Hash :
8b869a95
Author :
Date :
2021-06-13T01:09:27
Translator: Generate Ops for all built-in functions EOpCallBuiltInFunction is removed in this change, as well as the "op": "auto" property in builtin_function_declarations.txt. Instead, gen_builtin_symbols.py automatically generates Ops for every built-in function and generates the TOperator enum accordingly. This simplifies SPIR-V code generation by allowing switches to be used on operators instead of string comparisons. Bug: angleproject:4589 Bug: angleproject:4889 Change-Id: Ia351524400b0e12a10a5572e27e9b88c6ec2e61c Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2958869 Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Jonah Ryan-Davis <jonahr@google.com> Reviewed-by: Tim Van Patten <timvp@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Analysis of the AST needed for HLSL generation
#include "compiler/translator/ASTMetadataHLSL.h"
#include "compiler/translator/CallDAG.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
namespace sh
{
namespace
{
// Class used to traverse the AST of a function definition, checking if the
// function uses a gradient, and writing the set of control flow using gradients.
// It assumes that the analysis has already been made for the function's
// callees.
class PullGradient : public TIntermTraverser
{
public:
PullGradient(MetadataList *metadataList, size_t index, const CallDAG &dag)
: TIntermTraverser(true, false, true),
mMetadataList(metadataList),
mMetadata(&(*metadataList)[index]),
mIndex(index),
mDag(dag)
{
ASSERT(index < metadataList->size());
// ESSL 100 builtin gradient functions
mGradientBuiltinFunctions.insert(ImmutableString("texture2D"));
mGradientBuiltinFunctions.insert(ImmutableString("texture2DProj"));
mGradientBuiltinFunctions.insert(ImmutableString("textureCube"));
// ESSL 300 builtin gradient functions
mGradientBuiltinFunctions.insert(ImmutableString("dFdx"));
mGradientBuiltinFunctions.insert(ImmutableString("dFdy"));
mGradientBuiltinFunctions.insert(ImmutableString("fwidth"));
mGradientBuiltinFunctions.insert(ImmutableString("texture"));
mGradientBuiltinFunctions.insert(ImmutableString("textureProj"));
mGradientBuiltinFunctions.insert(ImmutableString("textureOffset"));
mGradientBuiltinFunctions.insert(ImmutableString("textureProjOffset"));
// ESSL 310 doesn't add builtin gradient functions
}
void traverse(TIntermFunctionDefinition *node)
{
node->traverse(this);
ASSERT(mParents.empty());
}
// Called when a gradient operation or a call to a function using a gradient is found.
void onGradient()
{
mMetadata->mUsesGradient = true;
// Mark the latest control flow as using a gradient.
if (!mParents.empty())
{
mMetadata->mControlFlowsContainingGradient.insert(mParents.back());
}
}
void visitControlFlow(Visit visit, TIntermNode *node)
{
if (visit == PreVisit)
{
mParents.push_back(node);
}
else if (visit == PostVisit)
{
ASSERT(mParents.back() == node);
mParents.pop_back();
// A control flow's using a gradient means its parents are too.
if (mMetadata->mControlFlowsContainingGradient.count(node) > 0 && !mParents.empty())
{
mMetadata->mControlFlowsContainingGradient.insert(mParents.back());
}
}
}
bool visitLoop(Visit visit, TIntermLoop *loop) override
{
visitControlFlow(visit, loop);
return true;
}
bool visitIfElse(Visit visit, TIntermIfElse *ifElse) override
{
visitControlFlow(visit, ifElse);
return true;
}
bool visitAggregate(Visit visit, TIntermAggregate *node) override
{
if (visit == PreVisit)
{
if (node->getOp() == EOpCallFunctionInAST)
{
size_t calleeIndex = mDag.findIndex(node->getFunction()->uniqueId());
ASSERT(calleeIndex != CallDAG::InvalidIndex && calleeIndex < mIndex);
if ((*mMetadataList)[calleeIndex].mUsesGradient)
{
onGradient();
}
}
else if (BuiltInGroup::IsBuiltIn(node->getOp()) && !BuiltInGroup::IsMath(node->getOp()))
{
if (mGradientBuiltinFunctions.find(node->getFunction()->name()) !=
mGradientBuiltinFunctions.end())
{
onGradient();
}
}
}
return true;
}
private:
MetadataList *mMetadataList;
ASTMetadataHLSL *mMetadata;
size_t mIndex;
const CallDAG &mDag;
// Contains a stack of the control flow nodes that are parents of the node being
// currently visited. It is used to mark control flows using a gradient.
