Hash :
0cfea380
Author :
Date :
2025-01-15T10:46:54
Rename sh::TSpan as general purpose angle::Span Span abstraction is useful for making buffer manipulation more consistent. The commit makes the Span available to all code until std::span can be used. Bug: angleproject:389951202 Change-Id: Id0c6b54bb6e75d3cc4e85af854d9e61b66906752 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6170997 Reviewed-by: Geoff Lang <geofflang@chromium.org> Auto-Submit: Kimmo Kinnunen <kkinnunen@apple.com> Commit-Queue: Kimmo Kinnunen <kkinnunen@apple.com> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
//
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RewriteAtomicCounters: Emulate atomic counter buffers with storage buffers.
//
#include "compiler/translator/tree_ops/RewriteArrayOfArrayOfOpaqueUniforms.h"
#include "common/span.h"
#include "compiler/translator/Compiler.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/IntermTraverse.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"
namespace sh
{
namespace
{
struct UniformData
{
// Corresponding to an array of array of opaque uniform variable, this is the flattened variable
// that is replacing it.
const TVariable *flattened;
// Assume a general case of array declaration with N dimensions:
//
// uniform type u[Dn]..[D2][D1];
//
// Let's define
//
// Pn = D(n-1)*...*D2*D1
//
// In that case, we have:
//
// u[In] = ac + In*Pn
// u[In][I(n-1)] = ac + In*Pn + I(n-1)*P(n-1)
// u[In]...[Ii] = ac + In*Pn + ... + Ii*Pi
//
// This array contains Pi. Note that the like TType::mArraySizes, the last element is the
// outermost dimension. Element 0 is necessarily 1.
TVector<unsigned int> mSubArraySizes;
};
using UniformMap = angle::HashMap<const TVariable *, UniformData>;
TIntermTyped *RewriteArrayOfArraySubscriptExpression(TCompiler *compiler,
TIntermBinary *node,
const UniformMap &uniformMap);
// Given an expression, this traverser calculates a new expression where array of array of opaque
// uniforms are replaced with their flattened ones. In particular, this is run on the right node of
// EOpIndexIndirect binary nodes, so that the expression in the index gets a chance to go through
// this transformation.
class RewriteExpressionTraverser final : public TIntermTraverser
{
public:
explicit RewriteExpressionTraverser(TCompiler *compiler, const UniformMap &uniformMap)
: TIntermTraverser(true, false, false), mCompiler(compiler), mUniformMap(uniformMap)
{}
bool visitBinary(Visit visit, TIntermBinary *node) override
{
TIntermTyped *rewritten =
RewriteArrayOfArraySubscriptExpression(mCompiler, node, mUniformMap);
if (rewritten == nullptr)
{
return true;
}
queueReplacement(rewritten, OriginalNode::IS_DROPPED);
// Don't iterate as the expression is rewritten.
return false;
}
void visitSymbol(TIntermSymbol *node) override
{
// We cannot reach here for an opaque uniform that is being replaced. visitBinary should
// have taken care of it.
ASSERT(!IsOpaqueType(node->getType().getBasicType()) ||
mUniformMap.find(&node->variable()) == mUniformMap.end());
}
private:
TCompiler *mCompiler;
const UniformMap &mUniformMap;
};
// Rewrite the index of an EOpIndexIndirect expression. The root can never need replacing, because
// it cannot be an opaque uniform itself.
void RewriteIndexExpression(TCompiler *compiler,
TIntermTyped *expression,
const UniformMap &uniformMap)
{
RewriteExpressionTraverser traverser(compiler, uniformMap);
expression->traverse(&traverser);
bool valid = traverser.updateTree(compiler, expression);
ASSERT(valid);
}
// Given an expression such as the following:
//
// EOpIndex(In)Direct (opaque uniform)
// / \
// EOpIndex(In)Direct I1
// / \
// ... I2
// /
// EOpIndex(In)Direct
// / \
// uniform In
//
// produces:
//
// EOpIndex(In)Direct
// / \
// uniform In*Pn + ... + I2*P2 + I1*P1
//
TIntermTyped *RewriteArrayOfArraySubscriptExpression(TCompiler *compiler,
TIntermBinary *node,
const UniformMap &uniformMap)
{
// Only interested in opaque uniforms.
if (!IsOpaqueType(node->getType().getBasicType()) || node->getOp() == EOpComma)
{
return nullptr;
}
TIntermSymbol *opaqueUniform = nullptr;
// Iterate once and find the opaque uniform that's being indexed.
TIntermBinary *iter = node;
while (opaqueUniform == nullptr)
{
ASSERT(iter->getOp() == EOpIndexDirect || iter->getOp() == EOpIndexIndirect);
opaqueUniform = iter->getLeft()->getAsSymbolNode();
iter = iter->getLeft()->getAsBinaryNode();
}
// If not being replaced, there's nothing to do.
auto flattenedIter = uniformMap.find(&opaqueUniform->variable());
if (flattenedIter == uniformMap.end())
{
return nullptr;
}
const UniformData &data = flattenedIter->second;
// Iterate again and build the index expression. The index expression constitutes the sum of
// the variable indices plus a constant offset calculated from the constant indices. For
// example, smplr[1][x][2][y] will have an index of x*P3 + y*P1 + c, where c = (1*P4 + 2*P2).
unsigned int constantOffset = 0;
TIntermTyped *variableIndex = nullptr;
// Since the opaque uniforms are fully subscripted, we know exactly how many EOpIndex* nodes
// there should be.
for (size_t dimIndex = 0; dimIndex < data.mSubArraySizes.size(); ++dimIndex)
{
ASSERT(node);
unsigned int subArraySize = data.mSubArraySizes[dimIndex];
switch (node->getOp())
{
case EOpIndexDirect:
// Accumulate the constant index.
constantOffset +=
node->getRight()->getAsConstantUnion()->getIConst(0) * subArraySize;
break;
case EOpIndexIndirect:
{
// Run RewriteExpressionTraverser on the right node. It may itself be an expression
// with an array of array of opaque uniform inside that needs to be rewritten.
