Hash :
4cef8a49
Author :
Date :
2019-11-26T00:04:00
Metal: Support depthRange near > far Metal doesn't natively support near > far depthRange, need to emulate it via shader. Bug: angleproject:2634 Change-Id: I1885cad3467478a0dcc4b25b7d41f980b9e03103 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1919282 Commit-Queue: Jamie Madill <jmadill@chromium.org> Reviewed-by: Jonah Ryan-Davis <jonahr@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// TranslatorVulkan:
// A GLSL-based translator that outputs shaders that fit GL_KHR_vulkan_glsl.
// The shaders are then fed into glslang to spit out SPIR-V (libANGLE-side).
// See: https://www.khronos.org/registry/vulkan/specs/misc/GL_KHR_vulkan_glsl.txt
//
#include "compiler/translator/TranslatorVulkan.h"
#include "angle_gl.h"
#include "common/utilities.h"
#include "compiler/translator/BuiltinsWorkaroundGLSL.h"
#include "compiler/translator/ImmutableStringBuilder.h"
#include "compiler/translator/OutputVulkanGLSL.h"
#include "compiler/translator/StaticType.h"
#include "compiler/translator/tree_ops/NameEmbeddedUniformStructs.h"
#include "compiler/translator/tree_ops/NameNamelessUniformBuffers.h"
#include "compiler/translator/tree_ops/RewriteAtomicCounters.h"
#include "compiler/translator/tree_ops/RewriteCubeMapSamplersAs2DArray.h"
#include "compiler/translator/tree_ops/RewriteDfdy.h"
#include "compiler/translator/tree_ops/RewriteRowMajorMatrices.h"
#include "compiler/translator/tree_ops/RewriteStructSamplers.h"
#include "compiler/translator/tree_util/BuiltIn.h"
#include "compiler/translator/tree_util/FindFunction.h"
#include "compiler/translator/tree_util/FindMain.h"
#include "compiler/translator/tree_util/IntermNode_util.h"
#include "compiler/translator/tree_util/ReplaceVariable.h"
#include "compiler/translator/tree_util/RunAtTheEndOfShader.h"
#include "compiler/translator/util.h"
namespace sh
{
namespace
{
// This traverses nodes, find the struct ones and add their declarations to the sink. It also
// removes the nodes from the tree as it processes them.
class DeclareStructTypesTraverser : public TIntermTraverser
{
public:
explicit DeclareStructTypesTraverser(TOutputVulkanGLSL *outputVulkanGLSL)
: TIntermTraverser(true, false, false), mOutputVulkanGLSL(outputVulkanGLSL)
{}
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
{
ASSERT(visit == PreVisit);
if (!mInGlobalScope)
{
return false;
}
const TIntermSequence &sequence = *(node->getSequence());
TIntermTyped *declarator = sequence.front()->getAsTyped();
const TType &type = declarator->getType();
if (type.isStructSpecifier())
{
const TStructure *structure = type.getStruct();
// Embedded structs should be parsed away by now.
ASSERT(structure->symbolType() != SymbolType::Empty);
mOutputVulkanGLSL->writeStructType(structure);
TIntermSymbol *symbolNode = declarator->getAsSymbolNode();
if (symbolNode && symbolNode->variable().symbolType() == SymbolType::Empty)
{
// Remove the struct specifier declaration from the tree so it isn't parsed again.
TIntermSequence emptyReplacement;
mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
emptyReplacement);
}
}
return false;
}
private:
TOutputVulkanGLSL *mOutputVulkanGLSL;
};
class DeclareDefaultUniformsTraverser : public TIntermTraverser
{
public:
DeclareDefaultUniformsTraverser(TInfoSinkBase *sink,
ShHashFunction64 hashFunction,
NameMap *nameMap)
: TIntermTraverser(true, true, true),
mSink(sink),
mHashFunction(hashFunction),
mNameMap(nameMap),
mInDefaultUniform(false)
{}
bool visitDeclaration(Visit visit, TIntermDeclaration *node) override
{
const TIntermSequence &sequence = *(node->getSequence());
// TODO(jmadill): Compound declarations.
ASSERT(sequence.size() == 1);
TIntermTyped *variable = sequence.front()->getAsTyped();
const TType &type = variable->getType();
bool isUniform = type.getQualifier() == EvqUniform && !type.isInterfaceBlock() &&
!IsOpaqueType(type.getBasicType());
if (visit == PreVisit)
{
if (isUniform)
{
(*mSink) << " " << GetTypeName(type, mHashFunction, mNameMap) << " ";
mInDefaultUniform = true;
}
}
else if (visit == InVisit)
{
mInDefaultUniform = isUniform;
}
else if (visit == PostVisit)
{
if (isUniform)
{
(*mSink) << ";\n";
// Remove the uniform declaration from the tree so it isn't parsed again.
