Hash :
62bf97d9
Author :
Date :
2025-03-10T14:23:31
Metal: Fix line loop indexes for primitive restart Use the existing code to generate line strips from line loops. Bug: angleproject:401284933 Change-Id: Ie131199c23b93364fabb8f0dc6766f7e8d5f2b8d Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/6333539 Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Geoff Lang <geofflang@chromium.org> Auto-Submit: Kimmo Kinnunen <kkinnunen@apple.com> Reviewed-by: Kenneth Russell <kbr@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
//
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// mtl_resources.h:
// Declares wrapper classes for Metal's MTLTexture and MTLBuffer.
//
#ifndef LIBANGLE_RENDERER_METAL_MTL_RESOURCES_H_
#define LIBANGLE_RENDERER_METAL_MTL_RESOURCES_H_
#import <Metal/Metal.h>
#include <atomic>
#include <memory>
#include "common/FastVector.h"
#include "common/MemoryBuffer.h"
#include "common/angleutils.h"
#include "libANGLE/Error.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/renderer/metal/mtl_common.h"
#include "libANGLE/renderer/metal/mtl_format_utils.h"
namespace rx
{
class ContextMtl;
namespace mtl
{
class ContextDevice;
class CommandQueue;
class BlitCommandEncoder;
class Resource;
class Texture;
class Buffer;
using ResourceRef = std::shared_ptr<Resource>;
using TextureRef = std::shared_ptr<Texture>;
using TextureWeakRef = std::weak_ptr<Texture>;
using BufferRef = std::shared_ptr<Buffer>;
using BufferWeakRef = std::weak_ptr<Buffer>;
class Resource : angle::NonCopyable
{
public:
virtual ~Resource() {}
// Check whether the resource still being used by GPU including the pending (uncommitted)
// command buffer.
bool isBeingUsedByGPU(Context *context) const;
// Checks whether the last command buffer that uses the given resource has been committed or
// not
bool hasPendingWorks(Context *context) const;
bool hasPendingRenderWorks(Context *context) const;
void setUsedByCommandBufferWithQueueSerial(uint64_t serial, bool writing, bool isRenderCommand);
uint64_t getCommandBufferQueueSerial() const { return mUsageRef->cmdBufferQueueSerial; }
// Flag indicate whether we should synchronize the content to CPU after GPU changed this
// resource's content.
bool isCPUReadMemNeedSync() const { return mUsageRef->cpuReadMemNeedSync; }
void resetCPUReadMemNeedSync() { mUsageRef->cpuReadMemNeedSync = false; }
bool isCPUReadMemSyncPending() const { return mUsageRef->cpuReadMemSyncPending; }
void setCPUReadMemSyncPending(bool value) const { mUsageRef->cpuReadMemSyncPending = value; }
void resetCPUReadMemSyncPending() { mUsageRef->cpuReadMemSyncPending = false; }
bool isCPUReadMemDirty() const { return mUsageRef->cpuReadMemDirty; }
void resetCPUReadMemDirty() { mUsageRef->cpuReadMemDirty = false; }
uint64_t getLastReadingRenderEncoderSerial() const
{
return mUsageRef->lastReadingRenderEncoderSerial;
}
uint64_t getLastWritingRenderEncoderSerial() const
{
return mUsageRef->lastWritingRenderEncoderSerial;
}
uint64_t getLastRenderEncoderSerial() const
{
return std::max(mUsageRef->lastReadingRenderEncoderSerial,
mUsageRef->lastWritingRenderEncoderSerial);
}
virtual size_t estimatedByteSize() const = 0;
virtual id getID() const = 0;
protected:
struct UsageRef;
Resource();
// Share the GPU usage ref with other resource
Resource(Resource *other);
Resource(std::shared_ptr<UsageRef> otherUsageRef);
void reset();
struct UsageRef
{
// The id of the last command buffer that is using this resource.
uint64_t cmdBufferQueueSerial = 0;
// This flag means the resource was issued to be modified by GPU, if CPU wants to read
// its content, explicit synchronization call must be invoked.
bool cpuReadMemNeedSync = false;
// This flag is set when synchronization for the resource has been
// encoded on the GPU, and a map operation must wait
// until it's completed.
