Hash :
855d964b
Author :
Date :
2017-05-17T14:05:06
Prefix user-defined names in GLSL output Now user-defined names are prefixed by _u in GLSL output in case name hashing is not on. Internal names such as names of temporary variables created in AST transformations are written out as such. This makes handling of internal function names and internal variable names consistent. It also removes the possibility of name conflicts between user-defined names and internal names in case name hashing is not on. In the same vein, it makes it safe to use GLSL reserved words that are not reserved in ESSL as variable names in case name hashing is not on. This also makes the GLSL output more consistent with how names are handled in HLSL output. Name hashing code is shared between VariableInfo and OutputGLSLBase to ensure names are handled consistently in both. The name that's used in the shader source for a given interface variable is written out to ShaderVariable::mappedName. An exception needs to be made for identifiers close to the length limit, since adding any prefix would take them over the limit. But they can be just written out as such, since we don't have any builtins or ANGLE internal variables that have as long names and could create a conflict. BUG=angleproject:2139 BUG=angleproject:2038 TEST=angle_unittests, angle_end2end_tests, WebGL conformance tests Change-Id: Id6ed052c4fab2d091227dc9a3668083053b67a38 Reviewed-on: https://chromium-review.googlesource.com/507647 Commit-Queue: Olli Etuaho <oetuaho@nvidia.com> Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
//
// Copyright (c) 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RecordConstantPrecision_test.cpp:
// Test for recording constant variable precision when it affects consuming expression.
//
#include "angle_gl.h"
#include "gtest/gtest.h"
#include "GLSLANG/ShaderLang.h"
#include "tests/test_utils/compiler_test.h"
using namespace sh;
class RecordConstantPrecisionTest : public MatchOutputCodeTest
{
public:
RecordConstantPrecisionTest() : MatchOutputCodeTest(GL_FRAGMENT_SHADER, 0, SH_ESSL_OUTPUT) {}
};
// The constant cannot be folded if its precision is higher than the other operands, since it
// increases the precision of the consuming expression.
TEST_F(RecordConstantPrecisionTest, HigherPrecisionConstantAsParameter)
{
const std::string &shaderString =
"uniform mediump float u;"
"void main()\n"
"{\n"
" const highp float a = 4096.5;\n"
" mediump float b = fract(a + u);\n"
" gl_FragColor = vec4(b);\n"
"}\n";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("fract(4096.5"));
ASSERT_FALSE(foundInCode("fract((4096.5"));
}
// The constant can be folded if its precision is equal to the other operands, as it does not
// increase the precision of the consuming expression.
TEST_F(RecordConstantPrecisionTest, EqualPrecisionConstantAsParameter)
{
const std::string &shaderString =
"uniform mediump float u;"
"void main()\n"
"{\n"
" const mediump float a = 4096.5;\n"
" mediump float b = fract(a + u);\n"
" gl_FragColor = vec4(b);\n"
"}\n";
compile(shaderString);
ASSERT_FALSE(foundInCode("const mediump float s"));
ASSERT_TRUE(foundInCode("fract((4096.5"));
}
// The constant cannot be folded if its precision is higher than the other operands, since it
// increases the precision of the consuming expression. This applies also when the constant is
// part of a constant expression that can be folded.
TEST_F(RecordConstantPrecisionTest, FoldedBinaryConstantPrecisionIsHigher)
{
const std::string &shaderString =
"uniform mediump float u;"
"void main()\n"
"{\n"
" const highp float a = 4095.5;\n"
" mediump float b = fract((a + 1.0) + u);\n"
" gl_FragColor = vec4(b);\n"
"}\n";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("fract(4096.5"));
ASSERT_FALSE(foundInCode("fract((4096.5"));
}
// The constant cannot be folded if its precision is higher than the other operands, since it
// increases the precision of the consuming expression. This applies also when the constant is
// part of a constant expression that can be folded.
TEST_F(RecordConstantPrecisionTest, FoldedUnaryConstantPrecisionIsHigher)
{
const std::string &shaderString =
"uniform mediump float u;"
"void main()\n"
"{\n"
" const highp float a = 0.5;\n"
" mediump float b = sin(fract(a) + u);\n"
" gl_FragColor = vec4(b);\n"
"}\n";
compile(shaderString);
ASSERT_TRUE(foundInCode("const highp float s"));
ASSERT_FALSE(foundInCode("sin(0.5"));
ASSERT_FALSE(foundInCode("sin((0.5"));
}