TIntermSequence emptyReplacement;
mMultiReplacements.emplace_back(getParentNode()->getAsBlock(), node,
emptyReplacement);
}
mInDefaultUniform = false;
}
return true;
}
void visitSymbol(TIntermSymbol *symbol) override
{
if (mInDefaultUniform)
{
const ImmutableString &name = symbol->variable().name();
ASSERT(!name.beginsWith("gl_"));
(*mSink) << HashName(&symbol->variable(), mHashFunction, mNameMap)
<< ArrayString(symbol->getType());
}
}
private:
TInfoSinkBase *mSink;
ShHashFunction64 mHashFunction;
NameMap *mNameMap;
bool mInDefaultUniform;
};
constexpr ImmutableString kFlippedPointCoordName = ImmutableString("flippedPointCoord");
constexpr ImmutableString kFlippedFragCoordName = ImmutableString("flippedFragCoord");
constexpr ImmutableString kEmulatedDepthRangeParams = ImmutableString("ANGLEDepthRangeParams");
constexpr ImmutableString kUniformsBlockName = ImmutableString("ANGLEUniformBlock");
constexpr ImmutableString kUniformsVarName = ImmutableString("ANGLEUniforms");
constexpr const char kViewport[] = "viewport";
constexpr const char kHalfRenderAreaHeight[] = "halfRenderAreaHeight";
constexpr const char kViewportYScale[] = "viewportYScale";
constexpr const char kNegViewportYScale[] = "negViewportYScale";
constexpr const char kXfbActiveUnpaused[] = "xfbActiveUnpaused";
constexpr const char kXfbBufferOffsets[] = "xfbBufferOffsets";
constexpr const char kAcbBufferOffsets[] = "acbBufferOffsets";
constexpr const char kDepthRange[] = "depthRange";
constexpr size_t kNumGraphicsDriverUniforms = 8;
constexpr std::array<const char *, kNumGraphicsDriverUniforms> kGraphicsDriverUniformNames = {
{kViewport, kHalfRenderAreaHeight, kViewportYScale, kNegViewportYScale, kXfbActiveUnpaused,
kXfbBufferOffsets, kAcbBufferOffsets, kDepthRange}};
constexpr size_t kNumComputeDriverUniforms = 1;
constexpr std::array<const char *, kNumComputeDriverUniforms> kComputeDriverUniformNames = {
{kAcbBufferOffsets}};
size_t FindFieldIndex(const TFieldList &fieldList, const char *fieldName)
{
for (size_t fieldIndex = 0; fieldIndex < fieldList.size(); ++fieldIndex)
{
if (strcmp(fieldList[fieldIndex]->name().data(), fieldName) == 0)
{
return fieldIndex;
}
}
UNREACHABLE();
return 0;
}
TIntermBinary *CreateDriverUniformRef(const TVariable *driverUniforms, const char *fieldName)
{
size_t fieldIndex =
FindFieldIndex(driverUniforms->getType().getInterfaceBlock()->fields(), fieldName);
TIntermSymbol *angleUniformsRef = new TIntermSymbol(driverUniforms);
TConstantUnion *uniformIndex = new TConstantUnion;
uniformIndex->setIConst(static_cast<int>(fieldIndex));
TIntermConstantUnion *indexRef =
new TIntermConstantUnion(uniformIndex, *StaticType::GetBasic<EbtInt>());
return new TIntermBinary(EOpIndexDirectInterfaceBlock, angleUniformsRef, indexRef);
}
// Replaces a builtin variable with a version that corrects the Y coordinate.
ANGLE_NO_DISCARD bool FlipBuiltinVariable(TCompiler *compiler,
TIntermBlock *root,
TIntermSequence *insertSequence,
TIntermTyped *viewportYScale,
TSymbolTable *symbolTable,
const TVariable *builtin,
const ImmutableString &flippedVariableName,
TIntermTyped *pivot)
{
// Create a symbol reference to 'builtin'.
TIntermSymbol *builtinRef = new TIntermSymbol(builtin);
// Create a swizzle to "builtin.y"
TVector<int> swizzleOffsetY = {1};
TIntermSwizzle *builtinY = new TIntermSwizzle(builtinRef, swizzleOffsetY);
// Create a symbol reference to our new variable that will hold the modified builtin.
const TType *type = StaticType::GetForVec<EbtFloat>(
EvqGlobal, static_cast<unsigned char>(builtin->getType().getNominalSize()));
TVariable *replacementVar =
new TVariable(symbolTable, flippedVariableName, type, SymbolType::AngleInternal);
DeclareGlobalVariable(root, replacementVar);
TIntermSymbol *flippedBuiltinRef = new TIntermSymbol(replacementVar);
// Use this new variable instead of 'builtin' everywhere.
if (!ReplaceVariable(compiler, root, builtin, replacementVar))
{
return false;
}
// Create the expression "(builtin.y - pivot) * viewportYScale + pivot
TIntermBinary *removePivot = new TIntermBinary(EOpSub, builtinY, pivot);
TIntermBinary *inverseY = new TIntermBinary(EOpMul, removePivot, viewportYScale);
TIntermBinary *plusPivot = new TIntermBinary(EOpAdd, inverseY, pivot->deepCopy());
// Create the corrected variable and copy the value of the original builtin.
TIntermSequence *sequence = new TIntermSequence();
sequence->push_back(builtinRef->deepCopy());
TIntermAggregate *aggregate = TIntermAggregate::CreateConstructor(builtin->getType(), sequence);
TIntermBinary *assignment = new TIntermBinary(EOpInitialize, flippedBuiltinRef, aggregate);
// Create an assignment to the replaced variable's y.
