map for small bins ("smallmap") and one for
treebins ("treemap). Each bin sets its bit when non-empty, and
clears the bit when empty. Bit operations are then used to avoid
bin-by-bin searching -- nearly all "search" is done without ever
looking at bins that won't be selected. The bit maps
conservatively use 32 bits per map word, even if on 64bit system.
For a good description of some of the bit-based techniques used
here, see Henry S. Warren Jr's book "Hacker's Delight" (and
supplement at http://hackersdelight.org/). Many of these are
intended to reduce the branchiness of paths through malloc etc, as
well as to reduce the number of memory locations read or written.
Segments
A list of segments headed by an embedded malloc_segment record
representing the initial space.
Address check support
The least_addr field is the least address ever obtained from
MORECORE or MMAP. Attempted frees and reallocs of any address less
than this are trapped (unless INSECURE is defined).
Magic tag
A cross-check field that should always hold same value as mparams.magic.
Flags
Bits recording whether to use MMAP, locks, or contiguous MORECORE
Statistics
Each space keeps track of current and maximum system memory
obtained via MORECORE or MMAP.
Locking
If USE_LOCKS is defined, the "mutex" lock is acquired and released
around every public call using this mspace.
*/
/* Bin types, widths and sizes */
#define NSMALLBINS (32U)
#define NTREEBINS (32U)
#define SMALLBIN_SHIFT (3U)
#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
#define TREEBIN_SHIFT (8U)
#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
struct malloc_state
{
binmap_t smallmap;
binmap_t treemap;
size_t dvsize;
size_t topsize;
char *least_addr;
mchunkptr dv;
mchunkptr top;
size_t trim_check;
size_t magic;
mchunkptr smallbins[(NSMALLBINS + 1) * 2];
tbinptr treebins[NTREEBINS];
size_t footprint;
size_t max_footprint;
flag_t mflags;
#if USE_LOCKS
MLOCK_T mutex; /* locate lock among fields that rarely change */
#endif /* USE_LOCKS */
msegment seg;
};
typedef struct malloc_state *mstate;
/* ------------- Global malloc_state and malloc_params ------------------- */
/*
malloc_params holds global properties, including those that can be
dynamically set using mallopt. There is a single instance, mparams,
initialized in init_mparams.
*/
struct malloc_params
{
size_t magic;
size_t page_size;
size_t granularity;
size_t mmap_threshold;
size_t trim_threshold;
flag_t default_mflags;
};
static struct malloc_params mparams;
/* The global malloc_state used for all non-"mspace" calls */
static struct malloc_state _gm_;
#define gm (&_gm_)
#define is_global(M) ((M) == &_gm_)
#define is_initialized(M) ((M)->top != 0)
/* -------------------------- system alloc setup ------------------------- */
/* Operations on mflags */
#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
#define set_lock(M,L)\
((M)->mflags = (L)?\
((M)->mflags | USE_LOCK_BIT) :\
((M)->mflags & ~USE_LOCK_BIT))
/* page-align a size */
#define page_align(S)\
(((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
/* granularity-align a size */
#define granularity_align(S)\
(((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
#define is_page_aligned(S)\
(((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
#define is_granularity_aligned(S)\
(((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
/* True if segment S holds address A */
#define segment_holds(S, A)\
((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
/* Return segment holding given address */
static msegmentptr
segment_holding(mstate m, char *addr)
{
msegmentptr sp = &m->seg;
for (;;) {
if (addr >= sp->base && addr < sp->base + sp->size)
return sp;
if ((sp = sp->next) == 0)
return 0;
}
}
/* Return true if segment contains a segment link */
static int
has_segment_link(mstate m, msegmentptr ss)
{
msegmentptr sp = &m->seg;
for (;;) {
if ((char *) sp >= ss->base && (char *) sp < ss->base + ss->size)
return 1;
if ((sp = sp->next) == 0)
return 0;
}
}
#ifndef MORECORE_CANNOT_TRIM
#define should_trim(M,s) ((s) > (M)->trim_check)
#else /* MORECORE_CANNOT_TRIM */
#define should_trim(M,s) (0)
#endif /* MORECORE_CANNOT_TRIM */
/*
TOP_FOOT_SIZE is padding at the end of a segment, including space
that may be needed to place segment records and fenceposts when new
noncontiguous segments are added.
*/
#define TOP_FOOT_SIZE\
(align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
/* ------------------------------- Hooks -------------------------------- */
/*
PREACTION should be defined to return 0 on success, and nonzero on
failure. If you are not using locking, you can redefine these to do
anything you like.
*/
#if USE_LOCKS
/* Ensure locks are initialized */
#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
#else /* USE_LOCKS */
#ifndef PREACTION
#define PREACTION(M) (0)
#endif /* PREACTION */
#ifndef POSTACTION
#define POSTACTION(M)
#endif /* POSTACTION */
#endif /* USE_LOCKS */
/*
CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
USAGE_ERROR_ACTION is triggered on detected bad frees and
reallocs. The argument p is an address that might have triggered the
fault. It is ignored by the two predefined actions, but might be
useful in custom actions that try to help diagnose errors.
*/
#if PROCEED_ON_ERROR
/* A count of the number of corruption errors causing resets */
int malloc_corruption_error_count;
/* default corruption action */
static void reset_on_error(mstate m);
#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
#define USAGE_ERROR_ACTION(m, p)
#else /* PROCEED_ON_ERROR */
#ifndef CORRUPTION_ERROR_ACTION
#define CORRUPTION_ERROR_ACTION(m) ABORT
#endif /* CORRUPTION_ERROR_ACTION */
#ifndef USAGE_ERROR_ACTION
#define USAGE_ERROR_ACTION(m,p) ABORT
#endif /* USAGE_ERROR_ACTION */
#endif /* PROCEED_ON_ERROR */
/* -------------------------- Debugging setup ---------------------------- */
#if ! DEBUG
#define check_free_chunk(M,P)
#define check_inuse_chunk(M,P)
#define check_malloced_chunk(M,P,N)
#define check_mmapped_chunk(M,P)
#define check_malloc_state(M)
#define check_top_chunk(M,P)
#else /* DEBUG */
#define check_free_chunk(M,P) do_check_free_chunk(M,P)
#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
#define check_top_chunk(M,P) do_check_top_chunk(M,P)
#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
#define check_malloc_state(M) do_check_malloc_state(M)
static void do_check_any_chunk(mstate m, mchunkptr p);
static void do_check_top_chunk(mstate m, mchunkptr p);
static void do_check_mmapped_chunk(mstate m, mchunkptr p);
static void do_check_inuse_chunk(mstate m, mchunkptr p);
static void do_check_free_chunk(mstate m, mchunkptr p);
static void do_check_malloced_chunk(mstate m, void *mem, size_t s);
static void do_check_tree(mstate m, tchunkptr t);
static void do_check_treebin(mstate m, bindex_t i);
static void do_check_smallbin(mstate m, bindex_t i);
static void do_check_malloc_state(mstate m);
static int bin_find(mstate m, mchunkptr x);
static size_t traverse_and_check(mstate m);
#endif /* DEBUG */
/* ---------------------------- Indexing Bins ---------------------------- */
#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
#define small_index(s) ((s) >> SMALLBIN_SHIFT)
#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
/* addressing by index. See above about smallbin repositioning */
#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
#define treebin_at(M,i) (&((M)->treebins[i]))
/* assign tree index for size S to variable I */
#if defined(__GNUC__) && defined(i386)
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int K;\
__asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
}\
}
#else /* GNUC */
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int Y = (unsigned int)X;\
unsigned int N = ((Y - 0x100) >> 16) & 8;\
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
N += K;\
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
K = 14 - N + ((Y <<= K) >> 15);\
I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
}\
}
#endif /* GNUC */
/* Bit representing maximum resolved size in a treebin at i */
#define bit_for_tree_index(i) \
(i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
/* Shift placing maximum resolved bit in a treebin at i as sign bit */
#define leftshift_for_tree_index(i) \
((i == NTREEBINS-1)? 0 : \
((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
/* The size of the smallest chunk held in bin with index i */
#define minsize_for_tree_index(i) \
((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
(((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
/* ------------------------ Operations on bin maps ----------------------- */
/* bit corresponding to given index */
#define idx2bit(i) ((binmap_t)(1) << (i))
/* Mark/Clear bits with given index */
#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
/* index corresponding to given bit */
#if defined(__GNUC__) && defined(i386)
#define compute_bit2idx(X, I)\
{\
unsigned int J;\
__asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
I = (bindex_t)J;\
}
#else /* GNUC */
#if USE_BUILTIN_FFS
#define compute_bit2idx(X, I) I = ffs(X)-1
#else /* USE_BUILTIN_FFS */
#define compute_bit2idx(X, I)\
{\
unsigned int Y = X - 1;\
unsigned int K = Y >> (16-4) & 16;\
unsigned int N = K; Y >>= K;\
N += K = Y >> (8-3) & 8; Y >>= K;\
N += K = Y >> (4-2) & 4; Y >>= K;\
N += K = Y >> (2-1) & 2; Y >>= K;\
N += K = Y >> (1-0) & 1; Y >>= K;\
I = (bindex_t)(N + Y);\
}
#endif /* USE_BUILTIN_FFS */
#endif /* GNUC */
/* isolate the least set bit of a bitmap */
#define least_bit(x) ((x) & -(x))
/* mask with all bits to left of least bit of x on */
#define left_bits(x) ((x<<1) | -(x<<1))
/* mask with all bits to left of or equal to least bit of x on */
#define same_or_left_bits(x) ((x) | -(x))
/* ----------------------- Runtime Check Support ------------------------- */
/*
For security, the main invariant is that malloc/free/etc never
writes to a static address other than malloc_state, unless static
malloc_state itself has been corrupted, which cannot occur via
malloc (because of these checks). In essence this means that we
believe all pointers, sizes, maps etc held in malloc_state, but
check all of those linked or offsetted from other embedded data
structures. These checks are interspersed with main code in a way
that tends to minimize their run-time cost.
When FOOTERS is defined, in addition to range checking, we also
verify footer fields of inuse chunks, which can be used guarantee
that the mstate controlling malloc/free is intact. This is a
streamlined version of the approach described by William Robertson
et al in "Run-time Detection of Heap-based Overflows" LISA'03
http://www.usenix.org/events/lisa03/tech/robertson.html The footer
of an inuse chunk holds the xor of its mstate and a random seed,
that is checked upon calls to free() and realloc(). This is
(probablistically) unguessable from outside the program, but can be
computed by any code successfully malloc'ing any chunk, so does not
itself provide protection against code that has already broken
security through some other means. Unlike Robertson et al, we
always dynamically check addresses of all offset chunks (previous,
next, etc). This turns out to be cheaper than relying on hashes.
