Hash :
62cac8b5
Author :
Date :
2021-08-06T18:24:52
Capture/Replay: Add EGL support to generate_entry_points.py Add EGL support to generate_entry_points.py. This is a pre-requisite to frame capture being able to generate EGL calls, which is required for multi-context support. Bug: angleproject:5878 Bug: angleproject:4035 Change-Id: I3b8e9c91f9e2820b5207fc02d858e8109921f581 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3078993 Commit-Queue: Tim Van Patten <timvp@google.com> Reviewed-by: Cody Northrop <cnorthrop@google.com> Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
// Copyright 2019 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FrameCapture.h:
// ANGLE Frame capture inteface.
//
#ifndef LIBANGLE_FRAME_CAPTURE_H_
#define LIBANGLE_FRAME_CAPTURE_H_
#include "common/PackedEnums.h"
#include "libANGLE/Context.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/capture/frame_capture_utils_autogen.h"
#include "libANGLE/entry_points_utils.h"
namespace gl
{
enum class GLenumGroup;
}
namespace angle
{
using ParamData = std::vector<std::vector<uint8_t>>;
struct ParamCapture : angle::NonCopyable
{
ParamCapture();
ParamCapture(const char *nameIn, ParamType typeIn);
~ParamCapture();
ParamCapture(ParamCapture &&other);
ParamCapture &operator=(ParamCapture &&other);
std::string name;
ParamType type;
ParamValue value;
gl::GLenumGroup enumGroup; // only used for param type GLenum, GLboolean and GLbitfield
ParamData data;
int dataNElements = 0;
int arrayClientPointerIndex = -1;
size_t readBufferSizeBytes = 0;
};
class ParamBuffer final : angle::NonCopyable
{
public:
ParamBuffer();
~ParamBuffer();
ParamBuffer(ParamBuffer &&other);
ParamBuffer &operator=(ParamBuffer &&other);
template <typename T>
void addValueParam(const char *paramName, ParamType paramType, T paramValue);
template <typename T>
void setValueParamAtIndex(const char *paramName, ParamType paramType, T paramValue, int index);
template <typename T>
void addEnumParam(const char *paramName,
gl::GLenumGroup enumGroup,
ParamType paramType,
T paramValue);
ParamCapture &getParam(const char *paramName, ParamType paramType, int index);
const ParamCapture &getParam(const char *paramName, ParamType paramType, int index) const;
ParamCapture &getParamFlexName(const char *paramName1,
const char *paramName2,
ParamType paramType,
int index);
const ParamCapture &getParamFlexName(const char *paramName1,
const char *paramName2,
ParamType paramType,
int index) const;
const ParamCapture &getReturnValue() const { return mReturnValueCapture; }
void addParam(ParamCapture &¶m);
void addReturnValue(ParamCapture &&returnValue);
bool hasClientArrayData() const { return mClientArrayDataParam != -1; }
ParamCapture &getClientArrayPointerParameter();
size_t getReadBufferSize() const { return mReadBufferSize; }
const std::vector<ParamCapture> &getParamCaptures() const { return mParamCaptures; }
// These helpers allow us to track the ID of the buffer that was active when
// MapBufferRange was called. We'll use it during replay to track the
// buffer's contents, as they can be modified by the host.
