Hash :
b16d69c3
Author :
Date :
2019-05-13T16:28:27
Vulkan: Add support for surface multisampling A multisample image is created for the surface if multisampling is enabled. Prior to present, this multisample image is resolved into the swapchain image. FramebufferVk::readPixelsImpl similarly has got the ability to resolve the region of interest into a temporary image prior to readback. Tests are added to render a point, line and a triangle on a 4x multisampled surface. Bug: angleproject:3204 Change-Id: I34aca502fa1918b5cbf000ff11521c350372e051 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1610188 Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_helpers:
// Helper utilitiy classes that manage Vulkan resources.
#ifndef LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_
#define LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_
#include "libANGLE/renderer/vulkan/CommandGraph.h"
#include "libANGLE/renderer/vulkan/vk_utils.h"
namespace gl
{
class ImageIndex;
} // namespace gl
namespace rx
{
namespace vk
{
// A dynamic buffer is conceptually an infinitely long buffer. Each time you write to the buffer,
// you will always write to a previously unused portion. After a series of writes, you must flush
// the buffer data to the device. Buffer lifetime currently assumes that each new allocation will
// last as long or longer than each prior allocation.
//
// Dynamic buffers are used to implement a variety of data streaming operations in Vulkan, such
// as for immediate vertex array and element array data, uniform updates, and other dynamic data.
class BufferHelper;
class DynamicBuffer : angle::NonCopyable
{
public:
DynamicBuffer(VkBufferUsageFlags usage, size_t minSize, bool hostVisible);
DynamicBuffer(DynamicBuffer &&other);
~DynamicBuffer();
// Init is called after the buffer creation so that the alignment can be specified later.
void init(size_t alignment, RendererVk *renderer);
// This call will allocate a new region at the end of the buffer. It internally may trigger
// a new buffer to be created (which is returned in the optional parameter
// `newBufferAllocatedOut`). The new region will be in the returned buffer at given offset. If
// a memory pointer is given, the buffer will be automatically map()ed.
angle::Result allocate(Context *context,
size_t sizeInBytes,
uint8_t **ptrOut,
VkBuffer *bufferOut,
VkDeviceSize *offsetOut,
bool *newBufferAllocatedOut);
// After a sequence of writes, call flush to ensure the data is visible to the device.
angle::Result flush(Context *context);
// After a sequence of writes, call invalidate to ensure the data is visible to the host.
angle::Result invalidate(Context *context);
// This releases resources when they might currently be in use.
void release(RendererVk *renderer);
void release(DisplayVk *display, std::vector<GarbageObjectBase> *garbageQueue);
// This releases all the buffers that have been allocated since this was last called.
void releaseRetainedBuffers(RendererVk *renderer);
void releaseRetainedBuffers(DisplayVk *display, std::vector<GarbageObjectBase> *garbageQueue);
// This frees resources immediately.
void destroy(VkDevice device);
BufferHelper *getCurrentBuffer() { return mBuffer; }
size_t getAlignment() { return mAlignment; }
void updateAlignment(RendererVk *renderer, size_t alignment);
// For testing only!
void setMinimumSizeForTesting(size_t minSize);
private:
void reset();
VkBufferUsageFlags mUsage;
bool mHostVisible;
size_t mMinSize;
BufferHelper *mBuffer;
uint32_t mNextAllocationOffset;
uint32_t mLastFlushOrInvalidateOffset;
size_t mSize;
size_t mAlignment;
std::vector<BufferHelper *> mRetainedBuffers;
};
// Uses DescriptorPool to allocate descriptor sets as needed. If a descriptor pool becomes full, we
// allocate new pools internally as needed. RendererVk takes care of the lifetime of the discarded
// pools. Note that we used a fixed layout for descriptor pools in ANGLE. Uniform buffers must
// use set zero and combined Image Samplers must use set 1. We conservatively count each new set
// using the maximum number of descriptor sets and buffers with each allocation. Currently: 2
// (Vertex/Fragment) uniform buffers and 64 (MAX_ACTIVE_TEXTURES) image/samplers.