TIntermSwizzle *correctedY = new TIntermSwizzle(flippedBuiltinRef->deepCopy(), swizzleOffsetY);
TIntermBinary *assignToY = new TIntermBinary(EOpAssign, correctedY, plusPivot);
// Add this assigment at the beginning of the main function
insertSequence->insert(insertSequence->begin(), assignToY);
insertSequence->insert(insertSequence->begin(), assignment);
return compiler->validateAST(root);
}
TIntermSequence *GetMainSequence(TIntermBlock *root)
{
TIntermFunctionDefinition *main = FindMain(root);
return main->getBody()->getSequence();
}
// Declares a new variable to replace gl_DepthRange, its values are fed from a driver uniform.
ANGLE_NO_DISCARD bool ReplaceGLDepthRangeWithDriverUniform(TCompiler *compiler,
TIntermBlock *root,
const TVariable *driverUniforms,
TSymbolTable *symbolTable)
{
// Create a symbol reference to "gl_DepthRange"
const TVariable *depthRangeVar = static_cast<const TVariable *>(
symbolTable->findBuiltIn(ImmutableString("gl_DepthRange"), 0));
// ANGLEUniforms.depthRange
TIntermBinary *angleEmulatedDepthRangeRef = CreateDriverUniformRef(driverUniforms, kDepthRange);
// Use this variable instead of gl_DepthRange everywhere.
return ReplaceVariableWithTyped(compiler, root, depthRangeVar, angleEmulatedDepthRangeRef);
}
// This operation performs the viewport depth translation needed by Vulkan. In GL the viewport
// transformation is slightly different - see the GL 2.0 spec section "2.12.1 Controlling the
// Viewport". In Vulkan the corresponding spec section is currently "23.4. Coordinate
// Transformations".
// The equations reduce to an expression:
//
// z_vk = 0.5 * (w_gl + z_gl)
//
// where z_vk is the depth output of a Vulkan vertex shader and z_gl is the same for GL.
ANGLE_NO_DISCARD bool AppendVertexShaderDepthCorrectionToMain(TCompiler *compiler,
TIntermBlock *root,
TSymbolTable *symbolTable)
{
// Create a symbol reference to "gl_Position"
const TVariable *position = BuiltInVariable::gl_Position();
TIntermSymbol *positionRef = new TIntermSymbol(position);
// Create a swizzle to "gl_Position.z"
TVector<int> swizzleOffsetZ = {2};
TIntermSwizzle *positionZ = new TIntermSwizzle(positionRef, swizzleOffsetZ);
// Create a constant "0.5"
TIntermConstantUnion *oneHalf = CreateFloatNode(0.5f);
// Create a swizzle to "gl_Position.w"
TVector<int> swizzleOffsetW = {3};
TIntermSwizzle *positionW = new TIntermSwizzle(positionRef->deepCopy(), swizzleOffsetW);
// Create the expression "(gl_Position.z + gl_Position.w) * 0.5".
TIntermBinary *zPlusW = new TIntermBinary(EOpAdd, positionZ->deepCopy(), positionW->deepCopy());
TIntermBinary *halfZPlusW = new TIntermBinary(EOpMul, zPlusW, oneHalf->deepCopy());
// Create the assignment "gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5"
TIntermTyped *positionZLHS = positionZ->deepCopy();
TIntermBinary *assignment = new TIntermBinary(TOperator::EOpAssign, positionZLHS, halfZPlusW);
// Append the assignment as a statement at the end of the shader.
return RunAtTheEndOfShader(compiler, root, assignment, symbolTable);
}
ANGLE_NO_DISCARD bool AppendVertexShaderTransformFeedbackOutputToMain(TCompiler *compiler,
TIntermBlock *root,
TSymbolTable *symbolTable)
{
TVariable *xfbPlaceholder = new TVariable(symbolTable, ImmutableString("@@ XFB-OUT @@"),
new TType(), SymbolType::AngleInternal);
// Append the assignment as a statement at the end of the shader.
return RunAtTheEndOfShader(compiler, root, new TIntermSymbol(xfbPlaceholder), symbolTable);
}
// The Add*DriverUniformsToShader operation adds an internal uniform block to a shader. The driver
// block is used to implement Vulkan-specific features and workarounds. Returns the driver uniforms
// variable.
//
// There are Graphics and Compute variations as they require different uniforms.
const TVariable *AddGraphicsDriverUniformsToShader(TIntermBlock *root, TSymbolTable *symbolTable)
{
// Init the depth range type.
TFieldList *depthRangeParamsFields = new TFieldList();
depthRangeParamsFields->push_back(new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1, 1),
ImmutableString("near"), TSourceLoc(),
SymbolType::AngleInternal));
depthRangeParamsFields->push_back(new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1, 1),
ImmutableString("far"), TSourceLoc(),
SymbolType::AngleInternal));
depthRangeParamsFields->push_back(new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1, 1),
ImmutableString("diff"), TSourceLoc(),
SymbolType::AngleInternal));
// This additional field might be used by subclass such as TranslatorMetal.
depthRangeParamsFields->push_back(new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1, 1),
ImmutableString("reserved"), TSourceLoc(),
SymbolType::AngleInternal));
TStructure *emulatedDepthRangeParams = new TStructure(
symbolTable, kEmulatedDepthRangeParams, depthRangeParamsFields, SymbolType::AngleInternal);
TType *emulatedDepthRangeType = new TType(emulatedDepthRangeParams, false);
// Declare a global depth range variable.