void setMappedBufferID(gl::BufferID bufferID) { mMappedBufferID = bufferID; }
gl::BufferID getMappedBufferID() const { return mMappedBufferID; }
private:
std::vector<ParamCapture> mParamCaptures;
ParamCapture mReturnValueCapture;
int mClientArrayDataParam = -1;
size_t mReadBufferSize = 0;
gl::BufferID mMappedBufferID;
};
struct CallCapture
{
CallCapture(EntryPoint entryPointIn, ParamBuffer &¶msIn);
CallCapture(const std::string &customFunctionNameIn, ParamBuffer &¶msIn);
~CallCapture();
CallCapture(CallCapture &&other);
CallCapture &operator=(CallCapture &&other);
const char *name() const;
EntryPoint entryPoint;
std::string customFunctionName;
ParamBuffer params;
};
class ReplayContext
{
public:
ReplayContext(size_t readBufferSizebytes, const gl::AttribArray<size_t> &clientArraysSizebytes);
~ReplayContext();
template <typename T>
T getReadBufferPointer(const ParamCapture ¶m)
{
ASSERT(param.readBufferSizeBytes > 0);
ASSERT(mReadBuffer.size() >= param.readBufferSizeBytes);
return reinterpret_cast<T>(mReadBuffer.data());
}
template <typename T>
T getAsConstPointer(const ParamCapture ¶m)
{
if (param.arrayClientPointerIndex != -1)
{
return reinterpret_cast<T>(mClientArraysBuffer[param.arrayClientPointerIndex].data());
}
if (!param.data.empty())
{
ASSERT(param.data.size() == 1);
return reinterpret_cast<T>(param.data[0].data());
}
return nullptr;
}
template <typename T>
T getAsPointerConstPointer(const ParamCapture ¶m)
{
static_assert(sizeof(typename std::remove_pointer<T>::type) == sizeof(uint8_t *),
"pointer size not match!");
ASSERT(!param.data.empty());
mPointersBuffer.clear();
mPointersBuffer.reserve(param.data.size());
for (const std::vector<uint8_t> &data : param.data)
{
mPointersBuffer.emplace_back(data.data());
}
return reinterpret_cast<T>(mPointersBuffer.data());
}
gl::AttribArray<std::vector<uint8_t>> &getClientArraysBuffer() { return mClientArraysBuffer; }
private:
std::vector<uint8_t> mReadBuffer;
std::vector<const uint8_t *> mPointersBuffer;
gl::AttribArray<std::vector<uint8_t>> mClientArraysBuffer;
};
// Helper to use unique IDs for each local data variable.
class DataCounters final : angle::NonCopyable
{
public:
DataCounters();
~DataCounters();
int getAndIncrement(EntryPoint entryPoint, const std::string ¶mName);
private:
// <CallName, ParamName>
using Counter = std::pair<EntryPoint, std::string>;
std::map<Counter, int> mData;
};
constexpr int kStringsNotFound = -1;
class StringCounters final : angle::NonCopyable
{
public:
StringCounters();
~StringCounters();
int getStringCounter(std::vector<std::string> &str);
void setStringCounter(std::vector<std::string> &str, int &counter);
private:
std::map<std::vector<std::string>, int> mStringCounterMap;
};
class DataTracker final : angle::NonCopyable
{
public:
DataTracker();
~DataTracker();
DataCounters &getCounters() { return mCounters; }
StringCounters &getStringCounters() { return mStringCounters; }
private:
DataCounters mCounters;
StringCounters mStringCounters;
};
using BufferCalls = std::map<GLuint, std::vector<CallCapture>>;
// true means mapped, false means unmapped
using BufferMapStatusMap = std::map<GLuint, bool>;
using FenceSyncSet = std::set<GLsync>;
using FenceSyncCalls = std::map<GLsync, std::vector<CallCapture>>;
using ResourceSet = std::set<GLuint>;
using ResourceCalls = std::map<GLuint, std::vector<CallCapture>>;
class TrackedResource final : angle::NonCopyable
{
public:
TrackedResource();
~TrackedResource();
ResourceSet &getStartingResources() { return mStartingResources; }
ResourceSet &getNewResources() { return mNewResources; }
ResourceSet &getResourcesToRegen() { return mResourcesToRegen; }