// Shared handle to a descriptor pool. Each helper is allocated from the dynamic descriptor pool.
// Can be used to share descriptor pools between multiple ProgramVks and the ContextVk.
class DescriptorPoolHelper
{
public:
DescriptorPoolHelper();
~DescriptorPoolHelper();
bool valid() { return mDescriptorPool.valid(); }
bool hasCapacity(uint32_t descriptorSetCount) const;
angle::Result init(Context *context,
const std::vector<VkDescriptorPoolSize> &poolSizes,
uint32_t maxSets);
void destroy(VkDevice device);
angle::Result allocateSets(Context *context,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
VkDescriptorSet *descriptorSetsOut);
void updateSerial(Serial serial) { mMostRecentSerial = serial; }
Serial getSerial() const { return mMostRecentSerial; }
private:
uint32_t mFreeDescriptorSets;
DescriptorPool mDescriptorPool;
Serial mMostRecentSerial;
};
using RefCountedDescriptorPoolHelper = RefCounted<DescriptorPoolHelper>;
using RefCountedDescriptorPoolBinding = BindingPointer<DescriptorPoolHelper>;
class DynamicDescriptorPool final : angle::NonCopyable
{
public:
DynamicDescriptorPool();
~DynamicDescriptorPool();
// The DynamicDescriptorPool only handles one pool size at this time.
// Note that setSizes[i].descriptorCount is expected to be the number of descriptors in
// an individual set. The pool size will be calculated accordingly.
angle::Result init(Context *context,
const VkDescriptorPoolSize *setSizes,
uint32_t setSizeCount);
void destroy(VkDevice device);
// We use the descriptor type to help count the number of free sets.
// By convention, sets are indexed according to the constants in vk_cache_utils.h.
angle::Result allocateSets(Context *context,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
RefCountedDescriptorPoolBinding *bindingOut,
VkDescriptorSet *descriptorSetsOut);
// For testing only!
void setMaxSetsPerPoolForTesting(uint32_t maxSetsPerPool);
private:
angle::Result allocateNewPool(Context *context);
uint32_t mMaxSetsPerPool;
size_t mCurrentPoolIndex;
std::vector<RefCountedDescriptorPoolHelper *> mDescriptorPools;
std::vector<VkDescriptorPoolSize> mPoolSizes;
};
template <typename Pool>
class DynamicallyGrowingPool : angle::NonCopyable
{
public:
DynamicallyGrowingPool();
virtual ~DynamicallyGrowingPool();
bool isValid() { return mPoolSize > 0; }
protected:
angle::Result initEntryPool(Context *context, uint32_t poolSize);
void destroyEntryPool();
// Checks to see if any pool is already free, in which case it sets it as current pool and
// returns true.
bool findFreeEntryPool(Context *context);
// Allocates a new entry and initializes it with the given pool.
angle::Result allocateNewEntryPool(Context *context, Pool &&pool);
// Called by the implementation whenever an entry is freed.
void onEntryFreed(Context *context, size_t poolIndex);
// The pool size, to know when a pool is completely freed.
uint32_t mPoolSize;
std::vector<Pool> mPools;
struct PoolStats
{
// A count corresponding to each pool indicating how many of its allocated entries
// have been freed. Once that value reaches mPoolSize for each pool, that pool is considered
// free and reusable. While keeping a bitset would allow allocation of each index, the
// slight runtime overhead of finding free indices is not worth the slight memory overhead
// of creating new pools when unnecessary.
uint32_t freedCount;
// The serial of the renderer is stored on each object free to make sure no
// new allocations are made from the pool until it's not in use.
Serial serial;
};
std::vector<PoolStats> mPoolStats;
// Index into mPools indicating pool we are currently allocating from.
size_t mCurrentPool;
// Index inside mPools[mCurrentPool] indicating which index can be allocated next.
uint32_t mCurrentFreeEntry;
};
// DynamicQueryPool allocates indices out of QueryPool as needed. Once a QueryPool is exhausted,
// another is created. The query pools live permanently, but are recycled as indices get freed.