bool cpuReadMemSyncPending = false;
// This flag is useful for BufferMtl to know whether it should update the shadow copy
bool cpuReadMemDirty = false;
// The id of the last render encoder to read/write to this resource
uint64_t lastReadingRenderEncoderSerial = 0;
uint64_t lastWritingRenderEncoderSerial = 0;
};
// One resource object might just be a view of another resource. For example, a texture 2d
// object might be a view of one face of a cube texture object. Another example is one
// texture object of size 2x2 might be a mipmap view of a texture object size 4x4. Thus, if
// one object is being used by a command buffer, it means the other object is being used
// also. In this case, the two objects must share the same UsageRef property.
std::shared_ptr<UsageRef> mUsageRef;
};
class Texture final : public Resource,
public WrappedObject<id<MTLTexture>>,
public std::enable_shared_from_this<Texture>
{
public:
static angle::Result Make2DTexture(ContextMtl *context,
const Format &format,
uint32_t width,
uint32_t height,
uint32_t mips /** use zero to create full mipmaps chain */,
bool renderTargetOnly,
bool allowFormatView,
TextureRef *refOut);
// On macOS, memory will still be allocated for this texture.
static angle::Result MakeMemoryLess2DMSTexture(ContextMtl *context,
const Format &format,
uint32_t width,
uint32_t height,
uint32_t samples,
TextureRef *refOut);
static angle::Result MakeCubeTexture(ContextMtl *context,
const Format &format,
uint32_t size,
uint32_t mips /** use zero to create full mipmaps chain */,
bool renderTargetOnly,
bool allowFormatView,
TextureRef *refOut);
static angle::Result Make2DMSTexture(ContextMtl *context,
const Format &format,
uint32_t width,
uint32_t height,
uint32_t samples,
bool renderTargetOnly,
bool allowFormatView,
TextureRef *refOut);
static angle::Result Make2DArrayTexture(ContextMtl *context,
const Format &format,
uint32_t width,
uint32_t height,
uint32_t mips,
uint32_t arrayLength,
bool renderTargetOnly,
bool allowFormatView,
TextureRef *refOut);
static angle::Result Make3DTexture(ContextMtl *context,
const Format &format,
uint32_t width,
uint32_t height,
uint32_t depth,
uint32_t mips,
bool renderTargetOnly,
bool allowFormatView,
TextureRef *refOut);
static TextureRef MakeFromMetal(id<MTLTexture> metalTexture);
// Allow CPU to read & write data directly to this texture?
bool isCPUAccessible() const;
// Allow shaders to read/sample this texture?
// Texture created with renderTargetOnly flag won't be readable
bool isShaderReadable() const;
// Allow shaders to write this texture?
bool isShaderWritable() const;
bool supportFormatView() const;
void replace2DRegion(ContextMtl *context,
const MTLRegion ®ion,
const MipmapNativeLevel &mipmapLevel,
uint32_t slice,
const uint8_t *data,
size_t bytesPerRow);
void replaceRegion(ContextMtl *context,
const MTLRegion ®ion,
const MipmapNativeLevel &mipmapLevel,
uint32_t slice,
const uint8_t *data,
size_t bytesPerRow,
size_t bytesPer2DImage);
void getBytes(ContextMtl *context,
size_t bytesPerRow,
size_t bytesPer2DInage,
const MTLRegion ®ion,
const MipmapNativeLevel &mipmapLevel,
uint32_t slice,
uint8_t *dataOut);
// Create 2d view of a cube face which full range of mip levels.
TextureRef createCubeFaceView(uint32_t face);
// Create a view of one slice at a level.
TextureRef createSliceMipView(uint32_t slice, const MipmapNativeLevel &level);
// Create a levels range view
TextureRef createMipsView(const MipmapNativeLevel &baseLevel, uint32_t levels);
// Create a view of a level.
TextureRef createMipView(const MipmapNativeLevel &level);
// Create a view with different format
TextureRef createViewWithDifferentFormat(MTLPixelFormat format);
// Create a view for a shader image binding.
TextureRef createShaderImageView2D(const MipmapNativeLevel &level,
int layer,
MTLPixelFormat format);
// Same as above but the target format must be compatible, for example sRGB to linear. In
// this case texture doesn't need format view usage flag.