ResourceSet &getResourcesToRestore() { return mResourcesToRestore; }
void setGennedResource(GLuint id);
void setDeletedResource(GLuint id);
void setModifiedResource(GLuint id);
ResourceCalls &getResourceRegenCalls() { return mResourceRegenCalls; }
ResourceCalls &getResourceRestoreCalls() { return mResourceRestoreCalls; }
private:
// Resource regen calls will delete and gen a resource
ResourceCalls mResourceRegenCalls;
// Resource restore calls will restore the contents of a resource
ResourceCalls mResourceRestoreCalls;
// Resources created during startup
ResourceSet mStartingResources;
// Resources created during the run that need to be deleted
ResourceSet mNewResources;
// Resources deleted during the run that need to be recreated
ResourceSet mResourcesToRegen;
// Resources modified during the run that need to be restored
ResourceSet mResourcesToRestore;
};
using TrackedResourceArray =
std::array<TrackedResource, static_cast<uint32_t>(ResourceIDType::EnumCount)>;
// Helper to track resource changes during the capture
class ResourceTracker final : angle::NonCopyable
{
public:
ResourceTracker();
~ResourceTracker();
BufferCalls &getBufferMapCalls() { return mBufferMapCalls; }
BufferCalls &getBufferUnmapCalls() { return mBufferUnmapCalls; }
std::vector<CallCapture> &getBufferBindingCalls() { return mBufferBindingCalls; }
void setBufferMapped(GLuint id);
void setBufferUnmapped(GLuint id);
bool getStartingBuffersMappedCurrent(GLuint id) const;
bool getStartingBuffersMappedInitial(GLuint id) const;
void setStartingBufferMapped(GLuint id, bool mapped)
{
// Track the current state (which will change throughout the trace)
mStartingBuffersMappedCurrent[id] = mapped;
// And the initial state, to compare during frame loop reset
mStartingBuffersMappedInitial[id] = mapped;
}
void onShaderProgramAccess(gl::ShaderProgramID shaderProgramID);
uint32_t getMaxShaderPrograms() const { return mMaxShaderPrograms; }
FenceSyncSet &getStartingFenceSyncs() { return mStartingFenceSyncs; }
FenceSyncCalls &getFenceSyncRegenCalls() { return mFenceSyncRegenCalls; }
FenceSyncSet &getFenceSyncsToRegen() { return mFenceSyncsToRegen; }
void setDeletedFenceSync(GLsync sync);
TrackedResource &getTrackedResource(ResourceIDType type)
{
return mTrackedResources[static_cast<uint32_t>(type)];
}
private:
// Buffer map calls will map a buffer with correct offset, length, and access flags
BufferCalls mBufferMapCalls;
// Buffer unmap calls will bind and unmap a given buffer
BufferCalls mBufferUnmapCalls;
// Buffer binding calls to restore bindings recorded during MEC
std::vector<CallCapture> mBufferBindingCalls;
// Whether a given buffer was mapped at the start of the trace
BufferMapStatusMap mStartingBuffersMappedInitial;
// The status of buffer mapping throughout the trace, modified with each Map/Unmap call
BufferMapStatusMap mStartingBuffersMappedCurrent;
// Maximum accessed shader program ID.
uint32_t mMaxShaderPrograms = 0;
// Fence sync objects created during MEC setup
FenceSyncSet mStartingFenceSyncs;
// Fence sync regen calls will create a fence sync objects
FenceSyncCalls mFenceSyncRegenCalls;
// Fence syncs to regen are a list of starting fence sync objects that were deleted and need to
// be regen'ed.
FenceSyncSet mFenceSyncsToRegen;
TrackedResourceArray mTrackedResources;
};
// Used by the CPP replay to filter out unnecessary code.
using HasResourceTypeMap = angle::PackedEnumBitSet<ResourceIDType>;
// Map of buffer ID to offset and size used when mapped
using BufferDataMap = std::map<gl::BufferID, std::pair<GLintptr, GLsizeiptr>>;
// A dictionary of sources indexed by shader type.
using ProgramSources = gl::ShaderMap<std::string>;
// Maps from IDs to sources.