TVariable *depthRangeVar =
new TVariable(symbolTable->nextUniqueId(), kEmptyImmutableString, SymbolType::Empty,
TExtension::UNDEFINED, emulatedDepthRangeType);
DeclareGlobalVariable(root, depthRangeVar);
// This field list mirrors the structure of GraphicsDriverUniforms in ContextVk.cpp.
TFieldList *driverFieldList = new TFieldList;
const std::array<TType *, kNumGraphicsDriverUniforms> kDriverUniformTypes = {{
new TType(EbtFloat, 4),
new TType(EbtFloat),
new TType(EbtFloat),
new TType(EbtFloat),
new TType(EbtUInt),
new TType(EbtInt, 4),
new TType(EbtUInt, 4),
emulatedDepthRangeType,
}};
for (size_t uniformIndex = 0; uniformIndex < kNumGraphicsDriverUniforms; ++uniformIndex)
{
TField *driverUniformField =
new TField(kDriverUniformTypes[uniformIndex],
ImmutableString(kGraphicsDriverUniformNames[uniformIndex]), TSourceLoc(),
SymbolType::AngleInternal);
driverFieldList->push_back(driverUniformField);
}
// Define a driver uniform block "ANGLEUniformBlock" with instance name "ANGLEUniforms".
return DeclareInterfaceBlock(root, symbolTable, driverFieldList, EvqUniform,
TMemoryQualifier::Create(), 0, kUniformsBlockName,
kUniformsVarName);
}
const TVariable *AddComputeDriverUniformsToShader(TIntermBlock *root, TSymbolTable *symbolTable)
{
// This field list mirrors the structure of ComputeDriverUniforms in ContextVk.cpp.
TFieldList *driverFieldList = new TFieldList;
const std::array<TType *, kNumComputeDriverUniforms> kDriverUniformTypes = {{
new TType(EbtUInt, 4),
}};
for (size_t uniformIndex = 0; uniformIndex < kNumComputeDriverUniforms; ++uniformIndex)
{
TField *driverUniformField =
new TField(kDriverUniformTypes[uniformIndex],
ImmutableString(kComputeDriverUniformNames[uniformIndex]), TSourceLoc(),
SymbolType::AngleInternal);
driverFieldList->push_back(driverUniformField);
}
// Define a driver uniform block "ANGLEUniformBlock" with instance name "ANGLEUniforms".
return DeclareInterfaceBlock(root, symbolTable, driverFieldList, EvqUniform,
TMemoryQualifier::Create(), 0, kUniformsBlockName,
kUniformsVarName);
}
TIntermPreprocessorDirective *GenerateLineRasterIfDef()
{
return new TIntermPreprocessorDirective(
PreprocessorDirective::Ifdef, ImmutableString("ANGLE_ENABLE_LINE_SEGMENT_RASTERIZATION"));
}
TIntermPreprocessorDirective *GenerateEndIf()
{
return new TIntermPreprocessorDirective(PreprocessorDirective::Endif, kEmptyImmutableString);
}
TVariable *AddANGLEPositionVaryingDeclaration(TIntermBlock *root,
TSymbolTable *symbolTable,
TQualifier qualifier)
{
TIntermSequence *insertSequence = new TIntermSequence;
insertSequence->push_back(GenerateLineRasterIfDef());
// Define a driver varying vec2 "ANGLEPosition".
TType *varyingType = new TType(EbtFloat, EbpMedium, qualifier, 2);
TVariable *varyingVar = new TVariable(symbolTable, ImmutableString("ANGLEPosition"),
varyingType, SymbolType::AngleInternal);
TIntermSymbol *varyingDeclarator = new TIntermSymbol(varyingVar);
TIntermDeclaration *varyingDecl = new TIntermDeclaration;
varyingDecl->appendDeclarator(varyingDeclarator);
insertSequence->push_back(varyingDecl);
insertSequence->push_back(GenerateEndIf());
// Insert the declarations before Main.
size_t mainIndex = FindMainIndex(root);
root->insertChildNodes(mainIndex, *insertSequence);
return varyingVar;
}
ANGLE_NO_DISCARD bool AddBresenhamEmulationVS(TCompiler *compiler,
TIntermBlock *root,
TSymbolTable *symbolTable,
const TVariable *driverUniforms)
{
TVariable *anglePosition = AddANGLEPositionVaryingDeclaration(root, symbolTable, EvqVaryingOut);
// Clamp position to subpixel grid.
// Do perspective divide (get normalized device coords)
// "vec2 ndc = gl_Position.xy / gl_Position.w"
const TType *vec2Type = StaticType::GetBasic<EbtFloat, 2>();
TIntermBinary *viewportRef = CreateDriverUniformRef(driverUniforms, kViewport);
TIntermSymbol *glPos = new TIntermSymbol(BuiltInVariable::gl_Position());
TIntermSwizzle *glPosXY = CreateSwizzle(glPos, 0, 1);
TIntermSwizzle *glPosW = CreateSwizzle(glPos->deepCopy(), 3);
TVariable *ndc = CreateTempVariable(symbolTable, vec2Type);
TIntermBinary *noPerspective = new TIntermBinary(EOpDiv, glPosXY, glPosW);
TIntermDeclaration *ndcDecl = CreateTempInitDeclarationNode(ndc, noPerspective);
// Convert NDC to window coordinates. According to Vulkan spec.