TIntermTyped *indexExpression = node->getRight();
RewriteIndexExpression(compiler, indexExpression, uniformMap);
// Scale and accumulate.
if (subArraySize != 1)
{
indexExpression =
new TIntermBinary(EOpMul, indexExpression, CreateIndexNode(subArraySize));
}
if (variableIndex == nullptr)
{
variableIndex = indexExpression;
}
else
{
variableIndex = new TIntermBinary(EOpAdd, variableIndex, indexExpression);
}
break;
}
default:
UNREACHABLE();
break;
}
node = node->getLeft()->getAsBinaryNode();
}
// Add the two accumulated indices together.
TIntermTyped *index = nullptr;
if (constantOffset == 0 && variableIndex != nullptr)
{
// No constant offset, but there's variable offset. Take that as offset.
index = variableIndex;
}
else
{
// Either the constant offset is non zero, or there's no variable offset (so constant 0
// should be used).
index = CreateIndexNode(constantOffset);
if (variableIndex)
{
index = new TIntermBinary(EOpAdd, index, variableIndex);
}
}
// Create an index into the flattened uniform.
TOperator op = variableIndex ? EOpIndexIndirect : EOpIndexDirect;
return new TIntermBinary(op, new TIntermSymbol(data.flattened), index);
}
// Traverser that takes:
//
// uniform sampler/image/atomic_uint u[N][M]..
//
// and transforms it to:
//
// uniform sampler/image/atomic_uint u[N * M * ..]
//
// MonomorphizeUnsupportedFunctions makes it impossible for this array to be partially
// subscripted, or passed as argument to a function unsubscripted. This means that every encounter
// of this uniform can be expected to be fully subscripted.
//
class RewriteArrayOfArrayOfOpaqueUniformsTraverser : public TIntermTraverser
{
public:
RewriteArrayOfArrayOfOpaqueUniformsTraverser(TCompiler *compiler, TSymbolTable *symbolTable)
: TIntermTraverser(true, false, false, symbolTable), mCompiler(compiler)
{}
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
{
if (!mInGlobalScope)
{
return true;
}
const TIntermSequence &sequence = *(node->getSequence());
TIntermTyped *variable = sequence.front()->getAsTyped();
const TType &type = variable->getType();
bool isOpaqueUniform =
type.getQualifier() == EvqUniform && IsOpaqueType(type.getBasicType());
// Only interested in array of array of opaque uniforms.
if (!isOpaqueUniform || !type.isArrayOfArrays())
{
return false;
}
// Opaque uniforms cannot have initializers, so the declaration must necessarily be a
// symbol.
TIntermSymbol *symbol = variable->getAsSymbolNode();
ASSERT(symbol != nullptr);
const TVariable *uniformVariable = &symbol->variable();
// Create an entry in the map.
ASSERT(mUniformMap.find(uniformVariable) == mUniformMap.end());
UniformData &data = mUniformMap[uniformVariable];
// Calculate the accumulated dimension products. See UniformData::mSubArraySizes.
const angle::Span<const unsigned int> &arraySizes = type.getArraySizes();
mUniformMap[uniformVariable].mSubArraySizes.resize(arraySizes.size());
unsigned int runningProduct = 1;
for (size_t dimension = 0; dimension < arraySizes.size(); ++dimension)
{
data.mSubArraySizes[dimension] = runningProduct;
runningProduct *= arraySizes[dimension];
}
// Create a replacement variable with the array flattened.
TType *newType = new TType(type);
newType->toArrayBaseType();
newType->makeArray(runningProduct);
data.flattened = new TVariable(mSymbolTable, uniformVariable->name(), newType,
uniformVariable->symbolType());
TIntermDeclaration *decl = new TIntermDeclaration;
decl->appendDeclarator(new TIntermSymbol(data.flattened));
queueReplacement(decl, OriginalNode::IS_DROPPED);
return false;
}
bool visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node) override
{
// As an optimization, don't bother inspecting functions if there aren't any opaque uniforms
// to replace.
return !mUniformMap.empty();
}
// Same implementation as in RewriteExpressionTraverser. That traverser cannot replace root.
bool visitBinary(Visit visit, TIntermBinary *node) override
{
TIntermTyped *rewritten =
RewriteArrayOfArraySubscriptExpression(mCompiler, node, mUniformMap);
if (rewritten == nullptr)
{
return true;
}
queueReplacement(rewritten, OriginalNode::IS_DROPPED);
// Don't iterate as the expression is rewritten.
return false;
}
void visitSymbol(TIntermSymbol *node) override
{
ASSERT(!IsOpaqueType(node->getType().getBasicType()) ||
mUniformMap.find(&node->variable()) == mUniformMap.end());
}
private:
TCompiler *mCompiler;
UniformMap mUniformMap;
};
} // anonymous namespace
bool RewriteArrayOfArrayOfOpaqueUniforms(TCompiler *compiler,
TIntermBlock *root,
TSymbolTable *symbolTable)
{
RewriteArrayOfArrayOfOpaqueUniformsTraverser traverser(compiler, symbolTable);
root->traverse(&traverser);
return traverser.updateTree(compiler, root);
}
} // namespace sh