using ShaderSourceMap = std::map<gl::ShaderProgramID, std::string>;
using ProgramSourceMap = std::map<gl::ShaderProgramID, ProgramSources>;
// Map from textureID to level and data
using TextureLevels = std::map<GLint, std::vector<uint8_t>>;
using TextureLevelDataMap = std::map<gl::TextureID, TextureLevels>;
struct SurfaceParams
{
gl::Extents extents;
egl::ColorSpace colorSpace;
};
// Map from ContextID to SurfaceParams
using SurfaceParamsMap = std::map<gl::ContextID, SurfaceParams>;
using CallVector = std::vector<std::vector<CallCapture> *>;
class FrameCapture final : angle::NonCopyable
{
public:
FrameCapture();
~FrameCapture();
std::vector<CallCapture> &getSetupCalls() { return mSetupCalls; }
void clearSetupCalls() { mSetupCalls.clear(); }
void reset();
private:
std::vector<CallCapture> mSetupCalls;
};
// Shared class for any items that need to be tracked by FrameCapture across shared contexts
class FrameCaptureShared final : angle::NonCopyable
{
public:
FrameCaptureShared();
~FrameCaptureShared();
void captureCall(const gl::Context *context, CallCapture &&call, bool isCallValid);
void checkForCaptureTrigger();
void setupSharedAndAuxReplay(const gl::Context *context, bool isMidExecutionCapture);
void onEndFrame(const gl::Context *context);
void onDestroyContext(const gl::Context *context);
void onMakeCurrent(const gl::Context *context, const egl::Surface *drawSurface);
bool enabled() const { return mEnabled; }
bool isCapturing() const;
void replay(gl::Context *context);
uint32_t getFrameCount() const;
// Returns a frame index starting from "1" as the first frame.
uint32_t getReplayFrameIndex() const;
ResourceTracker &getResourceTracker() { return mResourceTracker; }
void trackBufferMapping(CallCapture *call,
gl::BufferID id,
GLintptr offset,
GLsizeiptr length,
bool writable);
void trackTextureUpdate(const gl::Context *context, const CallCapture &call);
const std::string &getShaderSource(gl::ShaderProgramID id) const;
void setShaderSource(gl::ShaderProgramID id, std::string sources);
const ProgramSources &getProgramSources(gl::ShaderProgramID id) const;
void setProgramSources(gl::ShaderProgramID id, ProgramSources sources);
// Load data from a previously stored texture level
const std::vector<uint8_t> &retrieveCachedTextureLevel(gl::TextureID id,
gl::TextureTarget target,
GLint level);
// Create new texture level data and copy the source into it
void copyCachedTextureLevel(const gl::Context *context,
gl::TextureID srcID,
GLint srcLevel,
gl::TextureID dstID,
GLint dstLevel,
const CallCapture &call);
// Create the location that should be used to cache texture level data
std::vector<uint8_t> &getCachedTextureLevelData(gl::Texture *texture,
gl::TextureTarget target,
GLint level,
EntryPoint entryPoint);
// Remove any cached texture levels on deletion
void deleteCachedTextureLevelData(gl::TextureID id);
void eraseBufferDataMapEntry(const gl::BufferID bufferId)
{
const auto &bufferDataInfo = mBufferDataMap.find(bufferId);
if (bufferDataInfo != mBufferDataMap.end())
{
mBufferDataMap.erase(bufferDataInfo);
}
}
bool hasBufferData(gl::BufferID bufferID)
{
const auto &bufferDataInfo = mBufferDataMap.find(bufferID);
if (bufferDataInfo != mBufferDataMap.end())
{
return true;
}
return false;
}
std::pair<GLintptr, GLsizeiptr> getBufferDataOffsetAndLength(gl::BufferID bufferID)
{
const auto &bufferDataInfo = mBufferDataMap.find(bufferID);
ASSERT(bufferDataInfo != mBufferDataMap.end());
return bufferDataInfo->second;
}
void setCaptureActive() { mCaptureActive = true; }
void setCaptureInactive() { mCaptureActive = false; }
bool isCaptureActive() { return mCaptureActive; }
gl::ContextID getWindowSurfaceContextID() const { return mWindowSurfaceContextID; }
void updateReadBufferSize(size_t readBufferSize)
{
mReadBufferSize = std::max(mReadBufferSize, readBufferSize);
}
private:
void writeCppReplayIndexFiles(const gl::Context *, bool writeResetContextCall);
