Edit

kc3-lang/angle/src/libANGLE/BinaryStream.h

Branch :

  • Show log

    Commit

  • Author : Geoff Lang
    Date : 2019-02-14 12:53:04
    Hash : e332e621
    Message : D3D: Asynchronously load program binaries. Unpack as much of the binary steam as possible before passing the final loading of the shader programs off to a worker thread. Reporting as many possible link errors before becoming asynchronous means that linking should only fail due to unexpected system issues at that point. This also allows other backends to asynchronously load program binaries. BUG=angleproject:2857 Change-Id: I587917a3e54522114dabd41d1b14fc491c8fd18a Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1473451 Commit-Queue: Jamie Madill <jmadill@google.com> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>

  • src/libANGLE/BinaryStream.h
  • //
    // Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style license that can be
    // found in the LICENSE file.
    //
    
    // BinaryStream.h: Provides binary serialization of simple types.
    
    #ifndef LIBANGLE_BINARYSTREAM_H_
    #define LIBANGLE_BINARYSTREAM_H_
    
    #include <stdint.h>
    #include <cstddef>
    #include <string>
    #include <vector>
    
    #include "common/angleutils.h"
    #include "common/mathutil.h"
    
    namespace gl
    {
    
    class BinaryInputStream : angle::NonCopyable
    {
      public:
        BinaryInputStream(const void *data, size_t length)
        {
            mError  = false;
            mOffset = 0;
            mData   = static_cast<const uint8_t *>(data);
            mLength = length;
        }
    
        // readInt will generate an error for bool types
        template <class IntT>
        IntT readInt()
        {
            int value = 0;
            read(&value);
            return static_cast<IntT>(value);
        }
    
        template <class IntT>
        void readInt(IntT *outValue)
        {
            *outValue = readInt<IntT>();
        }
    
        template <class IntT, class VectorElementT>
        void readIntVector(std::vector<VectorElementT> *param)
        {
            unsigned int size = readInt<unsigned int>();
            for (unsigned int index = 0; index < size; ++index)
            {
                param->push_back(readInt<IntT>());
            }
        }
    
        template <class EnumT>
        EnumT readEnum()
        {
            using UnderlyingType = typename std::underlying_type<EnumT>::type;
            return static_cast<EnumT>(readInt<UnderlyingType>());
        }
    
        template <class EnumT>
        void readEnum(EnumT *outValue)
        {
            *outValue = readEnum<EnumT>();
        }
    
        bool readBool()
        {
            int value = 0;
            read(&value);
            return (value > 0);
        }
    
        void readBool(bool *outValue) { *outValue = readBool(); }
    
        void readBytes(unsigned char outArray[], size_t count) { read<unsigned char>(outArray, count); }
    
        std::string readString()
        {
            std::string outString;
            readString(&outString);
            return outString;
        }
    
        void readString(std::string *v)
        {
            size_t length;
            readInt(&length);
    
            if (mError)
            {
                return;
            }
    
            angle::CheckedNumeric<size_t> checkedOffset(mOffset);
            checkedOffset += length;
    
            if (!checkedOffset.IsValid() || mOffset + length > mLength)
            {
                mError = true;
                return;
            }
    
            v->assign(reinterpret_cast<const char *>(mData) + mOffset, length);
            mOffset = checkedOffset.ValueOrDie();
        }
    
        void skip(size_t length)
        {
            angle::CheckedNumeric<size_t> checkedOffset(mOffset);
            checkedOffset += length;
    
            if (!checkedOffset.IsValid() || mOffset + length > mLength)
            {
                mError = true;
                return;
            }
    
            mOffset = checkedOffset.ValueOrDie();
        }
    
        size_t offset() const { return mOffset; }
        size_t remainingSize() const
        {
            ASSERT(mLength >= mOffset);
            return mLength - mOffset;
        }
    
        bool error() const { return mError; }
    
        bool endOfStream() const { return mOffset == mLength; }
    
        const uint8_t *data() { return mData; }
    
      private:
        bool mError;
        size_t mOffset;
        const uint8_t *mData;
        size_t mLength;
    
        template <typename T>
        void read(T *v, size_t num)
        {
            static_assert(std::is_fundamental<T>::value, "T must be a fundamental type.");
    
            angle::CheckedNumeric<size_t> checkedLength(num);
            checkedLength *= sizeof(T);
            if (!checkedLength.IsValid())
            {
                mError = true;
                return;
            }
    
            angle::CheckedNumeric<size_t> checkedOffset(mOffset);
            checkedOffset += checkedLength;
    
            if (!checkedOffset.IsValid() || checkedOffset.ValueOrDie() > mLength)
            {
                mError = true;
                return;
            }
    
            memcpy(v, mData + mOffset, checkedLength.ValueOrDie());
            mOffset = checkedOffset.ValueOrDie();
        }
    
        template <typename T>
        void read(T *v)
        {
            read(v, 1);
        }
    };
    
    class BinaryOutputStream : angle::NonCopyable
    {
      public:
        BinaryOutputStream();
        ~BinaryOutputStream();
    
        // writeInt also handles bool types
        template <class IntT>
        void writeInt(IntT param)
        {
            ASSERT(angle::IsValueInRangeForNumericType<int>(param));
            int intValue = static_cast<int>(param);
            write(&intValue, 1);
        }
    
        // Specialized writeInt for values that can also be exactly -1.
        template <class UintT>
        void writeIntOrNegOne(UintT param)
        {
            if (param == static_cast<UintT>(-1))
            {
                writeInt(-1);
            }
            else
            {
                writeInt(param);
            }
        }
    
        template <class IntT>
        void writeIntVector(std::vector<IntT> param)
        {
            writeInt(param.size());
            for (IntT element : param)
            {
                writeIntOrNegOne(element);
            }
        }
    
        template <class EnumT>
        void writeEnum(EnumT param)
        {
            using UnderlyingType = typename std::underlying_type<EnumT>::type;
            writeInt<UnderlyingType>(static_cast<UnderlyingType>(param));
        }
    
        void writeString(const std::string &v)
        {
            writeInt(v.length());
            write(v.c_str(), v.length());
        }
    
        void writeBytes(const unsigned char *bytes, size_t count) { write(bytes, count); }
    
        size_t length() const { return mData.size(); }
    
        const void *data() const { return mData.size() ? &mData[0] : nullptr; }
    
      private:
        std::vector<char> mData;
    
        template <typename T>
        void write(const T *v, size_t num)
        {
            static_assert(std::is_fundamental<T>::value, "T must be a fundamental type.");
            const char *asBytes = reinterpret_cast<const char *>(v);
            mData.insert(mData.end(), asBytes, asBytes + num * sizeof(T));
        }
    };
    
    inline BinaryOutputStream::BinaryOutputStream() {}
    
    inline BinaryOutputStream::~BinaryOutputStream() = default;
    
    }  // namespace gl
    
    #endif  // LIBANGLE_BINARYSTREAM_H_