Hash :
c759b8b4
Author :
Date :
2019-01-03T15:16:50
Vulkan: More Vertex Array optimizations. Inlines a number of Vulkan vertex array methods. Also changes the way vertex buffers are bound. Note that Vulkan doesn't support NULL buffer bindings. Thus we create an emulated NULL buffer to work around the problem of having gaps in the bound vertex buffers. This allows us to use a single bind call for ranges of vertex buffers even when there are gaps. Also changes how vertex array dirty bits are reset. Instead of calling memset to clear the affected buffers we pass a mutable pointer to the Vertex Array sync state. This allows us to only reset the dirty bits that we sync. This saves on the memory clearing time. Improves perf by about 10% in the Vulkan VBO state change test. Bug: angleproject:3014 Change-Id: Ib7b742dff7897fc891606a652ea0b64255a24c86 Reviewed-on: https://chromium-review.googlesource.com/c/1390360 Commit-Queue: Jamie Madill <jmadill@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Implementation of the state classes for mananging GLES 3.1 Vertex Array Objects.
//
#include "libANGLE/VertexAttribute.h"
namespace gl
{
// [OpenGL ES 3.1] (November 3, 2016) Section 20 Page 361
// Table 20.2: Vertex Array Object State
VertexBinding::VertexBinding() : VertexBinding(0) {}
VertexBinding::VertexBinding(GLuint boundAttribute) : mStride(16u), mDivisor(0), mOffset(0)
{
mBoundAttributesMask.set(boundAttribute);
}
VertexBinding::VertexBinding(VertexBinding &&binding)
{
*this = std::move(binding);
}
VertexBinding::~VertexBinding() {}
VertexBinding &VertexBinding::operator=(VertexBinding &&binding)
{
if (this != &binding)
{
mStride = binding.mStride;
mDivisor = binding.mDivisor;
mOffset = binding.mOffset;
mBoundAttributesMask = binding.mBoundAttributesMask;
std::swap(binding.mBuffer, mBuffer);
}
return *this;
}
void VertexBinding::onContainerBindingChanged(const Context *context, int incr) const
{
if (mBuffer.get())
mBuffer->onNonTFBindingChanged(incr);
}
VertexAttribute::VertexAttribute(GLuint bindingIndex)
: enabled(false),
type(GL_FLOAT),
size(4u),
normalized(false),
pureInteger(false),
pointer(nullptr),
relativeOffset(0),
vertexAttribArrayStride(0),
bindingIndex(bindingIndex),
mCachedElementLimit(0)
{}
VertexAttribute::VertexAttribute(VertexAttribute &&attrib)
: enabled(attrib.enabled),
type(attrib.type),
size(attrib.size),
normalized(attrib.normalized),
pureInteger(attrib.pureInteger),
pointer(attrib.pointer),
relativeOffset(attrib.relativeOffset),
vertexAttribArrayStride(attrib.vertexAttribArrayStride),
bindingIndex(attrib.bindingIndex),
mCachedElementLimit(attrib.mCachedElementLimit)
{}
VertexAttribute &VertexAttribute::operator=(VertexAttribute &&attrib)
{
if (this != &attrib)
{
enabled = attrib.enabled;
type = attrib.type;
size = attrib.size;
normalized = attrib.normalized;
pureInteger = attrib.pureInteger;
pointer = attrib.pointer;
relativeOffset = attrib.relativeOffset;
vertexAttribArrayStride = attrib.vertexAttribArrayStride;
bindingIndex = attrib.bindingIndex;
mCachedElementLimit = attrib.mCachedElementLimit;
}
return *this;
}
void VertexAttribute::updateCachedElementLimit(const VertexBinding &binding)
{
Buffer *buffer = binding.getBuffer().get();
if (!buffer)
{
mCachedElementLimit = 0;
return;
}
angle::CheckedNumeric<GLint64> bufferSize(buffer->getSize());
angle::CheckedNumeric<GLint64> bufferOffset(binding.getOffset());
angle::CheckedNumeric<GLint64> attribOffset(relativeOffset);
angle::CheckedNumeric<GLint64> attribSize(ComputeVertexAttributeTypeSize(*this));
// (buffer.size - buffer.offset - attrib.relativeOffset - attrib.size) / binding.stride
angle::CheckedNumeric<GLint64> elementLimit =
(bufferSize - bufferOffset - attribOffset - attribSize);
// Use the special integer overflow value if there was a math error.
