Hash :
d657e1d7
Author :
Date :
2020-04-24T13:13:18
Vulkan: Defer framebuffer clears. This works by storing the deferred clears in the ImageHelper's staging buffers. We apply the deferred clears onto the RenderPass right before we begin to draw. Storing the clears in the ImageHelper solves problems where we clear GL Textures in a Framebuffer and then unbind the Textures and sample from them. Or do other commands like CopyTexImage. Note that because the staging buffer clears only handle full-image clears we need to immediately apply some scissored clears where before we would use the RP. This should be a pretty rare occurrence and it is possible to optimize that in the future. Reduces the RenderPass count in the Manhattan "frame 10" trace from max 22 to max 20. May improve perf slightly on Android or may have effects too small to measure. Should not regress performance. Bug: angleproject:4517 Change-Id: I02150d531022afb903f1058f070937ec6337bd88 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2142711 Reviewed-by: Tim Van Patten <timvp@google.com> Reviewed-by: Charlie Lao <cclao@google.com> Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RenderTargetVk:
// Wrapper around a Vulkan renderable resource, using an ImageView.
//
#include "libANGLE/renderer/vulkan/RenderTargetVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/ResourceVk.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/renderer/vulkan/vk_helpers.h"
namespace rx
{
RenderTargetVk::RenderTargetVk()
{
reset();
}
RenderTargetVk::~RenderTargetVk() {}
RenderTargetVk::RenderTargetVk(RenderTargetVk &&other)
: mImage(other.mImage),
mImageViews(other.mImageViews),
mLevelIndex(other.mLevelIndex),
mLayerIndex(other.mLayerIndex),
mContentDefined(other.mContentDefined)
{
other.reset();
}
void RenderTargetVk::init(vk::ImageHelper *image,
vk::ImageViewHelper *imageViews,
uint32_t levelIndex,
uint32_t layerIndex)
{
mImage = image;
mImageViews = imageViews;
mLevelIndex = levelIndex;
mLayerIndex = layerIndex;
// We are being conservative here since our targeted optimization is to skip surfaceVK's depth
// buffer load after swap call.
mContentDefined = true;
}
void RenderTargetVk::reset()
{
mImage = nullptr;
mImageViews = nullptr;
mLevelIndex = 0;
mLayerIndex = 0;
mContentDefined = false;
}
vk::AttachmentSerial RenderTargetVk::getAssignSerial(ContextVk *contextVk)
{
ASSERT(mImage && mImage->valid());
vk::AttachmentSerial attachmentSerial;
ASSERT(mLayerIndex < std::numeric_limits<uint16_t>::max());
ASSERT(mLevelIndex < std::numeric_limits<uint16_t>::max());
Serial imageSerial = mImage->getAssignSerial(contextVk);
ASSERT(imageSerial.getValue() < std::numeric_limits<uint32_t>::max());
SetBitField(attachmentSerial.layer, mLayerIndex);
SetBitField(attachmentSerial.level, mLevelIndex);
SetBitField(attachmentSerial.imageSerial, imageSerial.getValue());
return attachmentSerial;
}
angle::Result RenderTargetVk::onColorDraw(ContextVk *contextVk)
{
ASSERT(!mImage->getFormat().actualImageFormat().hasDepthOrStencilBits());
contextVk->onRenderPassImageWrite(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::ColorAttachment,
mImage);
mContentDefined = true;
retainImageViews(contextVk);
return angle::Result::Continue;
}
angle::Result RenderTargetVk::onDepthStencilDraw(ContextVk *contextVk)
{
ASSERT(mImage->getFormat().actualImageFormat().hasDepthOrStencilBits());
const angle::Format &format = mImage->getFormat().actualImageFormat();
VkImageAspectFlags aspectFlags = vk::GetDepthStencilAspectFlags(format);
contextVk->onRenderPassImageWrite(aspectFlags, vk::ImageLayout::DepthStencilAttachment, mImage);
mContentDefined = true;
retainImageViews(contextVk);
return angle::Result::Continue;
}
vk::ImageHelper &RenderTargetVk::getImage()
{
ASSERT(mImage && mImage->valid());
return *mImage;
}
const vk::ImageHelper &RenderTargetVk::getImage() const
{
ASSERT(mImage && mImage->valid());
return *mImage;
}
angle::Result RenderTargetVk::getImageView(ContextVk *contextVk,
const vk::ImageView **imageViewOut) const
{
ASSERT(mImage && mImage->valid() && mImageViews);
return mImageViews->getLevelLayerDrawImageView(contextVk, *mImage, mLevelIndex, mLayerIndex,
imageViewOut);
}
const vk::Format &RenderTargetVk::getImageFormat() const
{
ASSERT(mImage && mImage->valid());
return mImage->getFormat();
}
gl::Extents RenderTargetVk::getExtents() const
{
ASSERT(mImage && mImage->valid());
return mImage->getLevelExtents2D(static_cast<uint32_t>(mLevelIndex));
}
void RenderTargetVk::updateSwapchainImage(vk::ImageHelper *image, vk::ImageViewHelper *imageViews)
{
ASSERT(image && image->valid() && imageViews);
mImage = image;
mImageViews = imageViews;
}
vk::ImageHelper *RenderTargetVk::getImageForWrite(ContextVk *contextVk) const
{
ASSERT(mImage && mImage->valid());
retainImageViews(contextVk);
return mImage;
}
angle::Result RenderTargetVk::flushStagedUpdates(ContextVk *contextVk,
vk::ClearValuesArray *deferredClears,
uint32_t deferredClearIndex) const
{
// Note that the layer index for 3D textures is always zero according to Vulkan.
uint32_t layerIndex = mLayerIndex;
if (mImage->getType() == VK_IMAGE_TYPE_3D)
{
layerIndex = 0;
}
ASSERT(mImage->valid());
if (!mImage->isUpdateStaged(mLevelIndex, layerIndex))
return angle::Result::Continue;
vk::CommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->endRenderPassAndGetCommandBuffer(&commandBuffer));
return mImage->flushSingleSubresourceStagedUpdates(
contextVk, mLevelIndex, layerIndex, commandBuffer, deferredClears, deferredClearIndex);
}
void RenderTargetVk::retainImageViews(ContextVk *contextVk) const
{
mImageViews->retain(&contextVk->getResourceUseList());
}
gl::ImageIndex RenderTargetVk::getImageIndex() const
{
// Determine the GL type from the Vk Image properties.
if (mImage->getType() == VK_IMAGE_TYPE_3D)
{
return gl::ImageIndex::Make3D(mLevelIndex, mLayerIndex);
}
// We don't need to distinguish 2D array and cube.
if (mImage->getLayerCount() > 1)
{
return gl::ImageIndex::Make2DArray(mLevelIndex, mLayerIndex);
}
ASSERT(mLayerIndex == 0);
return gl::ImageIndex::Make2D(mLevelIndex);
}
} // namespace rx