Hash :
3d2de99e
Author :
Date :
2020-06-09T01:14:42
Vulkan: Fix RTs attached to textures with non-0 mip
Cleared confusion between GL level indices and VK level indices by
adding the corresponding suffix to variables and function arguments. A
handful of places that sent one index and expected the other are fixed.
The conversion between the two is given by:
levelIndexGL = levelIndexVk + baseLevel;
Bug: angleproject:4695
Change-Id: I84ecbaf867d00a40fb39b6db7ad79658016f4d9a
Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2235362
Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_helpers:
// Helper utilitiy classes that manage Vulkan resources.
#ifndef LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_
#define LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_
#include "common/MemoryBuffer.h"
#include "libANGLE/renderer/vulkan/ResourceVk.h"
#include "libANGLE/renderer/vulkan/vk_cache_utils.h"
namespace gl
{
class ImageIndex;
} // namespace gl
namespace rx
{
namespace vk
{
constexpr VkBufferUsageFlags kVertexBufferUsageFlags =
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr VkBufferUsageFlags kIndexBufferUsageFlags =
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr VkBufferUsageFlags kIndirectBufferUsageFlags =
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr size_t kVertexBufferAlignment = 4;
constexpr size_t kIndexBufferAlignment = 4;
constexpr size_t kIndirectBufferAlignment = 4;
constexpr VkBufferUsageFlags kStagingBufferFlags =
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
constexpr size_t kStagingBufferSize = 1024 * 16;
constexpr VkImageCreateFlags kVkImageCreateFlagsNone = 0;
using StagingBufferOffsetArray = std::array<VkDeviceSize, 2>;
struct TextureUnit final
{
TextureVk *texture;
SamplerVk *sampler;
};
// A dynamic buffer is conceptually an infinitely long buffer. Each time you write to the buffer,
// you will always write to a previously unused portion. After a series of writes, you must flush
// the buffer data to the device. Buffer lifetime currently assumes that each new allocation will
// last as long or longer than each prior allocation.
//
// Dynamic buffers are used to implement a variety of data streaming operations in Vulkan, such
// as for immediate vertex array and element array data, uniform updates, and other dynamic data.
//
// Internally dynamic buffers keep a collection of VkBuffers. When we write past the end of a
// currently active VkBuffer we keep it until it is no longer in use. We then mark it available
// for future allocations in a free list.
class BufferHelper;
class DynamicBuffer : angle::NonCopyable
{
public:
DynamicBuffer();
DynamicBuffer(DynamicBuffer &&other);
~DynamicBuffer();
// Init is called after the buffer creation so that the alignment can be specified later.
void init(RendererVk *renderer,
VkBufferUsageFlags usage,
size_t alignment,
size_t initialSize,
bool hostVisible);
// Init that gives the ability to pass in specified memory property flags for the buffer.
void initWithFlags(RendererVk *renderer,
VkBufferUsageFlags usage,
size_t alignment,
size_t initialSize,
VkMemoryPropertyFlags memoryProperty);
// This call will allocate a new region at the end of the buffer. It internally may trigger
// a new buffer to be created (which is returned in the optional parameter
// `newBufferAllocatedOut`). The new region will be in the returned buffer at given offset. If
// a memory pointer is given, the buffer will be automatically map()ed.
angle::Result allocate(ContextVk *contextVk,
size_t sizeInBytes,
uint8_t **ptrOut,
VkBuffer *bufferOut,
VkDeviceSize *offsetOut,
bool *newBufferAllocatedOut);
// After a sequence of writes, call flush to ensure the data is visible to the device.
angle::Result flush(ContextVk *contextVk);
// After a sequence of writes, call invalidate to ensure the data is visible to the host.
angle::Result invalidate(ContextVk *contextVk);
// This releases resources when they might currently be in use.
void release(RendererVk *renderer);
// This releases all the buffers that have been allocated since this was last called.