// These are arbitrary default sizes for query pools.
constexpr uint32_t kDefaultOcclusionQueryPoolSize = 64;
constexpr uint32_t kDefaultTimestampQueryPoolSize = 64;
class QueryHelper;
class DynamicQueryPool final : public DynamicallyGrowingPool<QueryPool>
{
public:
DynamicQueryPool();
~DynamicQueryPool() override;
angle::Result init(Context *context, VkQueryType type, uint32_t poolSize);
void destroy(VkDevice device);
angle::Result allocateQuery(Context *context, QueryHelper *queryOut);
void freeQuery(Context *context, QueryHelper *query);
// Special allocator that doesn't work with QueryHelper, which is a CommandGraphResource.
// Currently only used with RendererVk::GpuEventQuery.
angle::Result allocateQuery(Context *context, size_t *poolIndex, uint32_t *queryIndex);
void freeQuery(Context *context, size_t poolIndex, uint32_t queryIndex);
const QueryPool *getQueryPool(size_t index) const { return &mPools[index]; }
private:
angle::Result allocateNewPool(Context *context);
// Information required to create new query pools
VkQueryType mQueryType;
};
// Queries in vulkan are identified by the query pool and an index for a query within that pool.
// Unlike other pools, such as descriptor pools where an allocation returns an independent object
// from the pool, the query allocations are not done through a Vulkan function and are only an
// integer index.
//
// Furthermore, to support arbitrarily large number of queries, DynamicQueryPool creates query pools
// of a fixed size as needed and allocates indices within those pools.
//
// The QueryHelper class below keeps the pool and index pair together.
class QueryHelper final
{
public:
QueryHelper();
~QueryHelper();
void init(const DynamicQueryPool *dynamicQueryPool,
const size_t queryPoolIndex,
uint32_t query);
void deinit();
const QueryPool *getQueryPool() const
{
return mDynamicQueryPool ? mDynamicQueryPool->getQueryPool(mQueryPoolIndex) : nullptr;
}
uint32_t getQuery() const { return mQuery; }
// Used only by DynamicQueryPool.
size_t getQueryPoolIndex() const { return mQueryPoolIndex; }
void beginQuery(vk::Context *context);
void endQuery(vk::Context *context);
void writeTimestamp(vk::Context *context);
Serial getStoredQueueSerial() { return mMostRecentSerial; }
bool hasPendingWork(RendererVk *renderer);
private:
const DynamicQueryPool *mDynamicQueryPool;
size_t mQueryPoolIndex;
uint32_t mQuery;
Serial mMostRecentSerial;
};
// DynamicSemaphorePool allocates semaphores as needed. It uses a std::vector
// as a pool to allocate many semaphores at once. The pools live permanently,
// but are recycled as semaphores get freed.
// These are arbitrary default sizes for semaphore pools.
constexpr uint32_t kDefaultSemaphorePoolSize = 64;
class SemaphoreHelper;
class DynamicSemaphorePool final : public DynamicallyGrowingPool<std::vector<Semaphore>>
{
public:
DynamicSemaphorePool();
~DynamicSemaphorePool() override;
angle::Result init(Context *context, uint32_t poolSize);
void destroy(VkDevice device);
bool isValid() { return mPoolSize > 0; }
// autoFree can be used to allocate a semaphore that's expected to be freed at the end of the
// frame. This renders freeSemaphore unnecessary and saves an eventual search.
angle::Result allocateSemaphore(Context *context, SemaphoreHelper *semaphoreOut);
void freeSemaphore(Context *context, SemaphoreHelper *semaphore);
private:
angle::Result allocateNewPool(Context *context);
};
// Semaphores that are allocated from the semaphore pool are encapsulated in a helper object,
// keeping track of where in the pool they are allocated from.