*/
#if !INSECURE
/* Check if address a is at least as high as any from MORECORE or MMAP */
#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
/* Check if address of next chunk n is higher than base chunk p */
#define ok_next(p, n) ((char*)(p) < (char*)(n))
/* Check if p has its cinuse bit on */
#define ok_cinuse(p) cinuse(p)
/* Check if p has its pinuse bit on */
#define ok_pinuse(p) pinuse(p)
#else /* !INSECURE */
#define ok_address(M, a) (1)
#define ok_next(b, n) (1)
#define ok_cinuse(p) (1)
#define ok_pinuse(p) (1)
#endif /* !INSECURE */
#if (FOOTERS && !INSECURE)
/* Check if (alleged) mstate m has expected magic field */
#define ok_magic(M) ((M)->magic == mparams.magic)
#else /* (FOOTERS && !INSECURE) */
#define ok_magic(M) (1)
#endif /* (FOOTERS && !INSECURE) */
/* In gcc, use __builtin_expect to minimize impact of checks */
#if !INSECURE
#if defined(__GNUC__) && __GNUC__ >= 3
#define RTCHECK(e) __builtin_expect(e, 1)
#else /* GNUC */
#define RTCHECK(e) (e)
#endif /* GNUC */
#else /* !INSECURE */
#define RTCHECK(e) (1)
#endif /* !INSECURE */
/* macros to set up inuse chunks with or without footers */
#if !FOOTERS
#define mark_inuse_foot(M,p,s)
/* Set cinuse bit and pinuse bit of next chunk */
#define set_inuse(M,p,s)\
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
#define set_inuse_and_pinuse(M,p,s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
/* Set size, cinuse and pinuse bit of this chunk */
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
#else /* FOOTERS */
/* Set foot of inuse chunk to be xor of mstate and seed */
#define mark_inuse_foot(M,p,s)\
(((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
#define get_mstate_for(p)\
((mstate)(((mchunkptr)((char*)(p) +\
(chunksize(p))))->prev_foot ^ mparams.magic))
#define set_inuse(M,p,s)\
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
mark_inuse_foot(M,p,s))
#define set_inuse_and_pinuse(M,p,s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
mark_inuse_foot(M,p,s))
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
mark_inuse_foot(M, p, s))
#endif /* !FOOTERS */
/* ---------------------------- setting mparams -------------------------- */
/* Initialize mparams */
static int
init_mparams(void)
{
if (mparams.page_size == 0) {
size_t s;
mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
#if MORECORE_CONTIGUOUS
mparams.default_mflags = USE_LOCK_BIT | USE_MMAP_BIT;
#else /* MORECORE_CONTIGUOUS */
mparams.default_mflags =
USE_LOCK_BIT | USE_MMAP_BIT | USE_NONCONTIGUOUS_BIT;
#endif /* MORECORE_CONTIGUOUS */
#if (FOOTERS && !INSECURE)
{
#if USE_DEV_RANDOM
int fd;
unsigned char buf[sizeof(size_t)];
/* Try to use /dev/urandom, else fall back on using time */
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
read(fd, buf, sizeof(buf)) == sizeof(buf)) {
s = *((size_t *) buf);
close(fd);
} else
#endif /* USE_DEV_RANDOM */
s = (size_t) (time(0) ^ (size_t) 0x55555555U);
s |= (size_t) 8U; /* ensure nonzero */
s &= ~(size_t) 7U; /* improve chances of fault for bad values */
}
#else /* (FOOTERS && !INSECURE) */
s = (size_t) 0x58585858U;
#endif /* (FOOTERS && !INSECURE) */
ACQUIRE_MAGIC_INIT_LOCK();
if (mparams.magic == 0) {
mparams.magic = s;
/* Set up lock for main malloc area */
INITIAL_LOCK(&gm->mutex);
gm->mflags = mparams.default_mflags;
}
RELEASE_MAGIC_INIT_LOCK();
#if !defined(WIN32) && !defined(__OS2__)
mparams.page_size = malloc_getpagesize;
mparams.granularity = ((DEFAULT_GRANULARITY != 0) ?
DEFAULT_GRANULARITY : mparams.page_size);
#elif defined (__OS2__)
/* if low-memory is used, os2munmap() would break
if it were anything other than 64k */
mparams.page_size = 4096u;
mparams.granularity = 65536u;
#else /* WIN32 */
{
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
mparams.page_size = system_info.dwPageSize;
mparams.granularity = system_info.dwAllocationGranularity;
}
#endif /* WIN32 */
/* Sanity-check configuration:
size_t must be unsigned and as wide as pointer type.
ints must be at least 4 bytes.
alignment must be at least 8.
Alignment, min chunk size, and page size must all be powers of 2.
*/
if ((sizeof(size_t) != sizeof(char *)) ||
(MAX_SIZE_T < MIN_CHUNK_SIZE) ||
(sizeof(int) < 4) ||
(MALLOC_ALIGNMENT < (size_t) 8U) ||
((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - SIZE_T_ONE)) != 0) ||
((MCHUNK_SIZE & (MCHUNK_SIZE - SIZE_T_ONE)) != 0) ||
((mparams.granularity & (mparams.granularity - SIZE_T_ONE)) != 0)
|| ((mparams.page_size & (mparams.page_size - SIZE_T_ONE)) != 0))
ABORT;
}
return 0;
}
/* support for mallopt */
static int
change_mparam(int param_number, int value)
{
size_t val = (size_t) value;
init_mparams();
switch (param_number) {
case M_TRIM_THRESHOLD:
mparams.trim_threshold = val;
return 1;
case M_GRANULARITY:
if (val >= mparams.page_size && ((val & (val - 1)) == 0)) {
mparams.granularity = val;
return 1;
} else
return 0;
case M_MMAP_THRESHOLD:
mparams.mmap_threshold = val;
return 1;
default:
return 0;
}
}
#if DEBUG
/* ------------------------- Debugging Support --------------------------- */
/* Check properties of any chunk, whether free, inuse, mmapped etc */
static void
do_check_any_chunk(mstate m, mchunkptr p)
{
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
assert(ok_address(m, p));
}
/* Check properties of top chunk */
static void
do_check_top_chunk(mstate m, mchunkptr p)
{
msegmentptr sp = segment_holding(m, (char *) p);
size_t sz = chunksize(p);
assert(sp != 0);
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
assert(ok_address(m, p));
assert(sz == m->topsize);
assert(sz > 0);
assert(sz == ((sp->base + sp->size) - (char *) p) - TOP_FOOT_SIZE);
assert(pinuse(p));
assert(!next_pinuse(p));
}
/* Check properties of (inuse) mmapped chunks */
static void
do_check_mmapped_chunk(mstate m, mchunkptr p)
{
size_t sz = chunksize(p);
size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
assert(is_mmapped(p));
assert(use_mmap(m));
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
assert(ok_address(m, p));
assert(!is_small(sz));
assert((len & (mparams.page_size - SIZE_T_ONE)) == 0);
assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
assert(chunk_plus_offset(p, sz + SIZE_T_SIZE)->head == 0);
}
/* Check properties of inuse chunks */
static void
do_check_inuse_chunk(mstate m, mchunkptr p)
{
do_check_any_chunk(m, p);
assert(cinuse(p));
assert(next_pinuse(p));
/* If not pinuse and not mmapped, previous chunk has OK offset */
assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
if (is_mmapped(p))
do_check_mmapped_chunk(m, p);
}
/* Check properties of free chunks */
static void
do_check_free_chunk(mstate m, mchunkptr p)
{
size_t sz = p->head & ~(PINUSE_BIT | CINUSE_BIT);
mchunkptr next = chunk_plus_offset(p, sz);
do_check_any_chunk(m, p);
assert(!cinuse(p));
assert(!next_pinuse(p));
assert(!is_mmapped(p));
if (p != m->dv && p != m->top) {
if (sz >= MIN_CHUNK_SIZE) {
assert((sz & CHUNK_ALIGN_MASK) == 0);
assert(is_aligned(chunk2mem(p)));
assert(next->prev_foot == sz);
assert(pinuse(p));
assert(next == m->top || cinuse(next));
assert(p->fd->bk == p);
assert(p->bk->fd == p);
} else /* markers are always of size SIZE_T_SIZE */
assert(sz == SIZE_T_SIZE);
}
}
/* Check properties of malloced chunks at the point they are malloced */
static void
do_check_malloced_chunk(mstate m, void *mem, size_t s)
{
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
size_t sz = p->head & ~(PINUSE_BIT | CINUSE_BIT);
do_check_inuse_chunk(m, p);
assert((sz & CHUNK_ALIGN_MASK) == 0);
assert(sz >= MIN_CHUNK_SIZE);
assert(sz >= s);
/* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
}
}
/* Check a tree and its subtrees. */
static void
do_check_tree(mstate m, tchunkptr t)
{
tchunkptr head = 0;
tchunkptr u = t;
bindex_t tindex = t->index;
size_t tsize = chunksize(t);
bindex_t idx;
compute_tree_index(tsize, idx);
assert(tindex == idx);
assert(tsize >= MIN_LARGE_SIZE);
assert(tsize >= minsize_for_tree_index(idx));
assert((idx == NTREEBINS - 1)
|| (tsize < minsize_for_tree_index((idx + 1))));
do { /* traverse through chain of same-sized nodes */
do_check_any_chunk(m, ((mchunkptr) u));
assert(u->index == tindex);
assert(chunksize(u) == tsize);
assert(!cinuse(u));
assert(!next_pinuse(u));
assert(u->fd->bk == u);
assert(u->bk->fd == u);
if (u->parent == 0) {
assert(u->child[0] == 0);
assert(u->child[1] == 0);
} else {
assert(head == 0); /* only one node on chain has parent */
head = u;
assert(u->parent != u);
assert(u->parent->child[0] == u ||
u->parent->child[1] == u ||
*((tbinptr *) (u->parent)) == u);
if (u->child[0] != 0) {
assert(u->child[0]->parent == u);
assert(u->child[0] != u);
do_check_tree(m, u->child[0]);
}
if (u->child[1] != 0) {
assert(u->child[1]->parent == u);
assert(u->child[1] != u);
do_check_tree(m, u->child[1]);
}
if (u->child[0] != 0 && u->child[1] != 0) {
assert(chunksize(u->child[0]) < chunksize(u->child[1]));
}
}
u = u->fd;
} while (u != t);
assert(head != 0);
}
/* Check all the chunks in a treebin. */
static void
do_check_treebin(mstate m, bindex_t i)
{
tbinptr *tb = treebin_at(m, i);
tchunkptr t = *tb;
int empty = (m->treemap & (1U << i)) == 0;
if (t == 0)
assert(empty);
if (!empty)
do_check_tree(m, t);
}
/* Check all the chunks in a smallbin. */
static void
do_check_smallbin(mstate m, bindex_t i)
{
sbinptr b = smallbin_at(m, i);
mchunkptr p = b->bk;
unsigned int empty = (m->smallmap & (1U << i)) == 0;
if (p == b)
assert(empty);
if (!empty) {
for (; p != b; p = p->bk) {
size_t size = chunksize(p);
mchunkptr q;
/* each chunk claims to be free */
do_check_free_chunk(m, p);
/* chunk belongs in bin */
assert(small_index(size) == i);
assert(p->bk == b || chunksize(p->bk) == chunksize(p));
/* chunk is followed by an inuse chunk */
q = next_chunk(p);
if (q->head != FENCEPOST_HEAD)
do_check_inuse_chunk(m, q);
}
}
}
