Hash :
c991eb22
Author :
Date :
2022-12-01T14:05:07
Move the anglebase folder up a level This code originates from Chromium's base/ directory so it doesn't have to be under a third-party folder. Bug: b/260093525 Change-Id: I0bf6950095c685f36c5c237093980a64cf6e74f0 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/4068339 Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Nicolas Capens <nicolascapens@google.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#include <stdint.h>
#include <limits>
#include <type_traits>
#if defined(__GNUC__) || defined(__clang__)
# define BASE_NUMERICS_LIKELY(x) __builtin_expect(!!(x), 1)
# define BASE_NUMERICS_UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
# define BASE_NUMERICS_LIKELY(x) (x)
# define BASE_NUMERICS_UNLIKELY(x) (x)
#endif
namespace angle
{
namespace base
{
namespace internal
{
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
struct MaxExponent
{
static const int value = std::is_floating_point<NumericType>::value
? std::numeric_limits<NumericType>::max_exponent
: std::numeric_limits<NumericType>::digits + 1;
};
// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
struct IntegerBitsPlusSign
{
static const int value =
std::numeric_limits<NumericType>::digits + std::is_signed<NumericType>::value;
};
// Helper templates for integer manipulations.
template <typename Integer>
struct PositionOfSignBit
{
static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
};
// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T, typename std::enable_if<std::is_signed<T>::value>::type * = nullptr>
constexpr bool IsValueNegative(T value)
{
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return value < 0;
}
template <typename T, typename std::enable_if<!std::is_signed<T>::value>::type * = nullptr>
constexpr bool IsValueNegative(T)
{
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return false;
}
// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
constexpr typename std::make_signed<T>::type ConditionalNegate(T x, bool is_negative)
{
static_assert(std::is_integral<T>::value, "Type must be integral");
using SignedT = typename std::make_signed<T>::type;
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<SignedT>((static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
}
// This performs a safe, absolute value via unsigned overflow.
template <typename T>
constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value)
{
static_assert(std::is_integral<T>::value, "Type must be integral");
using UnsignedT = typename std::make_unsigned<T>::type;
return IsValueNegative(value) ? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value))
: static_cast<UnsignedT>(value);
}
// This allows us to switch paths on known compile-time constants.
#if defined(__clang__) || defined(__GNUC__)
constexpr bool CanDetectCompileTimeConstant()
{
return true;
}
template <typename T>
constexpr bool IsCompileTimeConstant(const T v)
{
return __builtin_constant_p(v);
}
#else
constexpr bool CanDetectCompileTimeConstant()
{
return false;
}
template <typename T>
constexpr bool IsCompileTimeConstant(const T)
{
return false;
}
#endif
template <typename T>
constexpr bool MustTreatAsConstexpr(const T v)
{
// Either we can't detect a compile-time constant, and must always use the
// constexpr path, or we know we have a compile-time constant.
return !CanDetectCompileTimeConstant() || IsCompileTimeConstant(v);
}
// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure
{
template <typename T>
static T HandleFailure()
{
#if defined(_MSC_VER)
__debugbreak();
#elif defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#else
((void)(*(volatile char *)0 = 0));
#endif
return T();
}
};
enum IntegerRepresentation
{
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED
};
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum NumericRangeRepresentation
{
NUMERIC_RANGE_NOT_CONTAINED,
NUMERIC_RANGE_CONTAINED
};
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
template <
typename Dst,
typename Src,
IntegerRepresentation DstSign = std::is_signed<Dst>::value ? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value ? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED>
struct StaticDstRangeRelationToSrcRange;
// Same sign: Dst is guaranteed to contain Src only if its range is equal or
// larger.
template <typename Dst, typename Src, IntegerRepresentation Sign>
struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign>
{
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value >= MaxExponent<Src>::value ? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED>
{
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value > MaxExponent<Src>::value ? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED>
{
static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
};
// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck
{
public:
constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
: is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound)
{}
constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {}
constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
constexpr bool operator==(const RangeCheck rhs) const
{
return is_underflow_ == rhs.is_underflow_ && is_overflow_ == rhs.is_overflow_;
}
constexpr bool operator!=(const RangeCheck rhs) const { return !(*this == rhs); }
private:
// Do not change the order of these member variables. The integral conversion
// optimization depends on this exact order.