std::vector<TIntermNode *> mParents;
// A list of builtin functions that use gradients
std::set<ImmutableString> mGradientBuiltinFunctions;
};
// Traverses the AST of a function definition to compute the the discontinuous loops
// and the if statements containing gradient loops. It assumes that the gradient loops
// (loops that contain a gradient) have already been computed and that it has already
// traversed the current function's callees.
class PullComputeDiscontinuousAndGradientLoops : public TIntermTraverser
{
public:
PullComputeDiscontinuousAndGradientLoops(MetadataList *metadataList,
size_t index,
const CallDAG &dag)
: TIntermTraverser(true, false, true),
mMetadataList(metadataList),
mMetadata(&(*metadataList)[index]),
mIndex(index),
mDag(dag)
{}
void traverse(TIntermFunctionDefinition *node)
{
node->traverse(this);
ASSERT(mLoopsAndSwitches.empty());
ASSERT(mIfs.empty());
}
// Called when traversing a gradient loop or a call to a function with a
// gradient loop in its call graph.
void onGradientLoop()
{
mMetadata->mHasGradientLoopInCallGraph = true;
// Mark the latest if as using a discontinuous loop.
if (!mIfs.empty())
{
mMetadata->mIfsContainingGradientLoop.insert(mIfs.back());
}
}
bool visitLoop(Visit visit, TIntermLoop *loop) override
{
if (visit == PreVisit)
{
mLoopsAndSwitches.push_back(loop);
if (mMetadata->hasGradientInCallGraph(loop))
{
onGradientLoop();
}
}
else if (visit == PostVisit)
{
ASSERT(mLoopsAndSwitches.back() == loop);
mLoopsAndSwitches.pop_back();
}
return true;
}
bool visitIfElse(Visit visit, TIntermIfElse *node) override
{
if (visit == PreVisit)
{
mIfs.push_back(node);
}
else if (visit == PostVisit)
{
ASSERT(mIfs.back() == node);
mIfs.pop_back();
// An if using a discontinuous loop means its parents ifs are also discontinuous.
if (mMetadata->mIfsContainingGradientLoop.count(node) > 0 && !mIfs.empty())
{
mMetadata->mIfsContainingGradientLoop.insert(mIfs.back());
}
}
return true;
}
bool visitBranch(Visit visit, TIntermBranch *node) override
{
if (visit == PreVisit)
{
switch (node->getFlowOp())
{
case EOpBreak:
{
ASSERT(!mLoopsAndSwitches.empty());
TIntermLoop *loop = mLoopsAndSwitches.back()->getAsLoopNode();
if (loop != nullptr)
{
mMetadata->mDiscontinuousLoops.insert(loop);
}
}
break;
case EOpContinue:
{
ASSERT(!mLoopsAndSwitches.empty());
TIntermLoop *loop = nullptr;
size_t i = mLoopsAndSwitches.size();
while (loop == nullptr && i > 0)
{
--i;
loop = mLoopsAndSwitches.at(i)->getAsLoopNode();
}
ASSERT(loop != nullptr);
mMetadata->mDiscontinuousLoops.insert(loop);
}
break;
case EOpKill:
case EOpReturn:
// A return or discard jumps out of all the enclosing loops
if (!mLoopsAndSwitches.empty())
{
for (TIntermNode *intermNode : mLoopsAndSwitches)
{
TIntermLoop *loop = intermNode->getAsLoopNode();
if (loop)
{
mMetadata->mDiscontinuousLoops.insert(loop);
}
}
}
break;
default:
UNREACHABLE();
}
}
return true;
}
bool visitAggregate(Visit visit, TIntermAggregate *node) override
{
if (visit == PreVisit && node->getOp() == EOpCallFunctionInAST)
{
size_t calleeIndex = mDag.findIndex(node->getFunction()->uniqueId());
ASSERT(calleeIndex != CallDAG::InvalidIndex && calleeIndex < mIndex);
if ((*mMetadataList)[calleeIndex].mHasGradientLoopInCallGraph)
{
onGradientLoop();
}
}
return true;
}
bool visitSwitch(Visit visit, TIntermSwitch *node) override
{
if (visit == PreVisit)
{
mLoopsAndSwitches.push_back(node);
}
else if (visit == PostVisit)
{
ASSERT(mLoopsAndSwitches.back() == node);
mLoopsAndSwitches.pop_back();
}
return true;
}
private:
MetadataList *mMetadataList;
ASTMetadataHLSL *mMetadata;
size_t mIndex;
const CallDAG &mDag;
std::vector<TIntermNode *> mLoopsAndSwitches;
std::vector<TIntermIfElse *> mIfs;
};
// Tags all the functions called in a discontinuous loop
class PushDiscontinuousLoops : public TIntermTraverser
{
public:
PushDiscontinuousLoops(MetadataList *metadataList, size_t index, const CallDAG &dag)
: TIntermTraverser(true, true, true),