/* Find x in a bin. Used in other check functions. */
static int
bin_find(mstate m, mchunkptr x)
{
size_t size = chunksize(x);
if (is_small(size)) {
bindex_t sidx = small_index(size);
sbinptr b = smallbin_at(m, sidx);
if (smallmap_is_marked(m, sidx)) {
mchunkptr p = b;
do {
if (p == x)
return 1;
} while ((p = p->fd) != b);
}
} else {
bindex_t tidx;
compute_tree_index(size, tidx);
if (treemap_is_marked(m, tidx)) {
tchunkptr t = *treebin_at(m, tidx);
size_t sizebits = size << leftshift_for_tree_index(tidx);
while (t != 0 && chunksize(t) != size) {
t = t->child[(sizebits >> (SIZE_T_BITSIZE - SIZE_T_ONE)) & 1];
sizebits <<= 1;
}
if (t != 0) {
tchunkptr u = t;
do {
if (u == (tchunkptr) x)
return 1;
} while ((u = u->fd) != t);
}
}
}
return 0;
}
/* Traverse each chunk and check it; return total */
static size_t
traverse_and_check(mstate m)
{
size_t sum = 0;
if (is_initialized(m)) {
msegmentptr s = &m->seg;
sum += m->topsize + TOP_FOOT_SIZE;
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
mchunkptr lastq = 0;
assert(pinuse(q));
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
sum += chunksize(q);
if (cinuse(q)) {
assert(!bin_find(m, q));
do_check_inuse_chunk(m, q);
} else {
assert(q == m->dv || bin_find(m, q));
assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
do_check_free_chunk(m, q);
}
lastq = q;
q = next_chunk(q);
}
s = s->next;
}
}
return sum;
}
/* Check all properties of malloc_state. */
static void
do_check_malloc_state(mstate m)
{
bindex_t i;
size_t total;
/* check bins */
for (i = 0; i < NSMALLBINS; ++i)
do_check_smallbin(m, i);
for (i = 0; i < NTREEBINS; ++i)
do_check_treebin(m, i);
if (m->dvsize != 0) { /* check dv chunk */
do_check_any_chunk(m, m->dv);
assert(m->dvsize == chunksize(m->dv));
assert(m->dvsize >= MIN_CHUNK_SIZE);
assert(bin_find(m, m->dv) == 0);
}
if (m->top != 0) { /* check top chunk */
do_check_top_chunk(m, m->top);
assert(m->topsize == chunksize(m->top));
assert(m->topsize > 0);
assert(bin_find(m, m->top) == 0);
}
total = traverse_and_check(m);
assert(total <= m->footprint);
assert(m->footprint <= m->max_footprint);
}
#endif /* DEBUG */
/* ----------------------------- statistics ------------------------------ */
#if !NO_MALLINFO
static struct mallinfo
internal_mallinfo(mstate m)
{
struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
if (!PREACTION(m)) {
check_malloc_state(m);
if (is_initialized(m)) {
size_t nfree = SIZE_T_ONE; /* top always free */
size_t mfree = m->topsize + TOP_FOOT_SIZE;
size_t sum = mfree;
msegmentptr s = &m->seg;
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
size_t sz = chunksize(q);
sum += sz;
if (!cinuse(q)) {
mfree += sz;
++nfree;
}
q = next_chunk(q);
}
s = s->next;
}
nm.arena = sum;
nm.ordblks = nfree;
nm.hblkhd = m->footprint - sum;
nm.usmblks = m->max_footprint;
nm.uordblks = m->footprint - mfree;
nm.fordblks = mfree;
nm.keepcost = m->topsize;
}
POSTACTION(m);
}
return nm;
}
#endif /* !NO_MALLINFO */
static void
internal_malloc_stats(mstate m)
{
if (!PREACTION(m)) {
#ifndef LACKS_STDIO_H
size_t maxfp = 0;
#endif
size_t fp = 0;
size_t used = 0;
check_malloc_state(m);
if (is_initialized(m)) {
msegmentptr s = &m->seg;
#ifndef LACKS_STDIO_H
maxfp = m->max_footprint;
#endif
fp = m->footprint;
used = fp - (m->topsize + TOP_FOOT_SIZE);
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
if (!cinuse(q))
used -= chunksize(q);
q = next_chunk(q);
}
s = s->next;
}
}
#ifndef LACKS_STDIO_H
fprintf(stderr, "max system bytes = %10lu\n",
(unsigned long) (maxfp));
fprintf(stderr, "system bytes = %10lu\n", (unsigned long) (fp));
fprintf(stderr, "in use bytes = %10lu\n", (unsigned long) (used));
#endif
POSTACTION(m);
}
}
/* ----------------------- Operations on smallbins ----------------------- */
/*
Various forms of linking and unlinking are defined as macros. Even
the ones for trees, which are very long but have very short typical
paths. This is ugly but reduces reliance on inlining support of
compilers.
*/
/* Link a free chunk into a smallbin */
#define insert_small_chunk(M, P, S) {\
bindex_t I = small_index(S);\
mchunkptr B = smallbin_at(M, I);\
mchunkptr F = B;\
assert(S >= MIN_CHUNK_SIZE);\
if (!smallmap_is_marked(M, I))\
mark_smallmap(M, I);\
else if (RTCHECK(ok_address(M, B->fd)))\
F = B->fd;\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
B->fd = P;\
F->bk = P;\
P->fd = F;\
P->bk = B;\
}
/* Unlink a chunk from a smallbin */
#define unlink_small_chunk(M, P, S) {\
mchunkptr F = P->fd;\
mchunkptr B = P->bk;\
bindex_t I = small_index(S);\
assert(P != B);\
assert(P != F);\
assert(chunksize(P) == small_index2size(I));\
if (F == B)\
clear_smallmap(M, I);\
else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
(B == smallbin_at(M,I) || ok_address(M, B)))) {\
F->bk = B;\
B->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}
/* Unlink the first chunk from a smallbin */
#define unlink_first_small_chunk(M, B, P, I) {\
mchunkptr F = P->fd;\
assert(P != B);\
assert(P != F);\
assert(chunksize(P) == small_index2size(I));\
if (B == F)\
clear_smallmap(M, I);\
else if (RTCHECK(ok_address(M, F))) {\
B->fd = F;\
F->bk = B;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}
/* Replace dv node, binning the old one */
/* Used only when dvsize known to be small */
#define replace_dv(M, P, S) {\
size_t DVS = M->dvsize;\
if (DVS != 0) {\
mchunkptr DV = M->dv;\
assert(is_small(DVS));\
insert_small_chunk(M, DV, DVS);\
}\
M->dvsize = S;\
M->dv = P;\
}
/* ------------------------- Operations on trees ------------------------- */
/* Insert chunk into tree */
#define insert_large_chunk(M, X, S) {\
tbinptr* H;\
bindex_t I;\
compute_tree_index(S, I);\
H = treebin_at(M, I);\
X->index = I;\
X->child[0] = X->child[1] = 0;\
if (!treemap_is_marked(M, I)) {\
mark_treemap(M, I);\
*H = X;\
X->parent = (tchunkptr)H;\
X->fd = X->bk = X;\
}\
else {\
tchunkptr T = *H;\
size_t K = S << leftshift_for_tree_index(I);\
for (;;) {\
if (chunksize(T) != S) {\
tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
K <<= 1;\
if (*C != 0)\
T = *C;\
else if (RTCHECK(ok_address(M, C))) {\
*C = X;\
X->parent = T;\
X->fd = X->bk = X;\
break;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
break;\
}\
}\
else {\
tchunkptr F = T->fd;\
if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
T->fd = F->bk = X;\
X->fd = F;\
X->bk = T;\
X->parent = 0;\
break;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
break;\
}\
}\
}\
}\
}
/*
Unlink steps:
1. If x is a chained node, unlink it from its same-sized fd/bk links
and choose its bk node as its replacement.
2. If x was the last node of its size, but not a leaf node, it must
be replaced with a leaf node (not merely one with an open left or
right), to make sure that lefts and rights of descendents
correspond properly to bit masks. We use the rightmost descendent
of x. We could use any other leaf, but this is easy to locate and
tends to counteract removal of leftmosts elsewhere, and so keeps
paths shorter than minimally guaranteed. This doesn't loop much
because on average a node in a tree is near the bottom.
3. If x is the base of a chain (i.e., has parent links) relink
x's parent and children to x's replacement (or null if none).
*/
#define unlink_large_chunk(M, X) {\
tchunkptr XP = X->parent;\
tchunkptr R;\
if (X->bk != X) {\
tchunkptr F = X->fd;\
R = X->bk;\
if (RTCHECK(ok_address(M, F))) {\
F->bk = R;\
R->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else {\
tchunkptr* RP;\
if (((R = *(RP = &(X->child[1]))) != 0) ||\
((R = *(RP = &(X->child[0]))) != 0)) {\
tchunkptr* CP;\
while ((*(CP = &(R->child[1])) != 0) ||\
(*(CP = &(R->child[0])) != 0)) {\
R = *(RP = CP);\
}\
if (RTCHECK(ok_address(M, RP)))\
*RP = 0;\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
}\
if (XP != 0) {\
tbinptr* H = treebin_at(M, X->index);\
if (X == *H) {\
if ((*H = R) == 0) \
clear_treemap(M, X->index);\
}\
else if (RTCHECK(ok_address(M, XP))) {\
if (XP->child[0] == X) \
XP->child[0] = R;\
else \
XP->child[1] = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
if (R != 0) {\
if (RTCHECK(ok_address(M, R))) {\
tchunkptr C0, C1;\
R->parent = XP;\
if ((C0 = X->child[0]) != 0) {\
if (RTCHECK(ok_address(M, C0))) {\
R->child[0] = C0;\
C0->parent = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
if ((C1 = X->child[1]) != 0) {\
if (RTCHECK(ok_address(M, C1))) {\
R->child[1] = C1;\
C1->parent = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
}
/* Relays to large vs small bin operations */
#define insert_chunk(M, P, S)\
if (is_small(S)) insert_small_chunk(M, P, S)\
else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
#define unlink_chunk(M, P, S)\
if (is_small(S)) unlink_small_chunk(M, P, S)\
else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
/* Relays to internal calls to malloc/free from realloc, memalign etc */
#if ONLY_MSPACES
#define internal_malloc(m, b) mspace_malloc(m, b)
#define internal_free(m, mem) mspace_free(m,mem);
#else /* ONLY_MSPACES */
#if MSPACES
#define internal_malloc(m, b)\
(m == gm)? dlmalloc(b) : mspace_malloc(m, b)
#define internal_free(m, mem)\
if (m == gm) dlfree(mem); else mspace_free(m,mem);
#else /* MSPACES */
#define internal_malloc(m, b) dlmalloc(b)
#define internal_free(m, mem) dlfree(mem)
#endif /* MSPACES */
#endif /* ONLY_MSPACES */
/* ----------------------- Direct-mmapping chunks ----------------------- */
/*
Directly mmapped chunks are set up with an offset to the start of
the mmapped region stored in the prev_foot field of the chunk. This
allows reconstruction of the required argument to MUNMAP when freed,
and also allows adjustment of the returned chunk to meet alignment
requirements (especially in memalign). There is also enough space
allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
the PINUSE bit so frees can be checked.