// "vec2 window = 0.5 * viewport.wh * (ndc + 1) + viewport.xy"
TIntermBinary *ndcPlusOne =
new TIntermBinary(EOpAdd, CreateTempSymbolNode(ndc), CreateFloatNode(1.0f));
TIntermSwizzle *viewportZW = CreateSwizzle(viewportRef, 2, 3);
TIntermBinary *ndcViewport = new TIntermBinary(EOpMul, viewportZW, ndcPlusOne);
TIntermBinary *ndcViewportHalf =
new TIntermBinary(EOpVectorTimesScalar, ndcViewport, CreateFloatNode(0.5f));
TIntermSwizzle *viewportXY = CreateSwizzle(viewportRef->deepCopy(), 0, 1);
TIntermBinary *ndcToWindow = new TIntermBinary(EOpAdd, ndcViewportHalf, viewportXY);
TVariable *windowCoords = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *windowDecl = CreateTempInitDeclarationNode(windowCoords, ndcToWindow);
// Clamp to subpixel grid.
// "vec2 clamped = round(window * 2^{subpixelBits}) / 2^{subpixelBits}"
int subpixelBits = compiler->getResources().SubPixelBits;
TIntermConstantUnion *scaleConstant = CreateFloatNode(static_cast<float>(1 << subpixelBits));
TIntermBinary *windowScaled =
new TIntermBinary(EOpVectorTimesScalar, CreateTempSymbolNode(windowCoords), scaleConstant);
TIntermUnary *windowRounded = new TIntermUnary(EOpRound, windowScaled, nullptr);
TIntermBinary *windowRoundedBack =
new TIntermBinary(EOpDiv, windowRounded, scaleConstant->deepCopy());
TVariable *clampedWindowCoords = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *clampedDecl =
CreateTempInitDeclarationNode(clampedWindowCoords, windowRoundedBack);
// Set varying.
// "ANGLEPosition = 2 * (clamped - viewport.xy) / viewport.wh - 1"
TIntermBinary *clampedOffset = new TIntermBinary(
EOpSub, CreateTempSymbolNode(clampedWindowCoords), viewportXY->deepCopy());
TIntermBinary *clampedOff2x =
new TIntermBinary(EOpVectorTimesScalar, clampedOffset, CreateFloatNode(2.0f));
TIntermBinary *clampedDivided = new TIntermBinary(EOpDiv, clampedOff2x, viewportZW->deepCopy());
TIntermBinary *clampedNDC = new TIntermBinary(EOpSub, clampedDivided, CreateFloatNode(1.0f));
TIntermSymbol *varyingRef = new TIntermSymbol(anglePosition);
TIntermBinary *varyingAssign = new TIntermBinary(EOpAssign, varyingRef, clampedNDC);
// Ensure the statements run at the end of the main() function.
TIntermFunctionDefinition *main = FindMain(root);
TIntermBlock *mainBody = main->getBody();
mainBody->appendStatement(GenerateLineRasterIfDef());
mainBody->appendStatement(ndcDecl);
mainBody->appendStatement(windowDecl);
mainBody->appendStatement(clampedDecl);
mainBody->appendStatement(varyingAssign);
mainBody->appendStatement(GenerateEndIf());
return compiler->validateAST(root);
}
ANGLE_NO_DISCARD bool InsertFragCoordCorrection(TCompiler *compiler,
TIntermBlock *root,
TIntermSequence *insertSequence,
TSymbolTable *symbolTable,
const TVariable *driverUniforms)
{
TIntermBinary *viewportYScale = CreateDriverUniformRef(driverUniforms, kViewportYScale);
TIntermBinary *pivot = CreateDriverUniformRef(driverUniforms, kHalfRenderAreaHeight);
return FlipBuiltinVariable(compiler, root, insertSequence, viewportYScale, symbolTable,
BuiltInVariable::gl_FragCoord(), kFlippedFragCoordName, pivot);
}
// This block adds OpenGL line segment rasterization emulation behind #ifdef guards.
// OpenGL's simple rasterization algorithm is a strict subset of the pixels generated by the Vulkan
// algorithm. Thus we can implement a shader patch that rejects pixels if they would not be
// generated by the OpenGL algorithm. OpenGL's algorithm is similar to Bresenham's line algorithm.
// It is implemented for each pixel by testing if the line segment crosses a small diamond inside
// the pixel. See the OpenGL ES 2.0 spec section "3.4.1 Basic Line Segment Rasterization". Also
// see the Vulkan spec section "24.6.1. Basic Line Segment Rasterization":
// https://khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#primsrast-lines-basic
//
// Using trigonometric math and the fact that we know the size of the diamond we can derive a
// formula to test if the line segment crosses the pixel center. gl_FragCoord is used along with an
// internal position varying to determine the inputs to the formula.
//
// The implementation of the test is similar to the following pseudocode:
//
// void main()
// {
// vec2 p = (((((ANGLEPosition.xy) * 0.5) + 0.5) * viewport.zw) + viewport.xy);
// vec2 d = dFdx(p) + dFdy(p);
// vec2 f = gl_FragCoord.xy;
// vec2 p_ = p.yx;
// vec2 d_ = d.yx;
// vec2 f_ = f.yx;
//
// vec2 i = abs(p - f + (d / d_) * (f_ - p_));
//
// if (i.x > (0.5 + e) && i.y > (0.5 + e))
// discard;
// <otherwise run fragment shader main>
// }
//
// Note this emulation can not provide fully correct rasterization. See the docs more more info.