const bool is_underflow_;
const bool is_overflow_;
};
// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
// 1. Integral maximum is always one less than a power of two, so it must be
// truncated to fit the mantissa of the floating point. The direction of
// rounding is implementation defined, but by default it's always IEEE
// floats, which round to nearest and thus result in a value of larger
// magnitude than the integral value.
// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
// // is 4294967295u.
// 2. If the floating point value is equal to the promoted integral maximum
// value, a range check will erroneously pass.
// Example: (4294967296f <= 4294967295u) // This is true due to a precision
// // loss in rounding up to float.
// 3. When the floating point value is then converted to an integral, the
// resulting value is out of range for the target integral type and
// thus is implementation defined.
// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange
{
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = typename std::numeric_limits<Dst>;
// Computes the mask required to make an accurate comparison between types.
static const int kShift =
(MaxExponent<Src>::value > MaxExponent<Dst>::value && SrcLimits::digits < DstLimits::digits)
? (DstLimits::digits - SrcLimits::digits)
: 0;
template <typename T, typename std::enable_if<std::is_integral<T>::value>::type * = nullptr>
// Masks out the integer bits that are beyond the precision of the
// intermediate type used for comparison.
static constexpr T Adjust(T value)
{
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift < DstLimits::digits, "");
return static_cast<T>(ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
IsValueNegative(value)));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type * = nullptr>
static constexpr T Adjust(T value)
{
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift == 0, "");
return value;
}
static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};
template <
typename Dst,
typename Src,
template <typename>
class Bounds,
IntegerRepresentation DstSign = std::is_signed<Dst>::value ? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value ? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
NumericRangeRepresentation DstRange = StaticDstRangeRelationToSrcRange<Dst, Src>::value>
struct DstRangeRelationToSrcRangeImpl;
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Same sign narrowing: The range is contained for normal limits.
template <typename Dst,
typename Src,
template <typename>
class Bounds,
IntegerRepresentation DstSign,
IntegerRepresentation SrcSign>
struct DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds, DstSign, SrcSign, NUMERIC_RANGE_CONTAINED>
{
static constexpr RangeCheck Check(Src value)
{
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
static_cast<Dst>(value) >= DstLimits::lowest(),
static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
static_cast<Dst>(value) <= DstLimits::max());
}
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED>
{
static constexpr RangeCheck Check(Src value)
{
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED>
{
static constexpr RangeCheck Check(Src value)
{
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
value <= DstLimits::max());
}
};
// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED>
{
static constexpr RangeCheck Check(Src value)
{
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(
DstLimits::lowest() <= Dst(0) ||
static_cast<Promotion>(value) >= static_cast<Promotion>(DstLimits::lowest()),
static_cast<Promotion>(value) <= static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED>
{
static constexpr RangeCheck Check(Src value)
{
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
bool ge_zero = false;
// Converting floating-point to integer will discard fractional part, so
// values in (-1.0, -0.0) will truncate to 0 and fit in Dst.
if (std::is_floating_point<Src>::value)
{
ge_zero = value > Src(-1);
}
else
{
ge_zero = value >= Src(0);
}
return RangeCheck(
ge_zero && (DstLimits::lowest() == 0 || static_cast<Dst>(value) >= DstLimits::lowest()),
static_cast<Promotion>(SrcLimits::max()) <= static_cast<Promotion>(DstLimits::max()) ||
static_cast<Promotion>(value) <= static_cast<Promotion>(DstLimits::max()));
}
};
// Simple wrapper for statically checking if a type's range is contained.