class SemaphoreHelper final : angle::NonCopyable
{
public:
SemaphoreHelper();
~SemaphoreHelper();
SemaphoreHelper(SemaphoreHelper &&other);
SemaphoreHelper &operator=(SemaphoreHelper &&other);
void init(const size_t semaphorePoolIndex, const Semaphore *semaphore);
void deinit();
const Semaphore *getSemaphore() const { return mSemaphore; }
// Used only by DynamicSemaphorePool.
size_t getSemaphorePoolIndex() const { return mSemaphorePoolIndex; }
private:
size_t mSemaphorePoolIndex;
const Semaphore *mSemaphore;
};
// This class' responsibility is to create index buffers needed to support line loops in Vulkan.
// In the setup phase of drawing, the createIndexBuffer method should be called with the
// current draw call parameters. If an element array buffer is bound for an indexed draw, use
// createIndexBufferFromElementArrayBuffer.
//
// If the user wants to draw a loop between [v1, v2, v3], we will create an indexed buffer with
// these indexes: [0, 1, 2, 3, 0] to emulate the loop.
class LineLoopHelper final : angle::NonCopyable
{
public:
LineLoopHelper(RendererVk *renderer);
~LineLoopHelper();
angle::Result getIndexBufferForDrawArrays(ContextVk *contextVk,
uint32_t clampedVertexCount,
GLint firstVertex,
vk::BufferHelper **bufferOut,
VkDeviceSize *offsetOut);
angle::Result getIndexBufferForElementArrayBuffer(ContextVk *contextVk,
BufferVk *elementArrayBufferVk,
gl::DrawElementsType glIndexType,
int indexCount,
intptr_t elementArrayOffset,
vk::BufferHelper **bufferOut,
VkDeviceSize *bufferOffsetOut);
angle::Result streamIndices(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
GLsizei indexCount,
const uint8_t *srcPtr,
vk::BufferHelper **bufferOut,
VkDeviceSize *bufferOffsetOut);
void release(RendererVk *renderer);
void destroy(VkDevice device);
static void Draw(uint32_t count, vk::CommandBuffer *commandBuffer);
private:
DynamicBuffer mDynamicIndexBuffer;
};
class FramebufferHelper;
class BufferHelper final : public CommandGraphResource
{
public:
BufferHelper();
~BufferHelper() override;
angle::Result init(Context *context,
const VkBufferCreateInfo &createInfo,
VkMemoryPropertyFlags memoryPropertyFlags);
void destroy(VkDevice device);
void release(RendererVk *renderer);
void release(DisplayVk *display, std::vector<GarbageObjectBase> *garbageQueue);
bool valid() const { return mBuffer.valid(); }
const Buffer &getBuffer() const { return mBuffer; }
const DeviceMemory &getDeviceMemory() const { return mDeviceMemory; }
VkDeviceSize getSize() const { return mSize; }
// Helpers for setting the graph dependencies *and* setting the appropriate barrier.
ANGLE_INLINE void onRead(CommandGraphResource *reader, VkAccessFlags readAccessType)
{
addReadDependency(reader);
if (mCurrentWriteAccess != 0 && (mCurrentReadAccess & readAccessType) != readAccessType)
{
reader->addGlobalMemoryBarrier(mCurrentWriteAccess, readAccessType);
mCurrentReadAccess |= readAccessType;
}
}
void onWrite(VkAccessFlags writeAccessType);
// Also implicitly sets up the correct barriers.
angle::Result copyFromBuffer(Context *context,
const Buffer &buffer,
VkAccessFlags bufferAccessType,
const VkBufferCopy ©Region);
// Note: currently only one view is allowed. If needs be, multiple views can be created
// based on format.