void releaseInFlightBuffers(ContextVk *contextVk);
// This frees resources immediately.
void destroy(RendererVk *renderer);
BufferHelper *getCurrentBuffer() { return mBuffer; }
void updateAlignment(RendererVk *renderer, size_t alignment);
// For testing only!
void setMinimumSizeForTesting(size_t minSize);
bool isCoherent() const
{
return (mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
}
private:
void reset();
angle::Result allocateNewBuffer(ContextVk *contextVk);
void releaseBufferListToRenderer(RendererVk *renderer, std::vector<BufferHelper *> *buffers);
void destroyBufferList(RendererVk *renderer, std::vector<BufferHelper *> *buffers);
VkBufferUsageFlags mUsage;
bool mHostVisible;
size_t mInitialSize;
BufferHelper *mBuffer;
uint32_t mNextAllocationOffset;
uint32_t mLastFlushOrInvalidateOffset;
size_t mSize;
size_t mAlignment;
VkMemoryPropertyFlags mMemoryPropertyFlags;
std::vector<BufferHelper *> mInFlightBuffers;
std::vector<BufferHelper *> mBufferFreeList;
};
// Based off of the DynamicBuffer class, DynamicShadowBuffer provides
// a similar conceptually infinitely long buffer that will only be written
// to and read by the CPU. This can be used to provide CPU cached copies of
// GPU-read only buffers. The value add here is that when an app requests
// CPU access to a buffer we can fullfil such a request in O(1) time since
// we don't need to wait for GPU to be done with in-flight commands.
//
// The hidden cost here is that any operation that updates a buffer, either
// through a buffer sub data update or a buffer-to-buffer copy will have an
// additional overhead of having to update its CPU only buffer
class DynamicShadowBuffer : public angle::NonCopyable
{
public:
DynamicShadowBuffer();
DynamicShadowBuffer(DynamicShadowBuffer &&other);
~DynamicShadowBuffer();
// Initialize the DynamicShadowBuffer.
void init(size_t initialSize);
// Returns whether this DynamicShadowBuffer is active
ANGLE_INLINE bool valid() { return (mSize != 0); }
// This call will actually allocate a new CPU only memory from the heap.
// The size can be different than the one specified during `init`.
angle::Result allocate(size_t sizeInBytes);
ANGLE_INLINE void updateData(const uint8_t *data, size_t size, size_t offset)
{
ASSERT(!mBuffer.empty());
// Memcopy data into the buffer
memcpy((mBuffer.data() + offset), data, size);
}
// Map the CPU only buffer and return the pointer. We map the entire buffer for now.
ANGLE_INLINE void map(size_t offset, void **mapPtr)
{
ASSERT(mapPtr);
ASSERT(!mBuffer.empty());
*mapPtr = mBuffer.data() + offset;
}
// Unmap the CPU only buffer, NOOP for now
ANGLE_INLINE void unmap() {}
// This releases resources when they might currently be in use.
void release();
// This frees resources immediately.
void destroy(VkDevice device);
ANGLE_INLINE uint8_t *getCurrentBuffer()
{
ASSERT(!mBuffer.empty());
return mBuffer.data();
}
ANGLE_INLINE const uint8_t *getCurrentBuffer() const
{
ASSERT(!mBuffer.empty());
return mBuffer.data();
}
private:
void reset();
size_t mInitialSize;
size_t mSize;
angle::MemoryBuffer mBuffer;
};
// Uses DescriptorPool to allocate descriptor sets as needed. If a descriptor pool becomes full, we
// allocate new pools internally as needed. RendererVk takes care of the lifetime of the discarded
// pools. Note that we used a fixed layout for descriptor pools in ANGLE. Uniform buffers must
// use set zero and combined Image Samplers must use set 1. We conservatively count each new set
// using the maximum number of descriptor sets and buffers with each allocation. Currently: 2
// (Vertex/Fragment) uniform buffers and 64 (MAX_ACTIVE_TEXTURES) image/samplers.