template <typename Dst, typename Src>
struct IsTypeInRangeForNumericType
{
static const bool value =
StaticDstRangeRelationToSrcRange<Dst, Src>::value == NUMERIC_RANGE_CONTAINED;
};
template <typename Dst, template <typename> class Bounds = std::numeric_limits, typename Src>
constexpr RangeCheck DstRangeRelationToSrcRange(Src value)
{
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSign;
#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
template <> \
struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, std::is_signed<I>::value> \
{ \
using type = I; \
}
INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
"Max integer size not supported for this toolchain.");
template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
struct TwiceWiderInteger
{
using type =
typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2, IsSigned>::type;
};
enum ArithmeticPromotionCategory
{
LEFT_PROMOTION, // Use the type of the left-hand argument.
RIGHT_PROMOTION // Use the type of the right-hand argument.
};
// Determines the type that can represent the largest positive value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
(MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) ? LEFT_PROMOTION
: RIGHT_PROMOTION>
struct MaxExponentPromotion;
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION>
{
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION>
{
using type = Rhs;
};
// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
std::is_signed<Lhs>::value
? (std::is_signed<Rhs>::value
? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value ? LEFT_PROMOTION
: RIGHT_PROMOTION)
: LEFT_PROMOTION)
: (std::is_signed<Rhs>::value
? RIGHT_PROMOTION
: (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value ? LEFT_PROMOTION
: RIGHT_PROMOTION))>
struct LowestValuePromotion;
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION>
{
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION>
{
using type = Rhs;
};
// Determines the type that is best able to represent an arithmetic result.
template <typename Lhs,
typename Rhs = Lhs,
bool is_intmax_type =
std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value
&&IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::value ==
IntegerBitsPlusSign<intmax_t>::value,
bool is_max_exponent =
StaticDstRangeRelationToSrcRange<typename MaxExponentPromotion<Lhs, Rhs>::type,
Lhs>::value ==
NUMERIC_RANGE_CONTAINED
&&StaticDstRangeRelationToSrcRange<typename MaxExponentPromotion<Lhs, Rhs>::type,
Rhs>::value == NUMERIC_RANGE_CONTAINED>
struct BigEnoughPromotion;
// The side with the max exponent is big enough.
template <typename Lhs, typename Rhs, bool is_intmax_type>
struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true>
{
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = true;
};
// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, false, false>
{
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value || std::is_signed<Rhs>::value>::type;
static const bool is_contained = true;
};
// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, true, false>
{
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
struct IsIntegerArithmeticSafe
{
static const bool value =
!std::is_floating_point<T>::value && !std::is_floating_point<Lhs>::value &&
!std::is_floating_point<Rhs>::value &&
std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
};
// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs,
typename Rhs,
bool is_promotion_possible = IsIntegerArithmeticSafe<
typename std::conditional<std::is_signed<Lhs>::value || std::is_signed<Rhs>::value,
intmax_t,
uintmax_t>::type,
typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
struct FastIntegerArithmeticPromotion;
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, true>
{
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value || std::is_signed<Rhs>::value>::type;
static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
static const bool is_contained = true;
};
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, false>
{
using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// Extracts the underlying type from an enum.
template <typename T, bool is_enum = std::is_enum<T>::value>
struct ArithmeticOrUnderlyingEnum;
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, true>
{
using type = typename std::underlying_type<T>::type;
static const bool value = std::is_arithmetic<type>::value;
};
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, false>
{
using type = T;
static const bool value = std::is_arithmetic<type>::value;
};
// The following are helper templates used in the CheckedNumeric class.