void captureClientArraySnapshot(const gl::Context *context,
size_t vertexCount,
size_t instanceCount);
void captureMappedBufferSnapshot(const gl::Context *context, const CallCapture &call);
void copyCompressedTextureData(const gl::Context *context, const CallCapture &call);
void captureCompressedTextureData(const gl::Context *context, const CallCapture &call);
void reset();
void maybeOverrideEntryPoint(const gl::Context *context, CallCapture &call);
void maybeCapturePreCallUpdates(const gl::Context *context, CallCapture &call);
void maybeCapturePostCallUpdates(const gl::Context *context);
void maybeCaptureDrawArraysClientData(const gl::Context *context,
CallCapture &call,
size_t instanceCount);
void maybeCaptureDrawElementsClientData(const gl::Context *context,
CallCapture &call,
size_t instanceCount);
void updateCopyImageSubData(CallCapture &call);
static void ReplayCall(gl::Context *context,
ReplayContext *replayContext,
const CallCapture &call);
std::vector<CallCapture> &getSetupCalls() { return mSetupCalls; }
void clearSetupCalls() { mSetupCalls.clear(); }
std::vector<CallCapture> mSetupCalls;
std::vector<CallCapture> mFrameCalls;
// We save one large buffer of binary data for the whole CPP replay.
// This simplifies a lot of file management.
std::vector<uint8_t> mBinaryData;
bool mEnabled;
bool mSerializeStateEnabled;
std::string mOutDirectory;
std::string mCaptureLabel;
bool mCompression;
gl::AttribArray<int> mClientVertexArrayMap;
uint32_t mFrameIndex;
uint32_t mCaptureStartFrame;
uint32_t mCaptureEndFrame;
bool mIsFirstFrame = true;
bool mWroteIndexFile = false;
SurfaceParamsMap mDrawSurfaceParams;
gl::AttribArray<size_t> mClientArraySizes;
size_t mReadBufferSize;
HasResourceTypeMap mHasResourceType;
BufferDataMap mBufferDataMap;
ResourceTracker mResourceTracker;
// If you don't know which frame you want to start capturing at, use the capture trigger.
// Initialize it to the number of frames you want to capture, and then clear the value to 0 when
// you reach the content you want to capture. Currently only available on Android.
uint32_t mCaptureTrigger;
bool mCaptureActive;
std::vector<uint32_t> mActiveFrameIndices;
// Cache most recently compiled and linked sources.
ShaderSourceMap mCachedShaderSource;
ProgramSourceMap mCachedProgramSources;
// Cache a shadow copy of texture level data
TextureLevels mCachedTextureLevels;
TextureLevelDataMap mCachedTextureLevelData;
gl::ContextID mWindowSurfaceContextID;
};
template <typename CaptureFuncT, typename... ArgsT>
void CaptureCallToFrameCapture(CaptureFuncT captureFunc,
bool isCallValid,
gl::Context *context,
ArgsT... captureParams)
{
FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared();
if (!frameCaptureShared->isCapturing())
{
return;
}
CallCapture call = captureFunc(context->getState(), isCallValid, captureParams...);
frameCaptureShared->captureCall(context, std::move(call), isCallValid);
}
template <typename T>
void ParamBuffer::addValueParam(const char *paramName, ParamType paramType, T paramValue)
{
ParamCapture capture(paramName, paramType);
InitParamValue(paramType, paramValue, &capture.value);
mParamCaptures.emplace_back(std::move(capture));
}
template <typename T>
void ParamBuffer::setValueParamAtIndex(const char *paramName,
ParamType paramType,
T paramValue,
int index)
{
ASSERT(mParamCaptures.size() > static_cast<size_t>(index));
ParamCapture capture(paramName, paramType);
InitParamValue(paramType, paramValue, &capture.value);
mParamCaptures[index] = std::move(capture);
}
template <typename T>
void ParamBuffer::addEnumParam(const char *paramName,
gl::GLenumGroup enumGroup,
ParamType paramType,
T paramValue)
{
ParamCapture capture(paramName, paramType);
InitParamValue(paramType, paramValue, &capture.value);
capture.enumGroup = enumGroup;
mParamCaptures.emplace_back(std::move(capture));
}
std::ostream &operator<<(std::ostream &os, const ParamCapture &capture);
// Pointer capture helpers.