*/
/* Malloc using mmap */
static void *
mmap_alloc(mstate m, size_t nb)
{
size_t mmsize =
granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
if (mmsize > nb) { /* Check for wrap around 0 */
char *mm = (char *) (DIRECT_MMAP(mmsize));
if (mm != CMFAIL) {
size_t offset = align_offset(chunk2mem(mm));
size_t psize = mmsize - offset - MMAP_FOOT_PAD;
mchunkptr p = (mchunkptr) (mm + offset);
p->prev_foot = offset | IS_MMAPPED_BIT;
(p)->head = (psize | CINUSE_BIT);
mark_inuse_foot(m, p, psize);
chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(p, psize + SIZE_T_SIZE)->head = 0;
if (mm < m->least_addr)
m->least_addr = mm;
if ((m->footprint += mmsize) > m->max_footprint)
m->max_footprint = m->footprint;
assert(is_aligned(chunk2mem(p)));
check_mmapped_chunk(m, p);
return chunk2mem(p);
}
}
return 0;
}
/* Realloc using mmap */
static mchunkptr
mmap_resize(mstate m, mchunkptr oldp, size_t nb)
{
size_t oldsize = chunksize(oldp);
if (is_small(nb)) /* Can't shrink mmap regions below small size */
return 0;
/* Keep old chunk if big enough but not too big */
if (oldsize >= nb + SIZE_T_SIZE &&
(oldsize - nb) <= (mparams.granularity << 1))
return oldp;
else {
size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
CHUNK_ALIGN_MASK);
char *cp = (char *) CALL_MREMAP((char *) oldp - offset,
oldmmsize, newmmsize, 1);
if (cp != CMFAIL) {
mchunkptr newp = (mchunkptr) (cp + offset);
size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
newp->head = (psize | CINUSE_BIT);
mark_inuse_foot(m, newp, psize);
chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(newp, psize + SIZE_T_SIZE)->head = 0;
if (cp < m->least_addr)
m->least_addr = cp;
if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
m->max_footprint = m->footprint;
check_mmapped_chunk(m, newp);
return newp;
}
}
return 0;
}
/* -------------------------- mspace management -------------------------- */
/* Initialize top chunk and its size */
static void
init_top(mstate m, mchunkptr p, size_t psize)
{
/* Ensure alignment */
size_t offset = align_offset(chunk2mem(p));
p = (mchunkptr) ((char *) p + offset);
psize -= offset;
m->top = p;
m->topsize = psize;
p->head = psize | PINUSE_BIT;
/* set size of fake trailing chunk holding overhead space only once */
chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
m->trim_check = mparams.trim_threshold; /* reset on each update */
}
/* Initialize bins for a new mstate that is otherwise zeroed out */
static void
init_bins(mstate m)
{
/* Establish circular links for smallbins */
bindex_t i;
for (i = 0; i < NSMALLBINS; ++i) {
sbinptr bin = smallbin_at(m, i);
bin->fd = bin->bk = bin;
}
}
#if PROCEED_ON_ERROR
/* default corruption action */
static void
reset_on_error(mstate m)
{
int i;
++malloc_corruption_error_count;
/* Reinitialize fields to forget about all memory */
m->smallbins = m->treebins = 0;
m->dvsize = m->topsize = 0;
m->seg.base = 0;
m->seg.size = 0;
m->seg.next = 0;
m->top = m->dv = 0;
for (i = 0; i < NTREEBINS; ++i)
*treebin_at(m, i) = 0;
init_bins(m);
}
#endif /* PROCEED_ON_ERROR */
/* Allocate chunk and prepend remainder with chunk in successor base. */
static void *
prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
{
mchunkptr p = align_as_chunk(newbase);
mchunkptr oldfirst = align_as_chunk(oldbase);
size_t psize = (char *) oldfirst - (char *) p;
mchunkptr q = chunk_plus_offset(p, nb);
size_t qsize = psize - nb;
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
assert((char *) oldfirst > (char *) q);
assert(pinuse(oldfirst));
assert(qsize >= MIN_CHUNK_SIZE);
/* consolidate remainder with first chunk of old base */
if (oldfirst == m->top) {
size_t tsize = m->topsize += qsize;
m->top = q;
q->head = tsize | PINUSE_BIT;
check_top_chunk(m, q);
} else if (oldfirst == m->dv) {
size_t dsize = m->dvsize += qsize;
m->dv = q;
set_size_and_pinuse_of_free_chunk(q, dsize);
} else {
if (!cinuse(oldfirst)) {
size_t nsize = chunksize(oldfirst);
unlink_chunk(m, oldfirst, nsize);
oldfirst = chunk_plus_offset(oldfirst, nsize);
qsize += nsize;
}
set_free_with_pinuse(q, qsize, oldfirst);
insert_chunk(m, q, qsize);
check_free_chunk(m, q);
}
check_malloced_chunk(m, chunk2mem(p), nb);
return chunk2mem(p);
}
/* Add a segment to hold a new noncontiguous region */
static void
add_segment(mstate m, char *tbase, size_t tsize, flag_t mmapped)
{
/* Determine locations and sizes of segment, fenceposts, old top */
char *old_top = (char *) m->top;
msegmentptr oldsp = segment_holding(m, old_top);
char *old_end = oldsp->base + oldsp->size;
size_t ssize = pad_request(sizeof(struct malloc_segment));
char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
size_t offset = align_offset(chunk2mem(rawsp));
char *asp = rawsp + offset;
char *csp = (asp < (old_top + MIN_CHUNK_SIZE)) ? old_top : asp;
mchunkptr sp = (mchunkptr) csp;
msegmentptr ss = (msegmentptr) (chunk2mem(sp));
mchunkptr tnext = chunk_plus_offset(sp, ssize);
mchunkptr p = tnext;
int nfences = 0;
/* reset top to new space */
init_top(m, (mchunkptr) tbase, tsize - TOP_FOOT_SIZE);
/* Set up segment record */
assert(is_aligned(ss));
set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
*ss = m->seg; /* Push current record */
m->seg.base = tbase;
m->seg.size = tsize;
m->seg.sflags = mmapped;
m->seg.next = ss;
/* Insert trailing fenceposts */
for (;;) {
mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
p->head = FENCEPOST_HEAD;
++nfences;
if ((char *) (&(nextp->head)) < old_end)
p = nextp;
else
break;
}
assert(nfences >= 2);
/* Insert the rest of old top into a bin as an ordinary free chunk */
if (csp != old_top) {
mchunkptr q = (mchunkptr) old_top;
size_t psize = csp - old_top;
mchunkptr tn = chunk_plus_offset(q, psize);
set_free_with_pinuse(q, psize, tn);
insert_chunk(m, q, psize);
}
check_top_chunk(m, m->top);
}
/* -------------------------- System allocation -------------------------- */
/* Get memory from system using MORECORE or MMAP */
static void *
sys_alloc(mstate m, size_t nb)
{
char *tbase = CMFAIL;
size_t tsize = 0;
flag_t mmap_flag = 0;
init_mparams();
/* Directly map large chunks */
if (use_mmap(m) && nb >= mparams.mmap_threshold) {
void *mem = mmap_alloc(m, nb);
if (mem != 0)
return mem;
}
/*
Try getting memory in any of three ways (in most-preferred to
least-preferred order):
1. A call to MORECORE that can normally contiguously extend memory.
(disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
or main space is mmapped or a previous contiguous call failed)
2. A call to MMAP new space (disabled if not HAVE_MMAP).
Note that under the default settings, if MORECORE is unable to
fulfill a request, and HAVE_MMAP is true, then mmap is
used as a noncontiguous system allocator. This is a useful backup
strategy for systems with holes in address spaces -- in this case
sbrk cannot contiguously expand the heap, but mmap may be able to
find space.
