Hash :
99d492c2
Author :
Date :
2018-02-27T15:17:10
Use packed enums for the texture types and targets, part 2 This completes the refactor by using the packed enums in the gl:: layer and in the backends. The packed enum code generation is modified to support explicitly assigning values to the packed enums so that the TextureTarget cube map faces are in the correct order and easy to iterate over. BUG=angleproject:2169 Change-Id: I5903235e684ccf382e92a8a1e10c5c85b4b16a04 Reviewed-on: https://chromium-review.googlesource.com/939994 Commit-Queue: Corentin Wallez <cwallez@chromium.org> Reviewed-by: Geoff Lang <geofflang@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
//
// Copyright (c) 2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// angletypes.h : Defines a variety of structures and enum types that are used throughout libGLESv2
#include "libANGLE/angletypes.h"
#include "libANGLE/Program.h"
#include "libANGLE/VertexAttribute.h"
#include "libANGLE/State.h"
#include "libANGLE/VertexArray.h"
namespace gl
{
PrimitiveType GetPrimitiveType(GLenum drawMode)
{
switch (drawMode)
{
case GL_POINTS:
return PRIMITIVE_POINTS;
case GL_LINES:
return PRIMITIVE_LINES;
case GL_LINE_STRIP:
return PRIMITIVE_LINE_STRIP;
case GL_LINE_LOOP:
return PRIMITIVE_LINE_LOOP;
case GL_TRIANGLES:
return PRIMITIVE_TRIANGLES;
case GL_TRIANGLE_STRIP:
return PRIMITIVE_TRIANGLE_STRIP;
case GL_TRIANGLE_FAN:
return PRIMITIVE_TRIANGLE_FAN;
default:
UNREACHABLE();
return PRIMITIVE_TYPE_MAX;
}
}
RasterizerState::RasterizerState()
{
memset(this, 0, sizeof(RasterizerState));
rasterizerDiscard = false;
cullFace = false;
cullMode = CullFaceMode::Back;
frontFace = GL_CCW;
polygonOffsetFill = false;
polygonOffsetFactor = 0.0f;
polygonOffsetUnits = 0.0f;
pointDrawMode = false;
multiSample = false;
}
bool operator==(const RasterizerState &a, const RasterizerState &b)
{
return memcmp(&a, &b, sizeof(RasterizerState)) == 0;
}
bool operator!=(const RasterizerState &a, const RasterizerState &b)
{
return !(a == b);
}
BlendState::BlendState()
{
memset(this, 0, sizeof(BlendState));
blend = false;
sourceBlendRGB = GL_ONE;
sourceBlendAlpha = GL_ONE;
destBlendRGB = GL_ZERO;
destBlendAlpha = GL_ZERO;
blendEquationRGB = GL_FUNC_ADD;
blendEquationAlpha = GL_FUNC_ADD;
sampleAlphaToCoverage = false;
dither = true;
}
BlendState::BlendState(const BlendState &other)
{
memcpy(this, &other, sizeof(BlendState));
}
bool operator==(const BlendState &a, const BlendState &b)
{
return memcmp(&a, &b, sizeof(BlendState)) == 0;
}
bool operator!=(const BlendState &a, const BlendState &b)
{
return !(a == b);
}
DepthStencilState::DepthStencilState()
{
memset(this, 0, sizeof(DepthStencilState));
depthTest = false;
depthFunc = GL_LESS;
depthMask = true;
stencilTest = false;
stencilFunc = GL_ALWAYS;
stencilMask = static_cast<GLuint>(-1);
stencilWritemask = static_cast<GLuint>(-1);
stencilBackFunc = GL_ALWAYS;
stencilBackMask = static_cast<GLuint>(-1);
stencilBackWritemask = static_cast<GLuint>(-1);
stencilFail = GL_KEEP;
stencilPassDepthFail = GL_KEEP;
stencilPassDepthPass = GL_KEEP;
stencilBackFail = GL_KEEP;
stencilBackPassDepthFail = GL_KEEP;
stencilBackPassDepthPass = GL_KEEP;
}
DepthStencilState::DepthStencilState(const DepthStencilState &other)
{
memcpy(this, &other, sizeof(DepthStencilState));
}
bool operator==(const DepthStencilState &a, const DepthStencilState &b)
{
return memcmp(&a, &b, sizeof(DepthStencilState)) == 0;
}
bool operator!=(const DepthStencilState &a, const DepthStencilState &b)
{
return !(a == b);
}
SamplerState::SamplerState()
{
memset(this, 0, sizeof(SamplerState));
minFilter = GL_NEAREST_MIPMAP_LINEAR;
magFilter = GL_LINEAR;
wrapS = GL_REPEAT;
wrapT = GL_REPEAT;
wrapR = GL_REPEAT;
maxAnisotropy = 1.0f;
minLod = -1000.0f;
maxLod = 1000.0f;
compareMode = GL_NONE;
compareFunc = GL_LEQUAL;
sRGBDecode = GL_DECODE_EXT;
}
SamplerState::SamplerState(const SamplerState &other) = default;
// static
SamplerState SamplerState::CreateDefaultForTarget(TextureType type)
{
SamplerState state;
// According to OES_EGL_image_external and ARB_texture_rectangle: For external textures, the
// default min filter is GL_LINEAR and the default s and t wrap modes are GL_CLAMP_TO_EDGE.