if (!elementLimit.IsValid())
{
static_assert(kIntegerOverflow < 0, "Unexpected value");
mCachedElementLimit = kIntegerOverflow;
return;
}
mCachedElementLimit = elementLimit.ValueOrDie();
if (mCachedElementLimit < 0)
{
return;
}
if (binding.getStride() == 0)
{
// Special case for a zero stride. If we can fit one vertex we can fit infinite vertices.
mCachedElementLimit = std::numeric_limits<GLint64>::max();
return;
}
angle::CheckedNumeric<GLint64> bindingStride(binding.getStride());
elementLimit /= bindingStride;
if (binding.getDivisor() > 0)
{
// For instanced draws, the element count is floor(instanceCount - 1) / binding.divisor.
angle::CheckedNumeric<GLint64> bindingDivisor(binding.getDivisor());
elementLimit *= bindingDivisor;
// We account for the floor() part rounding by adding a rounding constant.
elementLimit += bindingDivisor - 1;
}
mCachedElementLimit = elementLimit.ValueOrDefault(kIntegerOverflow);
}
size_t ComputeVertexAttributeTypeSize(const VertexAttribute &attrib)
{
GLuint size = attrib.size;
switch (attrib.type)
{
case GL_BYTE:
return size * sizeof(GLbyte);
case GL_UNSIGNED_BYTE:
return size * sizeof(GLubyte);
case GL_SHORT:
return size * sizeof(GLshort);
case GL_UNSIGNED_SHORT:
return size * sizeof(GLushort);
case GL_INT:
return size * sizeof(GLint);
case GL_UNSIGNED_INT:
return size * sizeof(GLuint);
case GL_INT_2_10_10_10_REV:
return 4;
case GL_UNSIGNED_INT_2_10_10_10_REV:
return 4;
case GL_FIXED:
return size * sizeof(GLfixed);
case GL_HALF_FLOAT:
return size * sizeof(GLhalf);
case GL_FLOAT:
return size * sizeof(GLfloat);
default:
UNREACHABLE();
return size * sizeof(GLfloat);
}
}
size_t ComputeVertexAttributeStride(const VertexAttribute &attrib, const VertexBinding &binding)
{
// In ES 3.1, VertexAttribPointer will store the type size in the binding stride.
// Hence, rendering always uses the binding's stride.
return attrib.enabled ? binding.getStride() : 16u;
}
// Warning: you should ensure binding really matches attrib.bindingIndex before using this function.
GLintptr ComputeVertexAttributeOffset(const VertexAttribute &attrib, const VertexBinding &binding)
{
return attrib.relativeOffset + binding.getOffset();
}
size_t ComputeVertexBindingElementCount(GLuint divisor, size_t drawCount, size_t instanceCount)
{
// For instanced rendering, we draw "instanceDrawCount" sets of "vertexDrawCount" vertices.
//
// A vertex attribute with a positive divisor loads one instanced vertex for every set of
// non-instanced vertices, and the instanced vertex index advances once every "mDivisor"
// instances.
if (instanceCount > 0 && divisor > 0)
{
// When instanceDrawCount is not a multiple attrib.divisor, the division must round up.
// For instance, with 5 non-instanced vertices and a divisor equal to 3, we need 2 instanced
// vertices.
return (instanceCount + divisor - 1u) / divisor;
}
return drawCount;
}
GLenum GetVertexAttributeBaseType(const VertexAttribute &attrib)
{
if (attrib.pureInteger)
{
switch (attrib.type)
{
case GL_BYTE:
case GL_SHORT:
case GL_INT:
return GL_INT;
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_INT:
return GL_UNSIGNED_INT;
default:
UNREACHABLE();
return GL_NONE;
}
}
else
{
return GL_FLOAT;
}
}
} // namespace gl