TextureRef createViewWithCompatibleFormat(MTLPixelFormat format);
// Create a swizzled view
TextureRef createMipsSwizzleView(const MipmapNativeLevel &baseLevel,
uint32_t levels,
MTLPixelFormat format,
const MTLTextureSwizzleChannels &swizzle);
MTLTextureType textureType() const;
MTLPixelFormat pixelFormat() const;
uint32_t mipmapLevels() const;
uint32_t arrayLength() const;
uint32_t cubeFaces() const;
uint32_t cubeFacesOrArrayLength() const;
uint32_t width(const MipmapNativeLevel &level) const;
uint32_t height(const MipmapNativeLevel &level) const;
uint32_t depth(const MipmapNativeLevel &level) const;
gl::Extents size(const MipmapNativeLevel &level) const;
gl::Extents size(const ImageNativeIndex &index) const;
uint32_t widthAt0() const { return width(kZeroNativeMipLevel); }
uint32_t heightAt0() const { return height(kZeroNativeMipLevel); }
uint32_t depthAt0() const { return depth(kZeroNativeMipLevel); }
gl::Extents sizeAt0() const { return size(kZeroNativeMipLevel); }
uint32_t samples() const;
bool hasIOSurface() const;
bool sameTypeAndDimemsionsAs(const TextureRef &other) const;
angle::Result resize(ContextMtl *context, uint32_t width, uint32_t height);
// Get the color write mask to restrict writing to certain color channels in this texture. It's
// used for textures having emulated mtl::Format such as RGB which should always have alpha
// value being one.
MTLColorWriteMask getColorWritableMask() const { return *mColorWritableMask; }
void setColorWritableMask(MTLColorWriteMask mask) { *mColorWritableMask = mask; }
// Get reading copy. Used for reading non-readable texture or reading stencil value from
// packed depth & stencil texture.
// NOTE: this only copies 1 depth slice of the 3D texture.
// The texels will be copied to region(0, 0, 0, areaToCopy.size) of the returned texture.
// The returned pointer will be retained by the original texture object.
// Calling getReadableCopy() will overwrite previously returned texture.
TextureRef getReadableCopy(ContextMtl *context,
mtl::BlitCommandEncoder *encoder,
const uint32_t levelToCopy,
const uint32_t sliceToCopy,
const MTLRegion &areaToCopy);
void releaseReadableCopy();
// Get stencil view
TextureRef getStencilView();
// Get linear color
TextureRef getLinearColorView();
TextureRef parentTexture();
MipmapNativeLevel parentRelativeLevel();
uint32_t parentRelativeSlice();
// Change the wrapped metal object. Special case for swapchain image
void set(id<MTLTexture> metalTexture);
// Explicitly sync content between CPU and GPU
void syncContent(ContextMtl *context, mtl::BlitCommandEncoder *encoder);
void setEstimatedByteSize(size_t bytes) { mEstimatedByteSize = bytes; }
size_t estimatedByteSize() const override { return mEstimatedByteSize; }
id getID() const override { return get(); }
// Should we disable MTLLoadActionLoad & MTLStoreActionStore when using this texture
// as render pass' attachment. This is usually used for memoryless textures and
// EXT_multisampled_render_to_texture.
bool shouldNotLoadStore() const { return mShouldNotLoadStore; }
private:
using ParentClass = WrappedObject<id<MTLTexture>>;
static angle::Result MakeTexture(ContextMtl *context,
const Format &mtlFormat,
MTLTextureDescriptor *desc,
uint32_t mips,
bool renderTargetOnly,
bool allowFormatView,
TextureRef *refOut);
static angle::Result MakeTexture(ContextMtl *context,
const Format &mtlFormat,
MTLTextureDescriptor *desc,
uint32_t mips,
bool renderTargetOnly,
bool allowFormatView,
bool memoryLess,
TextureRef *refOut);
static angle::Result MakeTexture(ContextMtl *context,
const Format &mtlFormat,
MTLTextureDescriptor *desc,
IOSurfaceRef surfaceRef,
NSUInteger slice,
bool renderTargetOnly,
TextureRef *refOut);
Texture(id<MTLTexture> metalTexture);
// Create a texture that shares ownership of usageRef, underlying MTLTexture and colorWriteMask
// with the original texture.