3. A call to MORECORE that cannot usually contiguously extend memory.
(disabled if not HAVE_MORECORE)
*/
if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
char *br = CMFAIL;
msegmentptr ss =
(m->top == 0) ? 0 : segment_holding(m, (char *) m->top);
size_t asize = 0;
ACQUIRE_MORECORE_LOCK();
if (ss == 0) { /* First time through or recovery */
char *base = (char *) CALL_MORECORE(0);
if (base != CMFAIL) {
asize =
granularity_align(nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT +
SIZE_T_ONE);
/* Adjust to end on a page boundary */
if (!is_page_aligned(base))
asize += (page_align((size_t) base) - (size_t) base);
/* Can't call MORECORE if size is negative when treated as signed */
if (asize < HALF_MAX_SIZE_T &&
(br = (char *) (CALL_MORECORE(asize))) == base) {
tbase = base;
tsize = asize;
}
}
} else {
/* Subtract out existing available top space from MORECORE request. */
asize =
granularity_align(nb - m->topsize + TOP_FOOT_SIZE +
MALLOC_ALIGNMENT + SIZE_T_ONE);
/* Use mem here only if it did continuously extend old space */
if (asize < HALF_MAX_SIZE_T &&
(br =
(char *) (CALL_MORECORE(asize))) == ss->base + ss->size) {
tbase = br;
tsize = asize;
}
}
if (tbase == CMFAIL) { /* Cope with partial failure */
if (br != CMFAIL) { /* Try to use/extend the space we did get */
if (asize < HALF_MAX_SIZE_T &&
asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
size_t esize =
granularity_align(nb + TOP_FOOT_SIZE +
MALLOC_ALIGNMENT + SIZE_T_ONE -
asize);
if (esize < HALF_MAX_SIZE_T) {
char *end = (char *) CALL_MORECORE(esize);
if (end != CMFAIL)
asize += esize;
else { /* Can't use; try to release */
end = (char *) CALL_MORECORE(-asize);
br = CMFAIL;
}
}
}
}
if (br != CMFAIL) { /* Use the space we did get */
tbase = br;
tsize = asize;
} else
disable_contiguous(m); /* Don't try contiguous path in the future */
}
RELEASE_MORECORE_LOCK();
}
if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
size_t req = nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT + SIZE_T_ONE;
size_t rsize = granularity_align(req);
if (rsize > nb) { /* Fail if wraps around zero */
char *mp = (char *) (CALL_MMAP(rsize));
if (mp != CMFAIL) {
tbase = mp;
tsize = rsize;
mmap_flag = IS_MMAPPED_BIT;
}
}
}
if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
size_t asize =
granularity_align(nb + TOP_FOOT_SIZE + MALLOC_ALIGNMENT +
SIZE_T_ONE);
if (asize < HALF_MAX_SIZE_T) {
char *br = CMFAIL;
char *end = CMFAIL;
ACQUIRE_MORECORE_LOCK();
br = (char *) (CALL_MORECORE(asize));
end = (char *) (CALL_MORECORE(0));
RELEASE_MORECORE_LOCK();
if (br != CMFAIL && end != CMFAIL && br < end) {
size_t ssize = end - br;
if (ssize > nb + TOP_FOOT_SIZE) {
tbase = br;
tsize = ssize;
}
}
}
}
if (tbase != CMFAIL) {
if ((m->footprint += tsize) > m->max_footprint)
m->max_footprint = m->footprint;
if (!is_initialized(m)) { /* first-time initialization */
m->seg.base = m->least_addr = tbase;
m->seg.size = tsize;
m->seg.sflags = mmap_flag;
m->magic = mparams.magic;
init_bins(m);
if (is_global(m))
init_top(m, (mchunkptr) tbase, tsize - TOP_FOOT_SIZE);
else {
/* Offset top by embedded malloc_state */
mchunkptr mn = next_chunk(mem2chunk(m));
init_top(m, mn,
(size_t) ((tbase + tsize) - (char *) mn) -
TOP_FOOT_SIZE);
}
}
else {
/* Try to merge with an existing segment */
msegmentptr sp = &m->seg;
while (sp != 0 && tbase != sp->base + sp->size)
sp = sp->next;
if (sp != 0 && !is_extern_segment(sp) && (sp->sflags & IS_MMAPPED_BIT) == mmap_flag && segment_holds(sp, m->top)) { /* append */
sp->size += tsize;
init_top(m, m->top, m->topsize + tsize);
} else {
if (tbase < m->least_addr)
m->least_addr = tbase;
sp = &m->seg;
while (sp != 0 && sp->base != tbase + tsize)
sp = sp->next;
if (sp != 0 &&
!is_extern_segment(sp) &&
(sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
char *oldbase = sp->base;
sp->base = tbase;
sp->size += tsize;
return prepend_alloc(m, tbase, oldbase, nb);
} else
add_segment(m, tbase, tsize, mmap_flag);
}
}
if (nb < m->topsize) { /* Allocate from new or extended top space */
size_t rsize = m->topsize -= nb;
mchunkptr p = m->top;
mchunkptr r = m->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
check_top_chunk(m, m->top);
check_malloced_chunk(m, chunk2mem(p), nb);
return chunk2mem(p);
}
}
MALLOC_FAILURE_ACTION;
return 0;
}
/* ----------------------- system deallocation -------------------------- */
/* Unmap and unlink any mmapped segments that don't contain used chunks */
static size_t
release_unused_segments(mstate m)
{
size_t released = 0;
msegmentptr pred = &m->seg;
msegmentptr sp = pred->next;
while (sp != 0) {
char *base = sp->base;
size_t size = sp->size;
msegmentptr next = sp->next;
if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
mchunkptr p = align_as_chunk(base);
size_t psize = chunksize(p);
/* Can unmap if first chunk holds entire segment and not pinned */
if (!cinuse(p)
&& (char *) p + psize >= base + size - TOP_FOOT_SIZE) {
tchunkptr tp = (tchunkptr) p;
assert(segment_holds(sp, (char *) sp));
if (p == m->dv) {
m->dv = 0;
m->dvsize = 0;
} else {
unlink_large_chunk(m, tp);
}
if (CALL_MUNMAP(base, size) == 0) {
released += size;
m->footprint -= size;
/* unlink obsoleted record */
sp = pred;
sp->next = next;
} else { /* back out if cannot unmap */
insert_large_chunk(m, tp, psize);
}
}
}
pred = sp;
sp = next;
}
return released;
}
static int
sys_trim(mstate m, size_t pad)
{
size_t released = 0;
if (pad < MAX_REQUEST && is_initialized(m)) {
pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
if (m->topsize > pad) {
/* Shrink top space in granularity-size units, keeping at least one */
size_t unit = mparams.granularity;
size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
SIZE_T_ONE) * unit;
msegmentptr sp = segment_holding(m, (char *) m->top);
if (!is_extern_segment(sp)) {
if (is_mmapped_segment(sp)) {
if (HAVE_MMAP && sp->size >= extra && !has_segment_link(m, sp)) { /* can't shrink if pinned */
size_t newsize = sp->size - extra;
/* Prefer mremap, fall back to munmap */
if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) !=
MFAIL)
|| (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
released = extra;
}
}
} else if (HAVE_MORECORE) {
if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
ACQUIRE_MORECORE_LOCK();
{
/* Make sure end of memory is where we last set it. */
char *old_br = (char *) (CALL_MORECORE(0));
if (old_br == sp->base + sp->size) {
char *rel_br = (char *) (CALL_MORECORE(-extra));
char *new_br = (char *) (CALL_MORECORE(0));
if (rel_br != CMFAIL && new_br < old_br)
released = old_br - new_br;
}
}
RELEASE_MORECORE_LOCK();
}
}
if (released != 0) {
sp->size -= released;
m->footprint -= released;
init_top(m, m->top, m->topsize - released);
check_top_chunk(m, m->top);
}
}
/* Unmap any unused mmapped segments */
if (HAVE_MMAP)
released += release_unused_segments(m);
/* On failure, disable autotrim to avoid repeated failed future calls */
if (released == 0)
m->trim_check = MAX_SIZE_T;
}
return (released != 0) ? 1 : 0;
}
/* ---------------------------- malloc support --------------------------- */
/* allocate a large request from the best fitting chunk in a treebin */
static void *
tmalloc_large(mstate m, size_t nb)
{
tchunkptr v = 0;
size_t rsize = -nb; /* Unsigned negation */
tchunkptr t;
bindex_t idx;
compute_tree_index(nb, idx);
if ((t = *treebin_at(m, idx)) != 0) {
/* Traverse tree for this bin looking for node with size == nb */
size_t sizebits = nb << leftshift_for_tree_index(idx);
tchunkptr rst = 0; /* The deepest untaken right subtree */
for (;;) {
tchunkptr rt;
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
v = t;
if ((rsize = trem) == 0)
break;
}
rt = t->child[1];
t = t->child[(sizebits >> (SIZE_T_BITSIZE - SIZE_T_ONE)) & 1];
if (rt != 0 && rt != t)
rst = rt;
if (t == 0) {
t = rst; /* set t to least subtree holding sizes > nb */
break;
}
sizebits <<= 1;
}
}
if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
if (leftbits != 0) {
bindex_t i;
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
t = *treebin_at(m, i);
}
}
while (t != 0) { /* find smallest of tree or subtree */
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;
}
t = leftmost_child(t);
}
/* If dv is a better fit, return 0 so malloc will use it */
if (v != 0 && rsize < (size_t) (m->dvsize - nb)) {
if (RTCHECK(ok_address(m, v))) { /* split */
mchunkptr r = chunk_plus_offset(v, nb);
assert(chunksize(v) == rsize + nb);
if (RTCHECK(ok_next(v, r))) {
unlink_large_chunk(m, v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(m, v, (rsize + nb));
else {
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
insert_chunk(m, r, rsize);
}
return chunk2mem(v);
}
}
CORRUPTION_ERROR_ACTION(m);
}
return 0;
}
/* allocate a small request from the best fitting chunk in a treebin */
static void *
tmalloc_small(mstate m, size_t nb)
{
tchunkptr t, v;
size_t rsize;
bindex_t i;
binmap_t leastbit = least_bit(m->treemap);
compute_bit2idx(leastbit, i);
v = t = *treebin_at(m, i);
rsize = chunksize(t) - nb;
while ((t = leftmost_child(t)) != 0) {
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;
}
}
if (RTCHECK(ok_address(m, v))) {
mchunkptr r = chunk_plus_offset(v, nb);
assert(chunksize(v) == rsize + nb);
if (RTCHECK(ok_next(v, r))) {
unlink_large_chunk(m, v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(m, v, (rsize + nb));
else {
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(m, r, rsize);
}
return chunk2mem(v);
}
}
CORRUPTION_ERROR_ACTION(m);
return 0;
}
/* --------------------------- realloc support --------------------------- */
static void *
internal_realloc(mstate m, void *oldmem, size_t bytes)
{
if (bytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
return 0;
}
if (!PREACTION(m)) {
mchunkptr oldp = mem2chunk(oldmem);
size_t oldsize = chunksize(oldp);
mchunkptr next = chunk_plus_offset(oldp, oldsize);
mchunkptr newp = 0;
void *extra = 0;
/* Try to either shrink or extend into top. Else malloc-copy-free */
if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
ok_next(oldp, next) && ok_pinuse(next))) {
size_t nb = request2size(bytes);
if (is_mmapped(oldp))
newp = mmap_resize(m, oldp, nb);
else if (oldsize >= nb) { /* already big enough */
size_t rsize = oldsize - nb;
newp = oldp;
if (rsize >= MIN_CHUNK_SIZE) {
mchunkptr remainder = chunk_plus_offset(newp, nb);
set_inuse(m, newp, nb);
set_inuse(m, remainder, rsize);
extra = chunk2mem(remainder);
}
} else if (next == m->top && oldsize + m->topsize > nb) {
/* Expand into top */
size_t newsize = oldsize + m->topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = chunk_plus_offset(oldp, nb);
set_inuse(m, oldp, nb);
newtop->head = newtopsize | PINUSE_BIT;
m->top = newtop;
m->topsize = newtopsize;
newp = oldp;
}
} else {
USAGE_ERROR_ACTION(m, oldmem);
POSTACTION(m);
return 0;
}
POSTACTION(m);
if (newp != 0) {
if (extra != 0) {
internal_free(m, extra);
}
check_inuse_chunk(m, newp);
return chunk2mem(newp);
} else {
void *newmem = internal_malloc(m, bytes);
if (newmem != 0) {
size_t oc = oldsize - overhead_for(oldp);
memcpy(newmem, oldmem, (oc < bytes) ? oc : bytes);
internal_free(m, oldmem);
}
return newmem;
}
}
return 0;
}
/* --------------------------- memalign support -------------------------- */
static void *
internal_memalign(mstate m, size_t alignment, size_t bytes)
{
if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
return internal_malloc(m, bytes);
if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
alignment = MIN_CHUNK_SIZE;
if ((alignment & (alignment - SIZE_T_ONE)) != 0) { /* Ensure a power of 2 */
size_t a = MALLOC_ALIGNMENT << 1;
while (a < alignment)
a <<= 1;
alignment = a;
}
if (bytes >= MAX_REQUEST - alignment) {
if (m != 0) { /* Test isn't needed but avoids compiler warning */
MALLOC_FAILURE_ACTION;
}
} else {
size_t nb = request2size(bytes);
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
char *mem = (char *) internal_malloc(m, req);
if (mem != 0) {
void *leader = 0;
void *trailer = 0;
mchunkptr p = mem2chunk(mem);
if (PREACTION(m))
return 0;
if ((((size_t) (mem)) % alignment) != 0) { /* misaligned */
/*
Find an aligned spot inside chunk. Since we need to give
back leading space in a chunk of at least MIN_CHUNK_SIZE, if
the first calculation places us at a spot with less than
MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
We've allocated enough total room so that this is always
possible.