if (type == TextureType::External || type == TextureType::Rectangle)
{
state.minFilter = GL_LINEAR;
state.wrapS = GL_CLAMP_TO_EDGE;
state.wrapT = GL_CLAMP_TO_EDGE;
}
return state;
}
ImageUnit::ImageUnit()
: texture(), level(0), layered(false), layer(0), access(GL_READ_ONLY), format(GL_R32UI)
{
}
ImageUnit::ImageUnit(const ImageUnit &other) = default;
ImageUnit::~ImageUnit() = default;
static void MinMax(int a, int b, int *minimum, int *maximum)
{
if (a < b)
{
*minimum = a;
*maximum = b;
}
else
{
*minimum = b;
*maximum = a;
}
}
bool ClipRectangle(const Rectangle &source, const Rectangle &clip, Rectangle *intersection)
{
int minSourceX, maxSourceX, minSourceY, maxSourceY;
MinMax(source.x, source.x + source.width, &minSourceX, &maxSourceX);
MinMax(source.y, source.y + source.height, &minSourceY, &maxSourceY);
int minClipX, maxClipX, minClipY, maxClipY;
MinMax(clip.x, clip.x + clip.width, &minClipX, &maxClipX);
MinMax(clip.y, clip.y + clip.height, &minClipY, &maxClipY);
if (minSourceX >= maxClipX || maxSourceX <= minClipX || minSourceY >= maxClipY || maxSourceY <= minClipY)
{
if (intersection)
{
intersection->x = minSourceX;
intersection->y = maxSourceY;
intersection->width = maxSourceX - minSourceX;
intersection->height = maxSourceY - minSourceY;
}
return false;
}
else
{
if (intersection)
{
intersection->x = std::max(minSourceX, minClipX);
intersection->y = std::max(minSourceY, minClipY);
intersection->width = std::min(maxSourceX, maxClipX) - std::max(minSourceX, minClipX);
intersection->height = std::min(maxSourceY, maxClipY) - std::max(minSourceY, minClipY);
}
return true;
}
}
bool Box::operator==(const Box &other) const
{
return (x == other.x && y == other.y && z == other.z &&
width == other.width && height == other.height && depth == other.depth);
}
bool Box::operator!=(const Box &other) const
{
return !(*this == other);
}
bool operator==(const Offset &a, const Offset &b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
bool operator!=(const Offset &a, const Offset &b)
{
return !(a == b);
}
bool operator==(const Extents &lhs, const Extents &rhs)
{
return lhs.width == rhs.width && lhs.height == rhs.height && lhs.depth == rhs.depth;
}
bool operator!=(const Extents &lhs, const Extents &rhs)
{
return !(lhs == rhs);
}
ComponentTypeMask::ComponentTypeMask()
{
mTypeMask.reset();
}
ComponentTypeMask::ComponentTypeMask(const ComponentTypeMask &other) = default;
ComponentTypeMask::~ComponentTypeMask() = default;
void ComponentTypeMask::reset()
{
mTypeMask.reset();
}
bool ComponentTypeMask::none()
{
return mTypeMask.none();
}
void ComponentTypeMask::setIndex(GLenum type, size_t index)
{
ASSERT(index <= MAX_COMPONENT_TYPE_MASK_INDEX);
mTypeMask &= ~(0x10001 << index);
uint32_t m = 0;
switch (type)
{
case GL_INT:
m = 0x00001;
break;
case GL_UNSIGNED_INT:
m = 0x10000;
break;
case GL_FLOAT:
m = 0x10001;
break;
case GL_NONE:
m = 0x00000;
break;
default:
UNREACHABLE();
}
mTypeMask |= m << index;
}
unsigned long ComponentTypeMask::to_ulong() const
{
return mTypeMask.to_ulong();
}
void ComponentTypeMask::from_ulong(unsigned long mask)
{
mTypeMask = mask;
}
bool ComponentTypeMask::Validate(unsigned long outputTypes,
unsigned long inputTypes,
unsigned long outputMask,
unsigned long inputMask)
{
static_assert(IMPLEMENTATION_MAX_DRAW_BUFFERS <= MAX_COMPONENT_TYPE_MASK_INDEX,
"Output/input masks should fit into 16 bits - 1 bit per draw buffer. The "
"corresponding type masks should fit into 32 bits - 2 bits per draw buffer.");
static_assert(MAX_VERTEX_ATTRIBS <= MAX_COMPONENT_TYPE_MASK_INDEX,
"Output/input masks should fit into 16 bits - 1 bit per attrib. The "
"corresponding type masks should fit into 32 bits - 2 bits per attrib.");
// For performance reasons, draw buffer and attribute type validation is done using bit masks.
// We store two bits representing the type split, with the low bit in the lower 16 bits of the
// variable, and the high bit in the upper 16 bits of the variable. This is done so we can AND
// with the elswewhere used DrawBufferMask or AttributeMask.
// OR the masks with themselves, shifted 16 bits. This is to match our split type bits.
outputMask |= (outputMask << MAX_COMPONENT_TYPE_MASK_INDEX);
inputMask |= (inputMask << MAX_COMPONENT_TYPE_MASK_INDEX);
// To validate:
// 1. Remove any indexes that are not enabled in the input (& inputMask)
// 2. Remove any indexes that exist in output, but not in input (& outputMask)
// 3. Use == to verify equality
return (outputTypes & inputMask) == ((inputTypes & outputMask) & inputMask);
}
} // namespace gl