angle::Result initBufferView(Context *context, const Format &format);
const BufferView &getBufferView() const
{
ASSERT(mBufferView.valid());
return mBufferView;
}
const Format &getViewFormat() const
{
ASSERT(mViewFormat);
return *mViewFormat;
}
angle::Result map(Context *context, uint8_t **ptrOut)
{
if (!mMappedMemory)
{
ANGLE_TRY(mapImpl(context));
}
*ptrOut = mMappedMemory;
return angle::Result::Continue;
}
void unmap(VkDevice device);
// After a sequence of writes, call flush to ensure the data is visible to the device.
angle::Result flush(Context *context, size_t offset, size_t size);
// After a sequence of writes, call invalidate to ensure the data is visible to the host.
angle::Result invalidate(Context *context, size_t offset, size_t size);
private:
angle::Result mapImpl(Context *context);
// Vulkan objects.
Buffer mBuffer;
BufferView mBufferView;
DeviceMemory mDeviceMemory;
// Cached properties.
VkMemoryPropertyFlags mMemoryPropertyFlags;
VkDeviceSize mSize;
uint8_t *mMappedMemory;
const Format *mViewFormat;
// For memory barriers.
VkFlags mCurrentWriteAccess;
VkFlags mCurrentReadAccess;
};
// Imagine an image going through a few layout transitions:
//
// srcStage 1 dstStage 2 srcStage 2 dstStage 3
// Layout 1 ------Transition 1-----> Layout 2 ------Transition 2------> Layout 3
// srcAccess 1 dstAccess 2 srcAccess 2 dstAccess 3
// \_________________ ___________________/
// \/
// A transition
//
// Every transition requires 6 pieces of information: from/to layouts, src/dst stage masks and
// src/dst access masks. At the moment we decide to transition the image to Layout 2 (i.e.
// Transition 1), we need to have Layout 1, srcStage 1 and srcAccess 1 stored as history of the
// image. To perform the transition, we need to know Layout 2, dstStage 2 and dstAccess 2.
// Additionally, we need to know srcStage 2 and srcAccess 2 to retain them for the next transition.
//
// That is, with the history kept, on every new transition we need 5 pieces of new information:
// layout/dstStage/dstAccess to transition into the layout, and srcStage/srcAccess for the future
// transition out from it. Given the small number of possible combinations of these values, an
// enum is used were each value encapsulates these 5 pieces of information:
//
// +--------------------------------+
// srcStage 1 | dstStage 2 srcStage 2 | dstStage 3
// Layout 1 ------Transition 1-----> Layout 2 ------Transition 2------> Layout 3
// srcAccess 1 |dstAccess 2 srcAccess 2| dstAccess 3
// +--------------- ---------------+
// \/
// One enum value
//
// Note that, while generally dstStage for the to-transition and srcStage for the from-transition
// are the same, they may occasionally be BOTTOM_OF_PIPE and TOP_OF_PIPE respectively.
enum class ImageLayout
{
Undefined = 0,
ExternalPreInitialized = 1,
TransferSrc = 2,
TransferDst = 3,
ComputeShaderReadOnly = 4,
ComputeShaderWrite = 5,
FragmentShaderReadOnly = 6,
ColorAttachment = 7,
DepthStencilAttachment = 8,
Present = 9,
InvalidEnum = 10,
EnumCount = 10,
};
class ImageHelper final : public CommandGraphResource
{
public:
ImageHelper();
ImageHelper(ImageHelper &&other);
~ImageHelper() override;
void initStagingBuffer(RendererVk *renderer, const vk::Format &format);
angle::Result init(Context *context,
gl::TextureType textureType,
const gl::Extents &extents,
const Format &format,
GLint samples,
VkImageUsageFlags usage,
uint32_t mipLevels,
uint32_t layerCount);
angle::Result initExternal(Context *context,
gl::TextureType textureType,
const gl::Extents &extents,
const Format &format,
GLint samples,
VkImageUsageFlags usage,
ImageLayout initialLayout,
const void *externalImageCreateInfo,
uint32_t mipLevels,
uint32_t layerCount);
angle::Result initMemory(Context *context,
const MemoryProperties &memoryProperties,
VkMemoryPropertyFlags flags);
