Hash :
e2e406c3
Author :
Date :
2016-06-02T13:04:10
Add base::numerics for safe math and conversions. This replaces are "IsUnsignedXXXSafe" family of methods. Also add overflow checks to unpack block sizes. BUG=angleproject:1397 Change-Id: Ib47be149b0486c70f795b0d0f8899441faac9340 Reviewed-on: https://chromium-review.googlesource.com/348062 Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mathutil_unittest:
// Unit tests for the utils defined in mathutil.h
//
#include "mathutil.h"
#include <gtest/gtest.h>
using namespace gl;
namespace
{
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions.
// For floats f1 and f2, unpackSnorm2x16(packSnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackSnorm2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f }
};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackSnorm2x16(packSnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packSnorm2x16 and unpackSnorm2x16 functions with infinity values,
// result should be clamped to [-1, 1].
TEST(MathUtilTest, packAndUnpackSnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
unpackSnorm2x16(packSnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(-1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(-1.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions.
// For floats f1 and f2, unpackUnorm2x16(packUnorm2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackUnorm2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f }
};
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackUnorm2x16(packUnorm2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
float expected = input[i][0] < 0.0f ? 0.0f : input[i][0];
EXPECT_NEAR(expected, outputVal1, floatFaultTolerance);
expected = input[i][1] < 0.0f ? 0.0f : input[i][1];
EXPECT_NEAR(expected, outputVal2, floatFaultTolerance);
}
}
// Test the correctness of packUnorm2x16 and unpackUnorm2x16 functions with infinity values,
// result should be clamped to [0, 1].
TEST(MathUtilTest, packAndUnpackUnorm2x16Infinity)
{
const float floatFaultTolerance = 0.0001f;
float outputVal1, outputVal2;
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(1.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(1.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
unpackUnorm2x16(packUnorm2x16(-std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity()), &outputVal1, &outputVal2);
EXPECT_NEAR(0.0f, outputVal1, floatFaultTolerance);
EXPECT_NEAR(0.0f, outputVal2, floatFaultTolerance);
}
// Test the correctness of packHalf2x16 and unpackHalf2x16 functions.
// For floats f1 and f2, unpackHalf2x16(packHalf2x16(f1, f2)) should be same as f1 and f2.
TEST(MathUtilTest, packAndUnpackHalf2x16)
{
const float input[8][2] =
{
{ 0.0f, 0.0f },
{ 1.0f, 1.0f },
{ -1.0f, 1.0f },
{ -1.0f, -1.0f },
{ 0.875f, 0.75f },
{ 0.00392f, -0.99215f },
{ -0.000675f, 0.004954f },
{ -0.6937f, -0.02146f },
};
const float floatFaultTolerance = 0.0005f;
float outputVal1, outputVal2;
for (size_t i = 0; i < 8; i++)
{
unpackHalf2x16(packHalf2x16(input[i][0], input[i][1]), &outputVal1, &outputVal2);
EXPECT_NEAR(input[i][0], outputVal1, floatFaultTolerance);
EXPECT_NEAR(input[i][1], outputVal2, floatFaultTolerance);
}
}
// Test the correctness of gl::isNaN function.
TEST(MathUtilTest, isNaN)
{
EXPECT_TRUE(isNaN(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_TRUE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isNaN(0.0f));
EXPECT_FALSE(isNaN(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isNaN(bitCast<float>(0xffu << 23)));
}
// Test the correctness of gl::isInf function.
TEST(MathUtilTest, isInf)
{
EXPECT_TRUE(isInf(bitCast<float>(0xffu << 23)));
EXPECT_TRUE(isInf(bitCast<float>(1u << 31 | 0xffu << 23)));
EXPECT_FALSE(isInf(0.0f));
EXPECT_FALSE(isInf(bitCast<float>(0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 1u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x400000u)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xffu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(0xfeu << 23 | 0x7fffffu)));
EXPECT_FALSE(isInf(bitCast<float>(1u << 31 | 0xfeu << 23 | 0x7fffffu)));
}
TEST(MathUtilTest, CountLeadingZeros)
{
for (unsigned int i = 0; i < 32u; ++i)
{
uint32_t iLeadingZeros = 1u << (31u - i);
EXPECT_EQ(i, CountLeadingZeros(iLeadingZeros));
}
EXPECT_EQ(32u, CountLeadingZeros(0));
}
// Some basic tests. Tests that rounding up zero produces zero.
TEST(MathUtilTest, BasicRoundUp)
{
EXPECT_EQ(0u, rx::roundUp(0u, 4u));
EXPECT_EQ(4u, rx::roundUp(1u, 4u));
EXPECT_EQ(4u, rx::roundUp(4u, 4u));
}
// Test that rounding up zero produces zero for checked ints.
TEST(MathUtilTest, CheckedRoundUpZero)
{
auto checkedValue = rx::CheckedRoundUp(0u, 4u);
ASSERT_TRUE(checkedValue.IsValid());
ASSERT_EQ(0u, checkedValue.ValueOrDie());
}
// Test out-of-bounds with CheckedRoundUp
TEST(MathUtilTest, CheckedRoundUpInvalid)
{
// The answer to this query is out of bounds.
auto limit = std::numeric_limits<unsigned int>::max();
auto checkedValue = rx::CheckedRoundUp(limit, limit - 1);
ASSERT_FALSE(checkedValue.IsValid());
// Our implementation can't handle this query, despite the parameters being in range.
auto checkedLimit = rx::CheckedRoundUp(limit - 1, limit);
ASSERT_FALSE(checkedLimit.IsValid());
}
} // anonymous namespace