mMetadataList(metadataList),
mMetadata(&(*metadataList)[index]),
mIndex(index),
mDag(dag),
mNestedDiscont(mMetadata->mCalledInDiscontinuousLoop ? 1 : 0)
{}
void traverse(TIntermFunctionDefinition *node)
{
node->traverse(this);
ASSERT(mNestedDiscont == (mMetadata->mCalledInDiscontinuousLoop ? 1 : 0));
}
bool visitLoop(Visit visit, TIntermLoop *loop) override
{
bool isDiscontinuous = mMetadata->mDiscontinuousLoops.count(loop) > 0;
if (visit == PreVisit && isDiscontinuous)
{
mNestedDiscont++;
}
else if (visit == PostVisit && isDiscontinuous)
{
mNestedDiscont--;
}
return true;
}
bool visitAggregate(Visit visit, TIntermAggregate *node) override
{
switch (node->getOp())
{
case EOpCallFunctionInAST:
if (visit == PreVisit && mNestedDiscont > 0)
{
size_t calleeIndex = mDag.findIndex(node->getFunction()->uniqueId());
ASSERT(calleeIndex != CallDAG::InvalidIndex && calleeIndex < mIndex);
(*mMetadataList)[calleeIndex].mCalledInDiscontinuousLoop = true;
}
break;
default:
break;
}
return true;
}
private:
MetadataList *mMetadataList;
ASTMetadataHLSL *mMetadata;
size_t mIndex;
const CallDAG &mDag;
int mNestedDiscont;
};
} // namespace
bool ASTMetadataHLSL::hasGradientInCallGraph(TIntermLoop *node)
{
return mControlFlowsContainingGradient.count(node) > 0;
}
bool ASTMetadataHLSL::hasGradientLoop(TIntermIfElse *node)
{
return mIfsContainingGradientLoop.count(node) > 0;
}
MetadataList CreateASTMetadataHLSL(TIntermNode *root, const CallDAG &callDag)
{
MetadataList metadataList(callDag.size());
// Compute all the information related to when gradient operations are used.
// We want to know for each function and control flow operation if they have
// a gradient operation in their call graph (shortened to "using a gradient"
// in the rest of the file).
//
// This computation is logically split in three steps:
// 1 - For each function compute if it uses a gradient in its body, ignoring
// calls to other user-defined functions.
// 2 - For each function determine if it uses a gradient in its call graph,
// using the result of step 1 and the CallDAG to know its callees.
// 3 - For each control flow statement of each function, check if it uses a
// gradient in the function's body, or if it calls a user-defined function that
// uses a gradient.
//
// We take advantage of the call graph being a DAG and instead compute 1, 2 and 3
// for leaves first, then going down the tree. This is correct because 1 doesn't
// depend on other functions, and 2 and 3 depend only on callees.
for (size_t i = 0; i < callDag.size(); i++)
{
PullGradient pull(&metadataList, i, callDag);
pull.traverse(callDag.getRecordFromIndex(i).node);
}
// Compute which loops are discontinuous and which function are called in
// these loops. The same way computing gradient usage is a "pull" process,
// computing "bing used in a discont. loop" is a push process. However we also
// need to know what ifs have a discontinuous loop inside so we do the same type
// of callgraph analysis as for the gradient.
// First compute which loops are discontinuous (no specific order) and pull
// the ifs and functions using a gradient loop.
for (size_t i = 0; i < callDag.size(); i++)
{
PullComputeDiscontinuousAndGradientLoops pull(&metadataList, i, callDag);
pull.traverse(callDag.getRecordFromIndex(i).node);
}
// Then push the information to callees, either from the a local discontinuous
// loop or from the caller being called in a discontinuous loop already
for (size_t i = callDag.size(); i-- > 0;)
{
PushDiscontinuousLoops push(&metadataList, i, callDag);
push.traverse(callDag.getRecordFromIndex(i).node);
}
// We create "Lod0" version of functions with the gradient operations replaced
// by non-gradient operations so that the D3D compiler is happier with discont
// loops.
for (auto &metadata : metadataList)
{
metadata.mNeedsLod0 = metadata.mCalledInDiscontinuousLoop && metadata.mUsesGradient;
}
return metadataList;
}
} // namespace sh