*/
char *br = (char *) mem2chunk((size_t) (((size_t) (mem +
alignment -
SIZE_T_ONE))
& -alignment));
char *pos =
((size_t) (br - (char *) (p)) >=
MIN_CHUNK_SIZE) ? br : br + alignment;
mchunkptr newp = (mchunkptr) pos;
size_t leadsize = pos - (char *) (p);
size_t newsize = chunksize(p) - leadsize;
if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
newp->prev_foot = p->prev_foot + leadsize;
newp->head = (newsize | CINUSE_BIT);
} else { /* Otherwise, give back leader, use the rest */
set_inuse(m, newp, newsize);
set_inuse(m, p, leadsize);
leader = chunk2mem(p);
}
p = newp;
}
/* Give back spare room at the end */
if (!is_mmapped(p)) {
size_t size = chunksize(p);
if (size > nb + MIN_CHUNK_SIZE) {
size_t remainder_size = size - nb;
mchunkptr remainder = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, remainder, remainder_size);
trailer = chunk2mem(remainder);
}
}
assert(chunksize(p) >= nb);
assert((((size_t) (chunk2mem(p))) % alignment) == 0);
check_inuse_chunk(m, p);
POSTACTION(m);
if (leader != 0) {
internal_free(m, leader);
}
if (trailer != 0) {
internal_free(m, trailer);
}
return chunk2mem(p);
}
}
return 0;
}
/* ------------------------ comalloc/coalloc support --------------------- */
static void **
ialloc(mstate m, size_t n_elements, size_t * sizes, int opts, void *chunks[])
{
/*
This provides common support for independent_X routines, handling
all of the combinations that can result.
The opts arg has:
bit 0 set if all elements are same size (using sizes[0])
bit 1 set if elements should be zeroed
*/
size_t element_size; /* chunksize of each element, if all same */
size_t contents_size; /* total size of elements */
size_t array_size; /* request size of pointer array */
void *mem; /* malloced aggregate space */
mchunkptr p; /* corresponding chunk */
size_t remainder_size; /* remaining bytes while splitting */
void **marray; /* either "chunks" or malloced ptr array */
mchunkptr array_chunk; /* chunk for malloced ptr array */
flag_t was_enabled; /* to disable mmap */
size_t size;
size_t i;
/* compute array length, if needed */
if (chunks != 0) {
if (n_elements == 0)
return chunks; /* nothing to do */
marray = chunks;
array_size = 0;
} else {
/* if empty req, must still return chunk representing empty array */
if (n_elements == 0)
return (void **) internal_malloc(m, 0);
marray = 0;
array_size = request2size(n_elements * (sizeof(void *)));
}
/* compute total element size */
if (opts & 0x1) { /* all-same-size */
element_size = request2size(*sizes);
contents_size = n_elements * element_size;
} else { /* add up all the sizes */
element_size = 0;
contents_size = 0;
for (i = 0; i != n_elements; ++i)
contents_size += request2size(sizes[i]);
}
size = contents_size + array_size;
/*
Allocate the aggregate chunk. First disable direct-mmapping so
malloc won't use it, since we would not be able to later
free/realloc space internal to a segregated mmap region.
*/
was_enabled = use_mmap(m);
disable_mmap(m);
mem = internal_malloc(m, size - CHUNK_OVERHEAD);
if (was_enabled)
enable_mmap(m);
if (mem == 0)
return 0;
if (PREACTION(m))
return 0;
p = mem2chunk(mem);
remainder_size = chunksize(p);
assert(!is_mmapped(p));
if (opts & 0x2) { /* optionally clear the elements */
memset((size_t *) mem, 0, remainder_size - SIZE_T_SIZE - array_size);
}
/* If not provided, allocate the pointer array as final part of chunk */
if (marray == 0) {
size_t array_chunk_size;
array_chunk = chunk_plus_offset(p, contents_size);
array_chunk_size = remainder_size - contents_size;
marray = (void **) (chunk2mem(array_chunk));
set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
remainder_size = contents_size;
}
/* split out elements */
for (i = 0;; ++i) {
marray[i] = chunk2mem(p);
if (i != n_elements - 1) {
if (element_size != 0)
size = element_size;
else
size = request2size(sizes[i]);
remainder_size -= size;
set_size_and_pinuse_of_inuse_chunk(m, p, size);
p = chunk_plus_offset(p, size);
} else { /* the final element absorbs any overallocation slop */
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
break;
}
}
#if DEBUG
if (marray != chunks) {
/* final element must have exactly exhausted chunk */
if (element_size != 0) {
assert(remainder_size == element_size);
} else {
assert(remainder_size == request2size(sizes[i]));
}
check_inuse_chunk(m, mem2chunk(marray));
}
for (i = 0; i != n_elements; ++i)
check_inuse_chunk(m, mem2chunk(marray[i]));
#endif /* DEBUG */
POSTACTION(m);
return marray;
}
/* -------------------------- public routines ---------------------------- */
#if !ONLY_MSPACES
void *
dlmalloc(size_t bytes)
{
/*
Basic algorithm:
If a small request (< 256 bytes minus per-chunk overhead):
1. If one exists, use a remainderless chunk in associated smallbin.
(Remainderless means that there are too few excess bytes to
represent as a chunk.)
2. If it is big enough, use the dv chunk, which is normally the
chunk adjacent to the one used for the most recent small request.
3. If one exists, split the smallest available chunk in a bin,
saving remainder in dv.
4. If it is big enough, use the top chunk.
5. If available, get memory from system and use it
Otherwise, for a large request:
1. Find the smallest available binned chunk that fits, and use it
if it is better fitting than dv chunk, splitting if necessary.
2. If better fitting than any binned chunk, use the dv chunk.
3. If it is big enough, use the top chunk.
4. If request size >= mmap threshold, try to directly mmap this chunk.
5. If available, get memory from system and use it
The ugly goto's here ensure that postaction occurs along all paths.
*/
if (!PREACTION(gm)) {
void *mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST) {
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST) ? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = gm->smallmap >> idx;
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
mchunkptr b, p;
idx += ~smallbits & 1; /* Uses next bin if idx empty */
b = smallbin_at(gm, idx);
p = b->fd;
assert(chunksize(p) == small_index2size(idx));
unlink_first_small_chunk(gm, b, p, idx);
set_inuse_and_pinuse(gm, p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
else if (nb > gm->dvsize) {
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
mchunkptr b, p, r;
size_t rsize;
bindex_t i;
binmap_t leftbits =
(smallbits << idx) & left_bits(idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
b = smallbin_at(gm, i);
p = b->fd;
assert(chunksize(p) == small_index2size(i));
unlink_first_small_chunk(gm, b, p, i);
rsize = small_index2size(i) - nb;
/* Fit here cannot be remainderless if 4byte sizes */
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(gm, p, small_index2size(i));
else {
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
r = chunk_plus_offset(p, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(gm, r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
else if (gm->treemap != 0
&& (mem = tmalloc_small(gm, nb)) != 0) {
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
}
} else if (bytes >= MAX_REQUEST)
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
else {
nb = pad_request(bytes);
if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
}
if (nb <= gm->dvsize) {
size_t rsize = gm->dvsize - nb;
mchunkptr p = gm->dv;
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
gm->dvsize = rsize;
set_size_and_pinuse_of_free_chunk(r, rsize);
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
} else { /* exhaust dv */
size_t dvs = gm->dvsize;
gm->dvsize = 0;
gm->dv = 0;
set_inuse_and_pinuse(gm, p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
else if (nb < gm->topsize) { /* Split top */
size_t rsize = gm->topsize -= nb;
mchunkptr p = gm->top;
mchunkptr r = gm->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
mem = chunk2mem(p);
check_top_chunk(gm, gm->top);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
mem = sys_alloc(gm, nb);
postaction:
POSTACTION(gm);
return mem;
}
return 0;
}
void
dlfree(void *mem)
{
/*
Consolidate freed chunks with preceeding or succeeding bordering
free chunks, if they exist, and then place in a bin. Intermixed
with special cases for top, dv, mmapped chunks, and usage errors.
*/
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
#if FOOTERS
mstate fm = get_mstate_for(p);
if (!ok_magic(fm)) {
USAGE_ERROR_ACTION(fm, p);
return;
}
#else /* FOOTERS */
#define fm gm
#endif /* FOOTERS */
if (!PREACTION(fm)) {
check_inuse_chunk(fm, p);
if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
size_t psize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
size_t prevsize = p->prev_foot;
if ((prevsize & IS_MMAPPED_BIT) != 0) {
prevsize &= ~IS_MMAPPED_BIT;
psize += prevsize + MMAP_FOOT_PAD;
if (CALL_MUNMAP((char *) p - prevsize, psize) == 0)
fm->footprint -= psize;
goto postaction;
} else {
mchunkptr prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
if (p != fm->dv) {
unlink_chunk(fm, p, prevsize);
} else if ((next->head & INUSE_BITS) ==
INUSE_BITS) {
fm->dvsize = psize;
set_free_with_pinuse(p, psize, next);
goto postaction;
}
} else
goto erroraction;
}
}
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
if (!cinuse(next)) { /* consolidate forward */
if (next == fm->top) {
size_t tsize = fm->topsize += psize;
fm->top = p;
p->head = tsize | PINUSE_BIT;
if (p == fm->dv) {
fm->dv = 0;
fm->dvsize = 0;
}
if (should_trim(fm, tsize))
sys_trim(fm, 0);
goto postaction;
} else if (next == fm->dv) {
size_t dsize = fm->dvsize += psize;
fm->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
goto postaction;
} else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(fm, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == fm->dv) {
fm->dvsize = psize;
goto postaction;
}
}
} else
set_free_with_pinuse(p, psize, next);
insert_chunk(fm, p, psize);
check_free_chunk(fm, p);
goto postaction;
}
}
erroraction:
USAGE_ERROR_ACTION(fm, p);
postaction:
POSTACTION(fm);
}
}
#if !FOOTERS
#undef fm
#endif /* FOOTERS */
}
void *
dlcalloc(size_t n_elements, size_t elem_size)
{
void *mem;
size_t req = 0;
if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t) 0xffff) &&
(req / n_elements != elem_size))
req = MAX_SIZE_T; /* force downstream failure on overflow */
}
mem = dlmalloc(req);
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
memset(mem, 0, req);
return mem;
}
void *
dlrealloc(void *oldmem, size_t bytes)
{
if (oldmem == 0)
return dlmalloc(bytes);
#ifdef REALLOC_ZERO_BYTES_FREES
if (bytes == 0) {
dlfree(oldmem);
return 0;
}
#endif /* REALLOC_ZERO_BYTES_FREES */
else {
#if ! FOOTERS
mstate m = gm;
#else /* FOOTERS */
mstate m = get_mstate_for(mem2chunk(oldmem));
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif /* FOOTERS */
return internal_realloc(m, oldmem, bytes);
}
}
void *
dlmemalign(size_t alignment, size_t bytes)
{
return internal_memalign(gm, alignment, bytes);
}
void **