ANGLE_NO_DISCARD bool AddBresenhamEmulationFS(TCompiler *compiler,
TInfoSinkBase &sink,
TIntermBlock *root,
TSymbolTable *symbolTable,
const TVariable *driverUniforms,
bool usesFragCoord)
{
TVariable *anglePosition = AddANGLEPositionVaryingDeclaration(root, symbolTable, EvqVaryingIn);
const TType *vec2Type = StaticType::GetBasic<EbtFloat, 2>();
TIntermBinary *viewportRef = CreateDriverUniformRef(driverUniforms, kViewport);
// vec2 p = ((ANGLEPosition * 0.5) + 0.5) * viewport.zw + viewport.xy
TIntermSwizzle *viewportXY = CreateSwizzle(viewportRef->deepCopy(), 0, 1);
TIntermSwizzle *viewportZW = CreateSwizzle(viewportRef, 2, 3);
TIntermSymbol *position = new TIntermSymbol(anglePosition);
TIntermConstantUnion *oneHalf = CreateFloatNode(0.5f);
TIntermBinary *halfPosition = new TIntermBinary(EOpVectorTimesScalar, position, oneHalf);
TIntermBinary *offsetHalfPosition =
new TIntermBinary(EOpAdd, halfPosition, oneHalf->deepCopy());
TIntermBinary *scaledPosition = new TIntermBinary(EOpMul, offsetHalfPosition, viewportZW);
TIntermBinary *windowPosition = new TIntermBinary(EOpAdd, scaledPosition, viewportXY);
TVariable *p = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *pDecl = CreateTempInitDeclarationNode(p, windowPosition);
// vec2 d = dFdx(p) + dFdy(p)
TIntermUnary *dfdx = new TIntermUnary(EOpDFdx, new TIntermSymbol(p), nullptr);
TIntermUnary *dfdy = new TIntermUnary(EOpDFdy, new TIntermSymbol(p), nullptr);
TIntermBinary *dfsum = new TIntermBinary(EOpAdd, dfdx, dfdy);
TVariable *d = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *dDecl = CreateTempInitDeclarationNode(d, dfsum);
// vec2 f = gl_FragCoord.xy
const TVariable *fragCoord = BuiltInVariable::gl_FragCoord();
TIntermSwizzle *fragCoordXY = CreateSwizzle(new TIntermSymbol(fragCoord), 0, 1);
TVariable *f = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *fDecl = CreateTempInitDeclarationNode(f, fragCoordXY);
// vec2 p_ = p.yx
TIntermSwizzle *pyx = CreateSwizzle(new TIntermSymbol(p), 1, 0);
TVariable *p_ = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *p_decl = CreateTempInitDeclarationNode(p_, pyx);
// vec2 d_ = d.yx
TIntermSwizzle *dyx = CreateSwizzle(new TIntermSymbol(d), 1, 0);
TVariable *d_ = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *d_decl = CreateTempInitDeclarationNode(d_, dyx);
// vec2 f_ = f.yx
TIntermSwizzle *fyx = CreateSwizzle(new TIntermSymbol(f), 1, 0);
TVariable *f_ = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *f_decl = CreateTempInitDeclarationNode(f_, fyx);
// vec2 i = abs(p - f + (d/d_) * (f_ - p_))
TIntermBinary *dd = new TIntermBinary(EOpDiv, new TIntermSymbol(d), new TIntermSymbol(d_));
TIntermBinary *fp = new TIntermBinary(EOpSub, new TIntermSymbol(f_), new TIntermSymbol(p_));
TIntermBinary *ddfp = new TIntermBinary(EOpMul, dd, fp);
TIntermBinary *pf = new TIntermBinary(EOpSub, new TIntermSymbol(p), new TIntermSymbol(f));
TIntermBinary *expr = new TIntermBinary(EOpAdd, pf, ddfp);
TIntermUnary *absd = new TIntermUnary(EOpAbs, expr, nullptr);
TVariable *i = CreateTempVariable(symbolTable, vec2Type);
TIntermDeclaration *iDecl = CreateTempInitDeclarationNode(i, absd);
// Using a small epsilon value ensures that we don't suffer from numerical instability when
// lines are exactly vertical or horizontal.
static constexpr float kEpsilon = 0.0001f;
static constexpr float kThreshold = 0.5 + kEpsilon;
TIntermConstantUnion *threshold = CreateFloatNode(kThreshold);
// if (i.x > (0.5 + e) && i.y > (0.5 + e))
TIntermSwizzle *ix = CreateSwizzle(new TIntermSymbol(i), 0);
TIntermBinary *checkX = new TIntermBinary(EOpGreaterThan, ix, threshold);
TIntermSwizzle *iy = CreateSwizzle(new TIntermSymbol(i), 1);
TIntermBinary *checkY = new TIntermBinary(EOpGreaterThan, iy, threshold->deepCopy());
TIntermBinary *checkXY = new TIntermBinary(EOpLogicalAnd, checkX, checkY);
// discard
TIntermBranch *discard = new TIntermBranch(EOpKill, nullptr);
TIntermBlock *discardBlock = new TIntermBlock;
discardBlock->appendStatement(discard);
TIntermIfElse *ifStatement = new TIntermIfElse(checkXY, discardBlock, nullptr);
// Ensure the line raster code runs at the beginning of main().