// Shared handle to a descriptor pool. Each helper is allocated from the dynamic descriptor pool.
// Can be used to share descriptor pools between multiple ProgramVks and the ContextVk.
class DescriptorPoolHelper
{
public:
DescriptorPoolHelper();
~DescriptorPoolHelper();
bool valid() { return mDescriptorPool.valid(); }
bool hasCapacity(uint32_t descriptorSetCount) const;
angle::Result init(Context *context,
const std::vector<VkDescriptorPoolSize> &poolSizes,
uint32_t maxSets);
void destroy(VkDevice device);
void release(ContextVk *contextVk);
angle::Result allocateSets(ContextVk *contextVk,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
VkDescriptorSet *descriptorSetsOut);
void updateSerial(Serial serial) { mMostRecentSerial = serial; }
Serial getSerial() const { return mMostRecentSerial; }
private:
uint32_t mFreeDescriptorSets;
DescriptorPool mDescriptorPool;
Serial mMostRecentSerial;
};
using RefCountedDescriptorPoolHelper = RefCounted<DescriptorPoolHelper>;
using RefCountedDescriptorPoolBinding = BindingPointer<DescriptorPoolHelper>;
class DynamicDescriptorPool final : angle::NonCopyable
{
public:
DynamicDescriptorPool();
~DynamicDescriptorPool();
// The DynamicDescriptorPool only handles one pool size at this time.
// Note that setSizes[i].descriptorCount is expected to be the number of descriptors in
// an individual set. The pool size will be calculated accordingly.
angle::Result init(ContextVk *contextVk,
const VkDescriptorPoolSize *setSizes,
uint32_t setSizeCount);
void destroy(VkDevice device);
void release(ContextVk *contextVk);
// We use the descriptor type to help count the number of free sets.
// By convention, sets are indexed according to the constants in vk_cache_utils.h.
ANGLE_INLINE angle::Result allocateSets(ContextVk *contextVk,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
RefCountedDescriptorPoolBinding *bindingOut,
VkDescriptorSet *descriptorSetsOut)
{
bool ignoreNewPoolAllocated;
return allocateSetsAndGetInfo(contextVk, descriptorSetLayout, descriptorSetCount,
bindingOut, descriptorSetsOut, &ignoreNewPoolAllocated);
}
// We use the descriptor type to help count the number of free sets.
// By convention, sets are indexed according to the constants in vk_cache_utils.h.
angle::Result allocateSetsAndGetInfo(ContextVk *contextVk,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
RefCountedDescriptorPoolBinding *bindingOut,
VkDescriptorSet *descriptorSetsOut,
bool *newPoolAllocatedOut);
// For testing only!
void setMaxSetsPerPoolForTesting(uint32_t maxSetsPerPool);
private:
angle::Result allocateNewPool(ContextVk *contextVk);
uint32_t mMaxSetsPerPool;
size_t mCurrentPoolIndex;
std::vector<RefCountedDescriptorPoolHelper *> mDescriptorPools;
std::vector<VkDescriptorPoolSize> mPoolSizes;
};
template <typename Pool>
class DynamicallyGrowingPool : angle::NonCopyable
{
public:
DynamicallyGrowingPool();
virtual ~DynamicallyGrowingPool();
bool isValid() { return mPoolSize > 0; }
protected:
angle::Result initEntryPool(Context *contextVk, uint32_t poolSize);
void destroyEntryPool();
// Checks to see if any pool is already free, in which case it sets it as current pool and
// returns true.
bool findFreeEntryPool(ContextVk *contextVk);
// Allocates a new entry and initializes it with the given pool.
angle::Result allocateNewEntryPool(ContextVk *contextVk, Pool &&pool);
// Called by the implementation whenever an entry is freed.
void onEntryFreed(ContextVk *contextVk, size_t poolIndex);
// The pool size, to know when a pool is completely freed.
uint32_t mPoolSize;
std::vector<Pool> mPools;
struct PoolStats
{
// A count corresponding to each pool indicating how many of its allocated entries
// have been freed. Once that value reaches mPoolSize for each pool, that pool is considered
// free and reusable. While keeping a bitset would allow allocation of each index, the
// slight runtime overhead of finding free indices is not worth the slight memory overhead
// of creating new pools when unnecessary.
uint32_t freedCount;
// The serial of the renderer is stored on each object free to make sure no
// new allocations are made from the pool until it's not in use.