angle::Result initExternalMemory(Context *context,
const MemoryProperties &memoryProperties,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
uint32_t currentQueueFamilyIndex,
VkMemoryPropertyFlags flags);
angle::Result initLayerImageView(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount);
angle::Result initImageView(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount);
// Create a 2D[Array] for staging purposes. Used by:
//
// - TextureVk::copySubImageImplWithDraw
// - FramebufferVk::readPixelsImpl
//
angle::Result init2DStaging(Context *context,
const MemoryProperties &memoryProperties,
const gl::Extents &extent,
const Format &format,
VkImageUsageFlags usage,
uint32_t layerCount);
void releaseImage(RendererVk *renderer);
void releaseImage(DisplayVk *display, std::vector<GarbageObjectBase> *garbageQueue);
void releaseStagingBuffer(RendererVk *renderer);
void releaseStagingBuffer(DisplayVk *display, std::vector<GarbageObjectBase> *garbageQueue);
bool valid() const { return mImage.valid(); }
VkImageAspectFlags getAspectFlags() const;
void destroy(VkDevice device);
void dumpResources(Serial serial, std::vector<GarbageObject> *garbageQueue);
void init2DWeakReference(VkImage handle,
const gl::Extents &extents,
const Format &format,
GLint samples);
void resetImageWeakReference();
const Image &getImage() const { return mImage; }
const DeviceMemory &getDeviceMemory() const { return mDeviceMemory; }
const gl::Extents &getExtents() const { return mExtents; }
uint32_t getLayerCount() const { return mLayerCount; }
uint32_t getLevelCount() const { return mLevelCount; }
const Format &getFormat() const { return *mFormat; }
GLint getSamples() const { return mSamples; }
VkImageLayout getCurrentLayout() const;
// Helper function to calculate the extents of a render target created for a certain mip of the
// image.
gl::Extents getLevelExtents2D(uint32_t level) const;
// Clear either color or depth/stencil based on image format.
void clear(const VkClearValue &value,
uint32_t mipLevel,
uint32_t baseArrayLayer,
uint32_t layerCount,
vk::CommandBuffer *commandBuffer);
gl::Extents getSize(const gl::ImageIndex &index) const;
static void Copy(ImageHelper *srcImage,
ImageHelper *dstImage,
const gl::Offset &srcOffset,
const gl::Offset &dstOffset,
const gl::Extents ©Size,
const VkImageSubresourceLayers &srcSubresources,
const VkImageSubresourceLayers &dstSubresources,
vk::CommandBuffer *commandBuffer);
angle::Result generateMipmapsWithBlit(ContextVk *contextVk, GLuint maxLevel);
// Resolve this image into a destination image. This image should be in the TransferSrc layout.
// The destination image is automatically transitioned into TransferDst.
void resolve(ImageHelper *dest, const VkImageResolve ®ion, vk::CommandBuffer *commandBuffer);
// Data staging
void removeStagedUpdates(RendererVk *renderer, const gl::ImageIndex &index);
angle::Result stageSubresourceUpdate(ContextVk *contextVk,
const gl::ImageIndex &index,
const gl::Extents &extents,
const gl::Offset &offset,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
const uint8_t *pixels,
const vk::Format &vkFormat);
angle::Result stageSubresourceUpdateAndGetData(ContextVk *contextVk,
size_t allocationSize,
const gl::ImageIndex &imageIndex,
const gl::Extents &extents,
const gl::Offset &offset,
uint8_t **destData);
angle::Result stageSubresourceUpdateFromFramebuffer(const gl::Context *context,
const gl::ImageIndex &index,
const gl::Rectangle &sourceArea,
const gl::Offset &dstOffset,
const gl::Extents &dstExtent,
const gl::InternalFormat &formatInfo,
FramebufferVk *framebufferVk);
void stageSubresourceUpdateFromImage(vk::ImageHelper *image,
const gl::ImageIndex &index,
const gl::Offset &destOffset,
const gl::Extents &extents);
// Stage a clear operation to a clear value based on WebGL requirements.