TIntermFunctionDefinition *main = FindMain(root);
TIntermSequence *mainSequence = main->getBody()->getSequence();
ASSERT(mainSequence);
std::array<TIntermNode *, 9> nodes = {
{pDecl, dDecl, fDecl, p_decl, d_decl, f_decl, iDecl, ifStatement, GenerateEndIf()}};
mainSequence->insert(mainSequence->begin(), nodes.begin(), nodes.end());
// If the shader does not use frag coord, we should insert it inside the ifdef.
if (!usesFragCoord)
{
if (!InsertFragCoordCorrection(compiler, root, mainSequence, symbolTable, driverUniforms))
{
return false;
}
}
mainSequence->insert(mainSequence->begin(), GenerateLineRasterIfDef());
return compiler->validateAST(root);
}
} // anonymous namespace
TranslatorVulkan::TranslatorVulkan(sh::GLenum type, ShShaderSpec spec)
: TCompiler(type, spec, SH_GLSL_450_CORE_OUTPUT)
{}
bool TranslatorVulkan::translateImpl(TIntermBlock *root,
ShCompileOptions compileOptions,
PerformanceDiagnostics * /*perfDiagnostics*/,
const TVariable **driverUniformsOut,
TOutputVulkanGLSL *outputGLSL)
{
TInfoSinkBase &sink = getInfoSink().obj;
if (getShaderType() == GL_VERTEX_SHADER)
{
if (!ShaderBuiltinsWorkaround(this, root, &getSymbolTable(), compileOptions))
{
return false;
}
}
sink << "#version 450 core\n";
// Write out default uniforms into a uniform block assigned to a specific set/binding.
int defaultUniformCount = 0;
int aggregateTypesUsedForUniforms = 0;
int atomicCounterCount = 0;
for (const auto &uniform : getUniforms())
{
if (!uniform.isBuiltIn() && uniform.staticUse && !gl::IsOpaqueType(uniform.type))
{
++defaultUniformCount;
}
if (uniform.isStruct() || uniform.isArrayOfArrays())
{
++aggregateTypesUsedForUniforms;
}
if (gl::IsAtomicCounterType(uniform.type))
{
++atomicCounterCount;
}
}
// TODO(lucferron): Refactor this function to do fewer tree traversals.
// http://anglebug.com/2461
if (aggregateTypesUsedForUniforms > 0)
{
if (!NameEmbeddedStructUniforms(this, root, &getSymbolTable()))
{
return false;
}
bool rewriteStructSamplersResult;
int removedUniformsCount;
if (compileOptions & SH_USE_OLD_REWRITE_STRUCT_SAMPLERS)
{
rewriteStructSamplersResult =
RewriteStructSamplersOld(this, root, &getSymbolTable(), &removedUniformsCount);
}
else
{
rewriteStructSamplersResult =
RewriteStructSamplers(this, root, &getSymbolTable(), &removedUniformsCount);
}
if (!rewriteStructSamplersResult)
{
return false;
}
defaultUniformCount -= removedUniformsCount;
// We must declare the struct types before using them.
DeclareStructTypesTraverser structTypesTraverser(outputGLSL);
root->traverse(&structTypesTraverser);
if (!structTypesTraverser.updateTree(this, root))
{
return false;
}
}
// Rewrite samplerCubes as sampler2DArrays. This must be done after rewriting struct samplers
// as it doesn't expect that.
if (compileOptions & SH_EMULATE_SEAMFUL_CUBE_MAP_SAMPLING)
{
if (!RewriteCubeMapSamplersAs2DArray(this, root, &getSymbolTable(),
getShaderType() == GL_FRAGMENT_SHADER))
{
return false;
}
}
if (getShaderVersion() >= 300)
{
// Make sure every uniform buffer variable has a name. The following transformation relies
// on this.
if (!NameNamelessUniformBuffers(this, root, &getSymbolTable()))
{
return false;
}
// In GLES3+, matrices can be declared row- or column-major. Transform all to column-major
// as interface block field layout qualifiers are not allowed. This should be done after
// samplers are taken out of structs (as structs could be rewritten), but before uniforms
// are collected in a uniform buffer as they are handled especially.
if (!RewriteRowMajorMatrices(this, root, &getSymbolTable()))
{
return false;
}
}
if (defaultUniformCount > 0)
{
sink << "\n@@ LAYOUT-defaultUniforms(std140) @@ uniform defaultUniforms\n{\n";
DeclareDefaultUniformsTraverser defaultTraverser(&sink, getHashFunction(), &getNameMap());
root->traverse(&defaultTraverser);
if (!defaultTraverser.updateTree(this, root))
{
return false;
}
sink << "};\n";
}
const TVariable *driverUniforms;
if (getShaderType() == GL_COMPUTE_SHADER)
{
driverUniforms = AddComputeDriverUniformsToShader(root, &getSymbolTable());
}
else
{
driverUniforms = AddGraphicsDriverUniformsToShader(root, &getSymbolTable());
}
if (atomicCounterCount > 0)
{
// ANGLEUniforms.acbBufferOffsets
const TIntermBinary *acbBufferOffsets =
CreateDriverUniformRef(driverUniforms, kAcbBufferOffsets);
if (!RewriteAtomicCounters(this, root, &getSymbolTable(), acbBufferOffsets))
{
return false;
}
}
if (getShaderType() != GL_COMPUTE_SHADER)
{
if (!ReplaceGLDepthRangeWithDriverUniform(this, root, driverUniforms, &getSymbolTable()))
{
return false;
}
}
// Declare gl_FragColor and glFragData as webgl_FragColor and webgl_FragData
// if it's core profile shaders and they are used.