dlindependent_calloc(size_t n_elements, size_t elem_size, void *chunks[])
{
size_t sz = elem_size; /* serves as 1-element array */
return ialloc(gm, n_elements, &sz, 3, chunks);
}
void **
dlindependent_comalloc(size_t n_elements, size_t sizes[], void *chunks[])
{
return ialloc(gm, n_elements, sizes, 0, chunks);
}
void *
dlvalloc(size_t bytes)
{
size_t pagesz;
init_mparams();
pagesz = mparams.page_size;
return dlmemalign(pagesz, bytes);
}
void *
dlpvalloc(size_t bytes)
{
size_t pagesz;
init_mparams();
pagesz = mparams.page_size;
return dlmemalign(pagesz,
(bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
}
int
dlmalloc_trim(size_t pad)
{
int result = 0;
if (!PREACTION(gm)) {
result = sys_trim(gm, pad);
POSTACTION(gm);
}
return result;
}
size_t
dlmalloc_footprint(void)
{
return gm->footprint;
}
size_t
dlmalloc_max_footprint(void)
{
return gm->max_footprint;
}
#if !NO_MALLINFO
struct mallinfo
dlmallinfo(void)
{
return internal_mallinfo(gm);
}
#endif /* NO_MALLINFO */
void
dlmalloc_stats()
{
internal_malloc_stats(gm);
}
size_t
dlmalloc_usable_size(void *mem)
{
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
if (cinuse(p))
return chunksize(p) - overhead_for(p);
}
return 0;
}
int
dlmallopt(int param_number, int value)
{
return change_mparam(param_number, value);
}
#endif /* !ONLY_MSPACES */
/* ----------------------------- user mspaces ---------------------------- */
#if MSPACES
static mstate
init_user_mstate(char *tbase, size_t tsize)
{
size_t msize = pad_request(sizeof(struct malloc_state));
mchunkptr mn;
mchunkptr msp = align_as_chunk(tbase);
mstate m = (mstate) (chunk2mem(msp));
memset(m, 0, msize);
INITIAL_LOCK(&m->mutex);
msp->head = (msize | PINUSE_BIT | CINUSE_BIT);
m->seg.base = m->least_addr = tbase;
m->seg.size = m->footprint = m->max_footprint = tsize;
m->magic = mparams.magic;
m->mflags = mparams.default_mflags;
disable_contiguous(m);
init_bins(m);
mn = next_chunk(mem2chunk(m));
init_top(m, mn, (size_t) ((tbase + tsize) - (char *) mn) - TOP_FOOT_SIZE);
check_top_chunk(m, m->top);
return m;
}
mspace
create_mspace(size_t capacity, int locked)
{
mstate m = 0;
size_t msize = pad_request(sizeof(struct malloc_state));
init_mparams(); /* Ensure pagesize etc initialized */
if (capacity < (size_t) - (msize + TOP_FOOT_SIZE + mparams.page_size)) {
size_t rs = ((capacity == 0) ? mparams.granularity :
(capacity + TOP_FOOT_SIZE + msize));
size_t tsize = granularity_align(rs);
char *tbase = (char *) (CALL_MMAP(tsize));
if (tbase != CMFAIL) {
m = init_user_mstate(tbase, tsize);
m->seg.sflags = IS_MMAPPED_BIT;
set_lock(m, locked);
}
}
return (mspace) m;
}
mspace
create_mspace_with_base(void *base, size_t capacity, int locked)
{
mstate m = 0;
size_t msize = pad_request(sizeof(struct malloc_state));
init_mparams(); /* Ensure pagesize etc initialized */
if (capacity > msize + TOP_FOOT_SIZE &&
capacity < (size_t) - (msize + TOP_FOOT_SIZE + mparams.page_size)) {
m = init_user_mstate((char *) base, capacity);
m->seg.sflags = EXTERN_BIT;
set_lock(m, locked);
}
return (mspace) m;
}
size_t
destroy_mspace(mspace msp)
{
size_t freed = 0;
mstate ms = (mstate) msp;
if (ok_magic(ms)) {
msegmentptr sp = &ms->seg;
while (sp != 0) {
char *base = sp->base;
size_t size = sp->size;
flag_t flag = sp->sflags;
sp = sp->next;
if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
CALL_MUNMAP(base, size) == 0)
freed += size;
}
} else {
USAGE_ERROR_ACTION(ms, ms);
}
return freed;
}
/*
mspace versions of routines are near-clones of the global
versions. This is not so nice but better than the alternatives.
*/
void *
mspace_malloc(mspace msp, size_t bytes)
{
mstate ms = (mstate) msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
return 0;
}
if (!PREACTION(ms)) {
void *mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST) {
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST) ? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = ms->smallmap >> idx;
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
mchunkptr b, p;
idx += ~smallbits & 1; /* Uses next bin if idx empty */
b = smallbin_at(ms, idx);
p = b->fd;
assert(chunksize(p) == small_index2size(idx));
unlink_first_small_chunk(ms, b, p, idx);
set_inuse_and_pinuse(ms, p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (nb > ms->dvsize) {
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
mchunkptr b, p, r;
size_t rsize;
bindex_t i;
binmap_t leftbits =
(smallbits << idx) & left_bits(idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
b = smallbin_at(ms, i);
p = b->fd;
assert(chunksize(p) == small_index2size(i));
unlink_first_small_chunk(ms, b, p, i);
rsize = small_index2size(i) - nb;
/* Fit here cannot be remainderless if 4byte sizes */
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(ms, p, small_index2size(i));
else {
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
r = chunk_plus_offset(p, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(ms, r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (ms->treemap != 0
&& (mem = tmalloc_small(ms, nb)) != 0) {
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
}
} else if (bytes >= MAX_REQUEST)
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
else {
nb = pad_request(bytes);
if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
}
if (nb <= ms->dvsize) {
size_t rsize = ms->dvsize - nb;
mchunkptr p = ms->dv;
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
ms->dvsize = rsize;
set_size_and_pinuse_of_free_chunk(r, rsize);
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
} else { /* exhaust dv */
size_t dvs = ms->dvsize;
ms->dvsize = 0;
ms->dv = 0;
set_inuse_and_pinuse(ms, p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (nb < ms->topsize) { /* Split top */
size_t rsize = ms->topsize -= nb;
mchunkptr p = ms->top;
mchunkptr r = ms->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
mem = chunk2mem(p);
check_top_chunk(ms, ms->top);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
mem = sys_alloc(ms, nb);
postaction:
POSTACTION(ms);
return mem;
}
return 0;
}
void
mspace_free(mspace msp, void *mem)
{
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
#if FOOTERS
mstate fm = get_mstate_for(p);
#else /* FOOTERS */
mstate fm = (mstate) msp;
#endif /* FOOTERS */
if (!ok_magic(fm)) {
USAGE_ERROR_ACTION(fm, p);
return;
}
if (!PREACTION(fm)) {
check_inuse_chunk(fm, p);
if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
size_t psize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
size_t prevsize = p->prev_foot;
if ((prevsize & IS_MMAPPED_BIT) != 0) {
prevsize &= ~IS_MMAPPED_BIT;
psize += prevsize + MMAP_FOOT_PAD;
if (CALL_MUNMAP((char *) p - prevsize, psize) == 0)
fm->footprint -= psize;
goto postaction;
} else {
mchunkptr prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
if (p != fm->dv) {
unlink_chunk(fm, p, prevsize);
} else if ((next->head & INUSE_BITS) ==
INUSE_BITS) {
fm->dvsize = psize;
set_free_with_pinuse(p, psize, next);
goto postaction;
}
} else
goto erroraction;
}
}
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
if (!cinuse(next)) { /* consolidate forward */
if (next == fm->top) {
size_t tsize = fm->topsize += psize;
fm->top = p;
p->head = tsize | PINUSE_BIT;
if (p == fm->dv) {
fm->dv = 0;
fm->dvsize = 0;
}
if (should_trim(fm, tsize))
sys_trim(fm, 0);
goto postaction;
} else if (next == fm->dv) {
size_t dsize = fm->dvsize += psize;
fm->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
goto postaction;
} else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(fm, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == fm->dv) {
fm->dvsize = psize;
goto postaction;
}
}
} else
set_free_with_pinuse(p, psize, next);
insert_chunk(fm, p, psize);
check_free_chunk(fm, p);
goto postaction;
}
}
erroraction:
USAGE_ERROR_ACTION(fm, p);
postaction:
POSTACTION(fm);
}
}
}
void *
mspace_calloc(mspace msp, size_t n_elements, size_t elem_size)
{
void *mem;
size_t req = 0;
mstate ms = (mstate) msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
return 0;
}
if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t) 0xffff) &&
(req / n_elements != elem_size))
req = MAX_SIZE_T; /* force downstream failure on overflow */
}
mem = internal_malloc(ms, req);
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
memset(mem, 0, req);
return mem;
}
void *
mspace_realloc(mspace msp, void *oldmem, size_t bytes)
{
if (oldmem == 0)
return mspace_malloc(msp, bytes);
#ifdef REALLOC_ZERO_BYTES_FREES
if (bytes == 0) {
mspace_free(msp, oldmem);
return 0;
}
#endif /* REALLOC_ZERO_BYTES_FREES */
else {
#if FOOTERS
mchunkptr p = mem2chunk(oldmem);
mstate ms = get_mstate_for(p);
#else /* FOOTERS */
mstate ms = (mstate) msp;
#endif /* FOOTERS */
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return internal_realloc(ms, oldmem, bytes);
}
}
void *
mspace_memalign(mspace msp, size_t alignment, size_t bytes)
{
mstate ms = (mstate) msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return internal_memalign(ms, alignment, bytes);
}
void **
mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void *chunks[])
{
size_t sz = elem_size; /* serves as 1-element array */
mstate ms = (mstate) msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ialloc(ms, n_elements, &sz, 3, chunks);
}
void **
mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void *chunks[])
{
mstate ms = (mstate) msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
return 0;
}
return ialloc(ms, n_elements, sizes, 0, chunks);
}
int
mspace_trim(mspace msp, size_t pad)
{
int result = 0;
mstate ms = (mstate) msp;
if (ok_magic(ms)) {
if (!PREACTION(ms)) {
result = sys_trim(ms, pad);
POSTACTION(ms);
}
} else {
USAGE_ERROR_ACTION(ms, ms);
}
return result;
}
void
mspace_malloc_stats(mspace msp)
{
mstate ms = (mstate) msp;
if (ok_magic(ms)) {
internal_malloc_stats(ms);
} else {
USAGE_ERROR_ACTION(ms, ms);
}
}
size_t
mspace_footprint(mspace msp)
{
size_t result;
mstate ms = (mstate) msp;
if (ok_magic(ms)) {
result = ms->footprint;
}
USAGE_ERROR_ACTION(ms, ms);
return result;
}
size_t
mspace_max_footprint(mspace msp)
{
size_t result;
mstate ms = (mstate) msp;
if (ok_magic(ms)) {
result = ms->max_footprint;
}
USAGE_ERROR_ACTION(ms, ms);
return result;
}
#if !NO_MALLINFO
struct mallinfo
mspace_mallinfo(mspace msp)
{
mstate ms = (mstate) msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms, ms);
}
return internal_mallinfo(ms);
}
#endif /* NO_MALLINFO */
int
mspace_mallopt(int param_number, int value)
{
return change_mparam(param_number, value);
}
#endif /* MSPACES */
/* -------------------- Alternative MORECORE functions ------------------- */
/*
Guidelines for creating a custom version of MORECORE:
* For best performance, MORECORE should allocate in multiples of pagesize.
* MORECORE may allocate more memory than requested. (Or even less,
but this will usually result in a malloc failure.)