void stageSubresourceRobustClear(const gl::ImageIndex &index, const angle::Format &format);
// Stage a clear operation to a clear value that initializes emulated channels to the desired
// values.
void stageSubresourceEmulatedClear(const gl::ImageIndex &index, const angle::Format &format);
// If the image has emulated channels, we clear them once so as not to leave garbage on those
// channels.
angle::Result clearIfEmulatedFormat(Context *context,
const gl::ImageIndex &index,
const Format &format);
// This will use the underlying dynamic buffer to allocate some memory to be used as a src or
// dst.
angle::Result allocateStagingMemory(ContextVk *contextVk,
size_t sizeInBytes,
uint8_t **ptrOut,
VkBuffer *handleOut,
VkDeviceSize *offsetOut,
bool *newBufferAllocatedOut);
// Flushes staged updates to a range of levels and layers from start to (but not including) end.
// Due to the nature of updates (done wholly to a VkImageSubresourceLayers), some unsolicited
// layers may also be updated.
angle::Result flushStagedUpdates(Context *context,
uint32_t levelStart,
uint32_t levelEnd,
uint32_t layerStart,
uint32_t layerEnd,
vk::CommandBuffer *commandBuffer);
// Creates a command buffer and flushes all staged updates. This is used for one-time
// initialization of resources that we don't expect to accumulate further staged updates, such
// as with renderbuffers or surface images.
angle::Result flushAllStagedUpdates(Context *context);
bool hasStagedUpdates() const { return !mSubresourceUpdates.empty(); }
// changeLayout automatically skips the layout change if it's unnecessary. This function can be
// used to prevent creating a command graph node and subsequently a command buffer for the sole
// purpose of performing a transition (which may then not be issued).
bool isLayoutChangeNecessary(ImageLayout newLayout) const;
void changeLayout(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
vk::CommandBuffer *commandBuffer);
bool isQueueChangeNeccesary(uint32_t newQueueFamilyIndex) const
{
return mCurrentQueueFamilyIndex != newQueueFamilyIndex;
}
void changeLayoutAndQueue(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
vk::CommandBuffer *commandBuffer);
private:
void forceChangeLayoutAndQueue(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
vk::CommandBuffer *commandBuffer);
void stageSubresourceClear(const gl::ImageIndex &index,
const angle::Format &format,
const VkClearColorValue &colorValue,
const VkClearDepthStencilValue &depthStencilValue);
void clearColor(const VkClearColorValue &color,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
vk::CommandBuffer *commandBuffer);
void clearDepthStencil(VkImageAspectFlags imageAspectFlags,
VkImageAspectFlags clearAspectFlags,
const VkClearDepthStencilValue &depthStencil,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
vk::CommandBuffer *commandBuffer);
struct SubresourceUpdate
{
SubresourceUpdate();
SubresourceUpdate(VkBuffer bufferHandle, const VkBufferImageCopy ©Region);
SubresourceUpdate(vk::ImageHelper *image, const VkImageCopy ©Region);
SubresourceUpdate(const VkClearValue &clearValue, const gl::ImageIndex &imageIndex);
SubresourceUpdate(const SubresourceUpdate &other);
void release(RendererVk *renderer);
void release(DisplayVk *display, std::vector<GarbageObjectBase> *garbageQueue);
const VkImageSubresourceLayers &dstSubresource() const
{
ASSERT(updateSource == UpdateSource::Buffer || updateSource == UpdateSource::Image);
return updateSource == UpdateSource::Buffer ? buffer.copyRegion.imageSubresource
: image.copyRegion.dstSubresource;
}
bool isUpdateToLayerLevel(uint32_t layerIndex, uint32_t levelIndex) const;
enum class UpdateSource
{
Clear,
Buffer,
Image,
};
struct ClearUpdate
{
VkClearValue value;
uint32_t levelIndex;
uint32_t layerIndex;
uint32_t layerCount;
};
struct BufferUpdate
{
VkBuffer bufferHandle;
VkBufferImageCopy copyRegion;
};
struct ImageUpdate
{
vk::ImageHelper *image;
VkImageCopy copyRegion;
};
UpdateSource updateSource;
union
{
ClearUpdate clear;
BufferUpdate buffer;
ImageUpdate image;
};
};
// Vulkan objects.