Texture(std::shared_ptr<UsageRef> usageRef,
id<MTLTexture> metalTexture,
std::shared_ptr<MTLColorWriteMask> colorWriteMask);
Texture(ContextMtl *context,
MTLTextureDescriptor *desc,
uint32_t mips,
bool renderTargetOnly,
bool allowFormatView);
Texture(ContextMtl *context,
MTLTextureDescriptor *desc,
uint32_t mips,
bool renderTargetOnly,
bool allowFormatView,
bool memoryLess);
Texture(ContextMtl *context,
MTLTextureDescriptor *desc,
IOSurfaceRef iosurface,
NSUInteger plane,
bool renderTargetOnly);
// Create a texture view
Texture(Texture *original, MTLPixelFormat pixelFormat);
Texture(Texture *original,
MTLPixelFormat pixelFormat,
MTLTextureType textureType,
NSRange levels,
NSRange slices);
Texture(Texture *original,
MTLPixelFormat pixelFormat,
MTLTextureType textureType,
NSRange levels,
NSRange slices,
const MTLTextureSwizzleChannels &swizzle);
void syncContentIfNeeded(ContextMtl *context);
angle::ObjCPtr<MTLTextureDescriptor> mCreationDesc;
// This property is shared between this object and its views:
std::shared_ptr<MTLColorWriteMask> mColorWritableMask;
// Linear view of sRGB texture
TextureRef mLinearColorView;
TextureRef mStencilView;
// Readable copy of texture
TextureRef mReadCopy;
TextureRef mParentTexture;
size_t mEstimatedByteSize = 0;
bool mShouldNotLoadStore = false;
};
class Buffer final : public Resource, public WrappedObject<id<MTLBuffer>>
{
public:
static MTLStorageMode getStorageModeForSharedBuffer(ContextMtl *contextMtl);
using Usage = gl::BufferUsage;
static MTLStorageMode getStorageModeForUsage(ContextMtl *context, Usage usage);
static angle::Result MakeBuffer(ContextMtl *context,
size_t size,
const uint8_t *data,
BufferRef *bufferOut);
static angle::Result MakeBufferWithStorageMode(ContextMtl *context,
MTLStorageMode storageMode,
size_t size,
const uint8_t *data,
BufferRef *bufferOut);
angle::Result reset(ContextMtl *context,
MTLStorageMode storageMode,
size_t size,
const uint8_t *data);
const uint8_t *mapReadOnly(ContextMtl *context);
uint8_t *map(ContextMtl *context, size_t offset = 0);
uint8_t *mapWithOpt(ContextMtl *context, bool readonly, bool noSync);
void unmap(ContextMtl *context);
// Same as unmap but do not do implicit flush()
void unmapNoFlush(ContextMtl *context);
void unmapAndFlushSubset(ContextMtl *context, size_t offsetWritten, size_t sizeWritten);
void flush(ContextMtl *context, size_t offsetWritten, size_t sizeWritten);
size_t size() const;
MTLStorageMode storageMode() const;
// Explicitly sync content between CPU and GPU
void syncContent(ContextMtl *context, mtl::BlitCommandEncoder *encoder);
size_t estimatedByteSize() const override { return size(); }
id getID() const override { return get(); }
size_t getNumContextSwitchesAtLastUse() { return mContextSwitchesAtLastUse; }
void setNumContextSwitchesAtLastUse(size_t num) { mContextSwitchesAtLastUse = num; }
size_t getNumCommandBufferCommitsAtLastUse() { return mCommandBufferCommitsAtLastUse; }
void setNumCommandBufferCommitsAtLastUse(size_t num) { mCommandBufferCommitsAtLastUse = num; }
private:
Buffer(ContextMtl *context, MTLStorageMode storageMode, size_t size, const uint8_t *data);
bool mMapReadOnly = true;
// For garbage collecting shadow buffers in BufferManager.
size_t mContextSwitchesAtLastUse = 0;
size_t mCommandBufferCommitsAtLastUse = 0;
};
class NativeTexLevelArray
{
public:
TextureRef &at(const MipmapNativeLevel &level) { return mTexLevels.at(level.get()); }
const TextureRef &at(const MipmapNativeLevel &level) const
{
return mTexLevels.at(level.get());
}
TextureRef &operator[](const MipmapNativeLevel &level) { return at(level); }
const TextureRef &operator[](const MipmapNativeLevel &level) const { return at(level); }
gl::TexLevelArray<TextureRef>::iterator begin() { return mTexLevels.begin(); }
gl::TexLevelArray<TextureRef>::const_iterator begin() const { return mTexLevels.begin(); }
gl::TexLevelArray<TextureRef>::iterator end() { return mTexLevels.end(); }
gl::TexLevelArray<TextureRef>::const_iterator end() const { return mTexLevels.end(); }
private:
gl::TexLevelArray<TextureRef> mTexLevels;
};
} // namespace mtl
} // namespace rx
#endif /* LIBANGLE_RENDERER_METAL_MTL_RESOURCES_H_ */