* MORECORE must not allocate memory when given argument zero, but
instead return one past the end address of memory from previous
nonzero call.
* For best performance, consecutive calls to MORECORE with positive
arguments should return increasing addresses, indicating that
space has been contiguously extended.
* Even though consecutive calls to MORECORE need not return contiguous
addresses, it must be OK for malloc'ed chunks to span multiple
regions in those cases where they do happen to be contiguous.
* MORECORE need not handle negative arguments -- it may instead
just return MFAIL when given negative arguments.
Negative arguments are always multiples of pagesize. MORECORE
must not misinterpret negative args as large positive unsigned
args. You can suppress all such calls from even occurring by defining
MORECORE_CANNOT_TRIM,
As an example alternative MORECORE, here is a custom allocator
kindly contributed for pre-OSX macOS. It uses virtually but not
necessarily physically contiguous non-paged memory (locked in,
present and won't get swapped out). You can use it by uncommenting
this section, adding some #includes, and setting up the appropriate
defines above:
#define MORECORE osMoreCore
There is also a shutdown routine that should somehow be called for
cleanup upon program exit.
#define MAX_POOL_ENTRIES 100
#define MINIMUM_MORECORE_SIZE (64 * 1024U)
static int next_os_pool;
void *our_os_pools[MAX_POOL_ENTRIES];
void *osMoreCore(int size)
{
void *ptr = 0;
static void *sbrk_top = 0;
if (size > 0)
{
if (size < MINIMUM_MORECORE_SIZE)
size = MINIMUM_MORECORE_SIZE;
if (CurrentExecutionLevel() == kTaskLevel)
ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
if (ptr == 0)
{
return (void *) MFAIL;
}
// save ptrs so they can be freed during cleanup
our_os_pools[next_os_pool] = ptr;
next_os_pool++;
ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
sbrk_top = (char *) ptr + size;
return ptr;
}
else if (size < 0)
{
// we don't currently support shrink behavior
return (void *) MFAIL;
}
else
{
return sbrk_top;
}
}
// cleanup any allocated memory pools
// called as last thing before shutting down driver
void osCleanupMem(void)
{
void **ptr;
for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
if (*ptr)
{
PoolDeallocate(*ptr);
*ptr = 0;
}
}
*/
/* -----------------------------------------------------------------------
History:
V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
* Add max_footprint functions
* Ensure all appropriate literals are size_t
* Fix conditional compilation problem for some #define settings
* Avoid concatenating segments with the one provided
in create_mspace_with_base
* Rename some variables to avoid compiler shadowing warnings
* Use explicit lock initialization.
* Better handling of sbrk interference.
* Simplify and fix segment insertion, trimming and mspace_destroy
* Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
* Thanks especially to Dennis Flanagan for help on these.
V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
* Fix memalign brace error.
V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
* Fix improper #endif nesting in C++
* Add explicit casts needed for C++
V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
* Use trees for large bins
* Support mspaces
* Use segments to unify sbrk-based and mmap-based system allocation,
removing need for emulation on most platforms without sbrk.
* Default safety checks
* Optional footer checks. Thanks to William Robertson for the idea.
* Internal code refactoring
* Incorporate suggestions and platform-specific changes.
Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
Aaron Bachmann, Emery Berger, and others.
* Speed up non-fastbin processing enough to remove fastbins.
* Remove useless cfree() to avoid conflicts with other apps.
* Remove internal memcpy, memset. Compilers handle builtins better.
* Remove some options that no one ever used and rename others.
V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
* Fix malloc_state bitmap array misdeclaration
V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
* Allow tuning of FIRST_SORTED_BIN_SIZE
* Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
* Better detection and support for non-contiguousness of MORECORE.
Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
* Bypass most of malloc if no frees. Thanks To Emery Berger.
* Fix freeing of old top non-contiguous chunk im sysmalloc.
* Raised default trim and map thresholds to 256K.
* Fix mmap-related #defines. Thanks to Lubos Lunak.
* Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
* Branch-free bin calculation
* Default trim and mmap thresholds now 256K.
V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
* Introduce independent_comalloc and independent_calloc.
Thanks to Michael Pachos for motivation and help.
* Make optional .h file available
* Allow > 2GB requests on 32bit systems.
* new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
and Anonymous.
* Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
helping test this.)
* memalign: check alignment arg
* realloc: don't try to shift chunks backwards, since this
leads to more fragmentation in some programs and doesn't
seem to help in any others.
* Collect all cases in malloc requiring system memory into sysmalloc
* Use mmap as backup to sbrk
* Place all internal state in malloc_state
* Introduce fastbins (although similar to 2.5.1)
* Many minor tunings and cosmetic improvements
* Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
* Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
* Include errno.h to support default failure action.
V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
* return null for negative arguments
* Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
* Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
(e.g. WIN32 platforms)
* Cleanup header file inclusion for WIN32 platforms
* Cleanup code to avoid Microsoft Visual C++ compiler complaints
* Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
memory allocation routines
* Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
* Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
usage of 'assert' in non-WIN32 code
* Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
avoid infinite loop
* Always call 'fREe()' rather than 'free()'
V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
* Fixed ordering problem with boundary-stamping
V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
* Added pvalloc, as recommended by H.J. Liu
* Added 64bit pointer support mainly from Wolfram Gloger
* Added anonymously donated WIN32 sbrk emulation
* Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
* malloc_extend_top: fix mask error that caused wastage after
foreign sbrks
* Add linux mremap support code from HJ Liu
V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
* Integrated most documentation with the code.
* Add support for mmap, with help from
Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
* Use last_remainder in more cases.
* Pack bins using idea from colin@nyx10.cs.du.edu
* Use ordered bins instead of best-fit threshhold
* Eliminate block-local decls to simplify tracing and debugging.
* Support another case of realloc via move into top
* Fix error occuring when initial sbrk_base not word-aligned.
* Rely on page size for units instead of SBRK_UNIT to
avoid surprises about sbrk alignment conventions.
* Add mallinfo, mallopt. Thanks to Raymond Nijssen
(raymond@es.ele.tue.nl) for the suggestion.
* Add `pad' argument to malloc_trim and top_pad mallopt parameter.
* More precautions for cases where other routines call sbrk,
courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
* Added macros etc., allowing use in linux libc from
H.J. Lu (hjl@gnu.ai.mit.edu)
* Inverted this history list
V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
* Re-tuned and fixed to behave more nicely with V2.6.0 changes.
* Removed all preallocation code since under current scheme
the work required to undo bad preallocations exceeds
the work saved in good cases for most test programs.
* No longer use return list or unconsolidated bins since
no scheme using them consistently outperforms those that don't
given above changes.
* Use best fit for very large chunks to prevent some worst-cases.
* Added some support for debugging
V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
* Removed footers when chunks are in use. Thanks to
Paul Wilson (wilson@cs.texas.edu) for the suggestion.
V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
* Added malloc_trim, with help from Wolfram Gloger
(wmglo@Dent.MED.Uni-Muenchen.DE).
V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
* realloc: try to expand in both directions
* malloc: swap order of clean-bin strategy;
* realloc: only conditionally expand backwards
* Try not to scavenge used bins
* Use bin counts as a guide to preallocation
* Occasionally bin return list chunks in first scan
* Add a few optimizations from colin@nyx10.cs.du.edu
V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
* faster bin computation & slightly different binning
* merged all consolidations to one part of malloc proper
(eliminating old malloc_find_space & malloc_clean_bin)
* Scan 2 returns chunks (not just 1)
* Propagate failure in realloc if malloc returns 0
* Add stuff to allow compilation on non-ANSI compilers
from kpv@research.att.com
V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
* removed potential for odd address access in prev_chunk
* removed dependency on getpagesize.h
* misc cosmetics and a bit more internal documentation
* anticosmetics: mangled names in macros to evade debugger strangeness
* tested on sparc, hp-700, dec-mips, rs6000
with gcc & native cc (hp, dec only) allowing
Detlefs & Zorn comparison study (in SIGPLAN Notices.)
Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
* Based loosely on libg++-1.2X malloc. (It retains some of the overall
structure of old version, but most details differ.)
*/
#endif /* !HAVE_MALLOC */
#ifdef HAVE_MALLOC
#define real_malloc malloc
#define real_calloc calloc
#define real_realloc realloc
#define real_free free
#else
#define real_malloc dlmalloc
#define real_calloc dlcalloc
#define real_realloc dlrealloc
#define real_free dlfree
#endif
/* Memory functions used by SDL that can be replaced by the application */
static struct
{
SDL_malloc_func malloc_func;
SDL_calloc_func calloc_func;
SDL_realloc_func realloc_func;
SDL_free_func free_func;
SDL_atomic_t num_allocations;
} s_mem = {
real_malloc, real_calloc, real_realloc, real_free, { 0 }
};
void SDL_GetMemoryFunctions(SDL_malloc_func *malloc_func,
SDL_calloc_func *calloc_func,
SDL_realloc_func *realloc_func,
SDL_free_func *free_func)
{
if (malloc_func) {
*malloc_func = s_mem.malloc_func;
}
if (calloc_func) {
*calloc_func = s_mem.calloc_func;
}
if (realloc_func) {
*realloc_func = s_mem.realloc_func;
}
if (free_func) {
*free_func = s_mem.free_func;
}
}
int SDL_SetMemoryFunctions(SDL_malloc_func malloc_func,
SDL_calloc_func calloc_func,
SDL_realloc_func realloc_func,
SDL_free_func free_func)
{
if (!malloc_func) {
return SDL_InvalidParamError("malloc_func");
}
if (!calloc_func) {
return SDL_InvalidParamError("calloc_func");
}
if (!realloc_func) {
return SDL_InvalidParamError("realloc_func");
}
if (!free_func) {
return SDL_InvalidParamError("free_func");
}
s_mem.malloc_func = malloc_func;
s_mem.calloc_func = calloc_func;
s_mem.realloc_func = realloc_func;
s_mem.free_func = free_func;
return 0;
}
int SDL_GetNumAllocations(void)
{
return SDL_AtomicGet(&s_mem.num_allocations);
}
void *SDL_malloc(size_t size)
{
void *mem;
if (!size) {
size = 1;
}
mem = s_mem.malloc_func(size);
if (mem) {
SDL_AtomicIncRef(&s_mem.num_allocations);
}
return mem;
}
void *SDL_calloc(size_t nmemb, size_t size)
{
void *mem;
if (!nmemb || !size) {
nmemb = 1;
size = 1;
}
mem = s_mem.calloc_func(nmemb, size);
if (mem) {
SDL_AtomicIncRef(&s_mem.num_allocations);
}
return mem;
}
void *SDL_realloc(void *ptr, size_t size)
{
void *mem;
if (!ptr && !size) {
size = 1;
}
mem = s_mem.realloc_func(ptr, size);
if (mem && !ptr) {
SDL_AtomicIncRef(&s_mem.num_allocations);
}
return mem;
}
void SDL_free(void *ptr)
{
if (!ptr) {
return;
}
s_mem.free_func(ptr);
(void)SDL_AtomicDecRef(&s_mem.num_allocations);
}
/* vi: set ts=4 sw=4 expandtab: */