Image mImage;
DeviceMemory mDeviceMemory;
// Image properties.
gl::Extents mExtents;
const Format *mFormat;
GLint mSamples;
// Current state.
ImageLayout mCurrentLayout;
uint32_t mCurrentQueueFamilyIndex;
// Cached properties.
uint32_t mLayerCount;
uint32_t mLevelCount;
// Staging buffer
vk::DynamicBuffer mStagingBuffer;
std::vector<SubresourceUpdate> mSubresourceUpdates;
};
class FramebufferHelper : public CommandGraphResource
{
public:
FramebufferHelper();
~FramebufferHelper() override;
angle::Result init(ContextVk *contextVk, const VkFramebufferCreateInfo &createInfo);
void release(RendererVk *renderer);
bool valid() { return mFramebuffer.valid(); }
const Framebuffer &getFramebuffer() const
{
ASSERT(mFramebuffer.valid());
return mFramebuffer;
}
Framebuffer &getFramebuffer()
{
ASSERT(mFramebuffer.valid());
return mFramebuffer;
}
private:
// Vulkan object.
Framebuffer mFramebuffer;
};
class ShaderProgramHelper : angle::NonCopyable
{
public:
ShaderProgramHelper();
~ShaderProgramHelper();
bool valid() const;
void destroy(VkDevice device);
void release(RendererVk *renderer);
bool isGraphicsProgram() const
{
ASSERT(mShaders[gl::ShaderType::Vertex].valid() !=
mShaders[gl::ShaderType::Compute].valid());
return mShaders[gl::ShaderType::Vertex].valid();
}
vk::ShaderAndSerial &getShader(gl::ShaderType shaderType) { return mShaders[shaderType].get(); }
void setShader(gl::ShaderType shaderType, RefCounted<ShaderAndSerial> *shader);
// For getting a vk::Pipeline and from the pipeline cache.
ANGLE_INLINE angle::Result getGraphicsPipeline(
Context *context,
RenderPassCache *renderPassCache,
const PipelineCache &pipelineCache,
Serial currentQueueSerial,
const PipelineLayout &pipelineLayout,
const GraphicsPipelineDesc &pipelineDesc,
const gl::AttributesMask &activeAttribLocationsMask,
const vk::GraphicsPipelineDesc **descPtrOut,
PipelineHelper **pipelineOut)
{
// Pull in a compatible RenderPass.
vk::RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(renderPassCache->getCompatibleRenderPass(
context, currentQueueSerial, pipelineDesc.getRenderPassDesc(), &compatibleRenderPass));
ShaderModule *vertexShader = &mShaders[gl::ShaderType::Vertex].get().get();
ShaderModule *fragmentShader = mShaders[gl::ShaderType::Fragment].valid()
? &mShaders[gl::ShaderType::Fragment].get().get()
: nullptr;
return mGraphicsPipelines.getPipeline(context, pipelineCache, *compatibleRenderPass,
pipelineLayout, activeAttribLocationsMask,
vertexShader, fragmentShader, pipelineDesc,
descPtrOut, pipelineOut);
}
angle::Result getComputePipeline(Context *context,
const PipelineLayout &pipelineLayout,
PipelineAndSerial **pipelineOut);
private:
gl::ShaderMap<BindingPointer<ShaderAndSerial>> mShaders;
GraphicsPipelineCache mGraphicsPipelines;
// We should probably use PipelineHelper here so we can remove PipelineAndSerial.
PipelineAndSerial mComputePipeline;
};
} // namespace vk
} // namespace rx
#endif // LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_