void CaptureMemory(const void *source, size_t size, ParamCapture *paramCapture);
void CaptureString(const GLchar *str, ParamCapture *paramCapture);
void CaptureStringLimit(const GLchar *str, uint32_t limit, ParamCapture *paramCapture);
void CaptureVertexPointerGLES1(const gl::State &glState,
gl::ClientVertexArrayType type,
const void *pointer,
ParamCapture *paramCapture);
gl::Program *GetProgramForCapture(const gl::State &glState, gl::ShaderProgramID handle);
// For GetIntegerv, GetFloatv, etc.
void CaptureGetParameter(const gl::State &glState,
GLenum pname,
size_t typeSize,
ParamCapture *paramCapture);
void CaptureGetActiveUniformBlockivParameters(const gl::State &glState,
gl::ShaderProgramID handle,
gl::UniformBlockIndex uniformBlockIndex,
GLenum pname,
ParamCapture *paramCapture);
template <typename T>
void CaptureClearBufferValue(GLenum buffer, const T *value, ParamCapture *paramCapture)
{
// Per the spec, color buffers have a vec4, the rest a single value
uint32_t valueSize = (buffer == GL_COLOR) ? 4 : 1;
CaptureMemory(value, valueSize * sizeof(T), paramCapture);
}
void CaptureGenHandlesImpl(GLsizei n, GLuint *handles, ParamCapture *paramCapture);
template <typename T>
void CaptureGenHandles(GLsizei n, T *handles, ParamCapture *paramCapture)
{
paramCapture->dataNElements = n;
CaptureGenHandlesImpl(n, reinterpret_cast<GLuint *>(handles), paramCapture);
}
template <typename T>
void CaptureArray(T *elements, GLsizei n, ParamCapture *paramCapture)
{
paramCapture->dataNElements = n;
CaptureMemory(elements, n * sizeof(T), paramCapture);
}
void CaptureShaderStrings(GLsizei count,
const GLchar *const *strings,
const GLint *length,
ParamCapture *paramCapture);
template <ParamType ParamT, typename T>
void WriteParamValueReplay(std::ostream &os, const CallCapture &call, T value);
template <>
void WriteParamValueReplay<ParamType::TGLboolean>(std::ostream &os,
const CallCapture &call,
GLboolean value);
template <>
void WriteParamValueReplay<ParamType::TvoidConstPointer>(std::ostream &os,
const CallCapture &call,
const void *value);
template <>
void WriteParamValueReplay<ParamType::TGLfloatConstPointer>(std::ostream &os,
const CallCapture &call,
const GLfloat *value);
template <>
void WriteParamValueReplay<ParamType::TGLuintConstPointer>(std::ostream &os,
const CallCapture &call,
const GLuint *value);
template <>
void WriteParamValueReplay<ParamType::TGLDEBUGPROCKHR>(std::ostream &os,
const CallCapture &call,
GLDEBUGPROCKHR value);
template <>
void WriteParamValueReplay<ParamType::TGLDEBUGPROC>(std::ostream &os,
const CallCapture &call,
GLDEBUGPROC value);
template <>
void WriteParamValueReplay<ParamType::TBufferID>(std::ostream &os,
const CallCapture &call,
gl::BufferID value);
template <>
void WriteParamValueReplay<ParamType::TFenceNVID>(std::ostream &os,
const CallCapture &call,
gl::FenceNVID value);
template <>
void WriteParamValueReplay<ParamType::TFramebufferID>(std::ostream &os,
const CallCapture &call,
gl::FramebufferID value);