template <typename T>
class CheckedNumeric;
template <typename T>
class ClampedNumeric;
template <typename T>
class StrictNumeric;
// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
struct UnderlyingType
{
using type = typename ArithmeticOrUnderlyingEnum<T>::type;
static const bool is_numeric = std::is_arithmetic<type>::value;
static const bool is_checked = false;
static const bool is_clamped = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<CheckedNumeric<T>>
{
using type = T;
static const bool is_numeric = true;
static const bool is_checked = true;
static const bool is_clamped = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<ClampedNumeric<T>>
{
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_clamped = true;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<StrictNumeric<T>>
{
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_clamped = false;
static const bool is_strict = true;
};
template <typename L, typename R>
struct IsCheckedOp
{
static const bool value = UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsClampedOp
{
static const bool value = UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped) &&
!(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsStrictOp
{
static const bool value = UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict) &&
!(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked) &&
!(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped);
};
// as_signed<> returns the supplied integral value (or integral castable
// Numeric template) cast as a signed integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
template <typename Src>
constexpr typename std::make_signed<typename base::internal::UnderlyingType<Src>::type>::type
as_signed(const Src value)
{
static_assert(std::is_integral<decltype(as_signed(value))>::value,
"Argument must be a signed or unsigned integer type.");
return static_cast<decltype(as_signed(value))>(value);
}
// as_unsigned<> returns the supplied integral value (or integral castable
// Numeric template) cast as an unsigned integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
template <typename Src>
constexpr typename std::make_unsigned<typename base::internal::UnderlyingType<Src>::type>::type
as_unsigned(const Src value)
{
static_assert(std::is_integral<decltype(as_unsigned(value))>::value,
"Argument must be a signed or unsigned integer type.");
return static_cast<decltype(as_unsigned(value))>(value);
}
template <typename L, typename R>
constexpr bool IsLessImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range)
{
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) < static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLess
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs)
{
return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsLessOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range)
{
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <= static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLessOrEqual
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs)
{
return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range)
{
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) > static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreater
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs)
{
return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range)
{
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >= static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreaterOrEqual
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs)
{
return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
struct IsEqual
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs)
{
return DstRangeRelationToSrcRange<R>(lhs) == DstRangeRelationToSrcRange<L>(rhs) &&
static_cast<decltype(lhs + rhs)>(lhs) == static_cast<decltype(lhs + rhs)>(rhs);
}
};
template <typename L, typename R>
struct IsNotEqual
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs)
{
return DstRangeRelationToSrcRange<R>(lhs) != DstRangeRelationToSrcRange<L>(rhs) ||
static_cast<decltype(lhs + rhs)>(lhs) != static_cast<decltype(lhs + rhs)>(rhs);
}
};
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> class C, typename L, typename R>
constexpr bool SafeCompare(const L lhs, const R rhs)
{
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
using Promotion = BigEnoughPromotion<L, R>;
using BigType = typename Promotion::type;
return Promotion::is_contained
// Force to a larger type for speed if both are contained.
? C<BigType, BigType>::Test(static_cast<BigType>(static_cast<L>(lhs)),
static_cast<BigType>(static_cast<R>(rhs)))
// Let the template functions figure it out for mixed types.
: C<L, R>::Test(lhs, rhs);
}
template <typename Dst, typename Src>
constexpr bool IsMaxInRangeForNumericType()
{
return IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
std::numeric_limits<Src>::max());
}
template <typename Dst, typename Src>
constexpr bool IsMinInRangeForNumericType()
{
return IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
std::numeric_limits<Src>::lowest());
}
template <typename Dst, typename Src>
constexpr Dst CommonMax()
{
return !IsMaxInRangeForNumericType<Dst, Src>() ? Dst(std::numeric_limits<Dst>::max())
: Dst(std::numeric_limits<Src>::max());
}
template <typename Dst, typename Src>
constexpr Dst CommonMin()
{
return !IsMinInRangeForNumericType<Dst, Src>() ? Dst(std::numeric_limits<Dst>::lowest())
: Dst(std::numeric_limits<Src>::lowest());
}
// This is a wrapper to generate return the max or min for a supplied type.
// If the argument is false, the returned value is the maximum. If true the
// returned value is the minimum.
template <typename Dst, typename Src = Dst>
constexpr Dst CommonMaxOrMin(bool is_min)
{
return is_min ? CommonMin<Dst, Src>() : CommonMax<Dst, Src>();
}
} // namespace internal
} // namespace base
} // namespace angle
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_