if (getShaderType() == GL_FRAGMENT_SHADER)
{
bool usesPointCoord = false;
bool usesFragCoord = false;
// Search for the gl_PointCoord usage, if its used, we need to flip the y coordinate.
for (const ShaderVariable &inputVarying : mInputVaryings)
{
if (!inputVarying.isBuiltIn())
{
continue;
}
if (inputVarying.name == "gl_PointCoord")
{
usesPointCoord = true;
break;
}
if (inputVarying.name == "gl_FragCoord")
{
usesFragCoord = true;
break;
}
}
if (!AddBresenhamEmulationFS(this, sink, root, &getSymbolTable(), driverUniforms,
usesFragCoord))
{
return false;
}
bool hasGLFragColor = false;
bool hasGLFragData = false;
for (const ShaderVariable &outputVar : mOutputVariables)
{
if (outputVar.name == "gl_FragColor")
{
ASSERT(!hasGLFragColor);
hasGLFragColor = true;
continue;
}
else if (outputVar.name == "gl_FragData")
{
ASSERT(!hasGLFragData);
hasGLFragData = true;
continue;
}
}
ASSERT(!(hasGLFragColor && hasGLFragData));
if (hasGLFragColor)
{
sink << "layout(location = 0) out vec4 webgl_FragColor;\n";
}
if (hasGLFragData)
{
sink << "layout(location = 0) out vec4 webgl_FragData[gl_MaxDrawBuffers];\n";
}
if (usesPointCoord)
{
TIntermBinary *viewportYScale =
CreateDriverUniformRef(driverUniforms, kNegViewportYScale);
TIntermConstantUnion *pivot = CreateFloatNode(0.5f);
if (!FlipBuiltinVariable(this, root, GetMainSequence(root), viewportYScale,
&getSymbolTable(), BuiltInVariable::gl_PointCoord(),
kFlippedPointCoordName, pivot))
{
return false;
}
}
if (usesFragCoord)
{
if (!InsertFragCoordCorrection(this, root, GetMainSequence(root), &getSymbolTable(),
driverUniforms))
{
return false;
}
}
{
TIntermBinary *viewportYScale = CreateDriverUniformRef(driverUniforms, kViewportYScale);
if (!RewriteDfdy(this, root, getSymbolTable(), getShaderVersion(), viewportYScale))
{
return false;
}
}
}
else if (getShaderType() == GL_VERTEX_SHADER)
{
if (!AddBresenhamEmulationVS(this, root, &getSymbolTable(), driverUniforms))
{
return false;
}
// Add a macro to declare transform feedback buffers.
sink << "@@ XFB-DECL @@\n\n";
// Append a macro for transform feedback substitution prior to modifying depth.
if (!AppendVertexShaderTransformFeedbackOutputToMain(this, root, &getSymbolTable()))
{
return false;
}
// Append depth range translation to main.
if (!transformDepthBeforeCorrection(root, driverUniforms))
{
return false;
}
if (!AppendVertexShaderDepthCorrectionToMain(this, root, &getSymbolTable()))
{
return false;
}
}
else if (getShaderType() == GL_GEOMETRY_SHADER)
{
WriteGeometryShaderLayoutQualifiers(
sink, getGeometryShaderInputPrimitiveType(), getGeometryShaderInvocations(),
getGeometryShaderOutputPrimitiveType(), getGeometryShaderMaxVertices());
}
else
{
ASSERT(getShaderType() == GL_COMPUTE_SHADER);
EmitWorkGroupSizeGLSL(*this, sink);
}
if (!validateAST(root))
{
return false;
}
if (driverUniformsOut)
{
*driverUniformsOut = driverUniforms;
}
return true;
}
bool TranslatorVulkan::translate(TIntermBlock *root,
ShCompileOptions compileOptions,
PerformanceDiagnostics *perfDiagnostics)
{
TInfoSinkBase &sink = getInfoSink().obj;
TOutputVulkanGLSL outputGLSL(sink, getArrayIndexClampingStrategy(), getHashFunction(),
getNameMap(), &getSymbolTable(), getShaderType(),
getShaderVersion(), getOutputType(), compileOptions);
if (!translateImpl(root, compileOptions, perfDiagnostics, nullptr, &outputGLSL))
{
return false;
}
// Write translated shader.
root->traverse(&outputGLSL);
return true;
}
bool TranslatorVulkan::shouldFlattenPragmaStdglInvariantAll()
{
// Not necessary.
return false;
}
TIntermBinary *TranslatorVulkan::getDriverUniformNegViewportYScaleRef(
const TVariable *driverUniforms) const
{
return CreateDriverUniformRef(driverUniforms, kNegViewportYScale);
}
TIntermBinary *TranslatorVulkan::getDriverUniformDepthRangeReservedFieldRef(
const TVariable *driverUniforms) const
{
TIntermBinary *depthRange = CreateDriverUniformRef(driverUniforms, kDepthRange);
return new TIntermBinary(EOpIndexDirectStruct, depthRange, CreateIndexNode(3));
}
} // namespace sh