template <>
void WriteParamValueReplay<ParamType::TMemoryObjectID>(std::ostream &os,
const CallCapture &call,
gl::MemoryObjectID value);
template <>
void WriteParamValueReplay<ParamType::TProgramPipelineID>(std::ostream &os,
const CallCapture &call,
gl::ProgramPipelineID value);
template <>
void WriteParamValueReplay<ParamType::TQueryID>(std::ostream &os,
const CallCapture &call,
gl::QueryID value);
template <>
void WriteParamValueReplay<ParamType::TRenderbufferID>(std::ostream &os,
const CallCapture &call,
gl::RenderbufferID value);
template <>
void WriteParamValueReplay<ParamType::TSamplerID>(std::ostream &os,
const CallCapture &call,
gl::SamplerID value);
template <>
void WriteParamValueReplay<ParamType::TSemaphoreID>(std::ostream &os,
const CallCapture &call,
gl::SemaphoreID value);
template <>
void WriteParamValueReplay<ParamType::TShaderProgramID>(std::ostream &os,
const CallCapture &call,
gl::ShaderProgramID value);
template <>
void WriteParamValueReplay<ParamType::TTextureID>(std::ostream &os,
const CallCapture &call,
gl::TextureID value);
template <>
void WriteParamValueReplay<ParamType::TTransformFeedbackID>(std::ostream &os,
const CallCapture &call,
gl::TransformFeedbackID value);
template <>
void WriteParamValueReplay<ParamType::TVertexArrayID>(std::ostream &os,
const CallCapture &call,
gl::VertexArrayID value);
template <>
void WriteParamValueReplay<ParamType::TUniformLocation>(std::ostream &os,
const CallCapture &call,
gl::UniformLocation value);
template <>
void WriteParamValueReplay<ParamType::TUniformBlockIndex>(std::ostream &os,
const CallCapture &call,
gl::UniformBlockIndex value);
template <>
void WriteParamValueReplay<ParamType::TGLsync>(std::ostream &os,
const CallCapture &call,
GLsync value);
template <>
void WriteParamValueReplay<ParamType::TGLeglImageOES>(std::ostream &os,
const CallCapture &call,
GLeglImageOES value);
template <>
void WriteParamValueReplay<ParamType::TGLubyte>(std::ostream &os,
const CallCapture &call,
GLubyte value);
template <>
void WriteParamValueReplay<ParamType::TEGLDEBUGPROCKHR>(std::ostream &os,
const CallCapture &call,
EGLDEBUGPROCKHR value);
template <>
void WriteParamValueReplay<ParamType::TEGLGetBlobFuncANDROID>(std::ostream &os,
const CallCapture &call,
EGLGetBlobFuncANDROID value);
template <>
void WriteParamValueReplay<ParamType::TEGLSetBlobFuncANDROID>(std::ostream &os,
const CallCapture &call,
EGLSetBlobFuncANDROID value);
// General fallback for any unspecific type.
template <ParamType ParamT, typename T>
void WriteParamValueReplay(std::ostream &os, const CallCapture &call, T value)
{
os << value;
}
} // namespace angle
template <typename T>
void CaptureTextureAndSamplerParameter_params(GLenum pname,
const T *param,
angle::ParamCapture *paramCapture)
{
if (pname == GL_TEXTURE_BORDER_COLOR || pname == GL_TEXTURE_CROP_RECT_OES)
{
CaptureMemory(param, sizeof(T) * 4, paramCapture);
}
else
{
CaptureMemory(param, sizeof(T), paramCapture);
}
}
#endif // LIBANGLE_FRAME_CAPTURE_H_