Serial serial;
};
std::vector<PoolStats> mPoolStats;
// Index into mPools indicating pool we are currently allocating from.
size_t mCurrentPool;
// Index inside mPools[mCurrentPool] indicating which index can be allocated next.
uint32_t mCurrentFreeEntry;
};
// DynamicQueryPool allocates indices out of QueryPool as needed. Once a QueryPool is exhausted,
// another is created. The query pools live permanently, but are recycled as indices get freed.
// These are arbitrary default sizes for query pools.
constexpr uint32_t kDefaultOcclusionQueryPoolSize = 64;
constexpr uint32_t kDefaultTimestampQueryPoolSize = 64;
class QueryHelper;
class DynamicQueryPool final : public DynamicallyGrowingPool<QueryPool>
{
public:
DynamicQueryPool();
~DynamicQueryPool() override;
angle::Result init(ContextVk *contextVk, VkQueryType type, uint32_t poolSize);
void destroy(VkDevice device);
angle::Result allocateQuery(ContextVk *contextVk, QueryHelper *queryOut);
void freeQuery(ContextVk *contextVk, QueryHelper *query);
const QueryPool &getQueryPool(size_t index) const { return mPools[index]; }
private:
angle::Result allocateNewPool(ContextVk *contextVk);
// Information required to create new query pools
VkQueryType mQueryType;
};
// Queries in vulkan are identified by the query pool and an index for a query within that pool.
// Unlike other pools, such as descriptor pools where an allocation returns an independent object
// from the pool, the query allocations are not done through a Vulkan function and are only an
// integer index.
//
// Furthermore, to support arbitrarily large number of queries, DynamicQueryPool creates query pools
// of a fixed size as needed and allocates indices within those pools.
//
// The QueryHelper class below keeps the pool and index pair together.
class QueryHelper final
{
public:
QueryHelper();
~QueryHelper();
void init(const DynamicQueryPool *dynamicQueryPool,
const size_t queryPoolIndex,
uint32_t query);
void deinit();
bool valid() const { return mDynamicQueryPool != nullptr; }
angle::Result beginQuery(ContextVk *contextVk);
angle::Result endQuery(ContextVk *contextVk);
// for occlusion query
// Must resetQueryPool outside of RenderPass before beginning occlusion query.
void resetQueryPool(ContextVk *contextVk, CommandBuffer *outsideRenderPassCommandBuffer);
void beginOcclusionQuery(ContextVk *contextVk, CommandBuffer *renderPassCommandBuffer);
void endOcclusionQuery(ContextVk *contextVk, CommandBuffer *renderPassCommandBuffer);
angle::Result flushAndWriteTimestamp(ContextVk *contextVk);
// When syncing gpu/cpu time, main thread accesses primary directly
void writeTimestamp(ContextVk *contextVk, PrimaryCommandBuffer *primary);
// All other timestamp accesses should be made on outsideRenderPassCommandBuffer
void writeTimestamp(ContextVk *contextVk, CommandBuffer *outsideRenderPassCommandBuffer);
Serial getStoredQueueSerial() { return mMostRecentSerial; }
bool hasPendingWork(ContextVk *contextVk);
angle::Result getUint64ResultNonBlocking(ContextVk *contextVk,
uint64_t *resultOut,
bool *availableOut);
angle::Result getUint64Result(ContextVk *contextVk, uint64_t *resultOut);
private:
friend class DynamicQueryPool;
const QueryPool &getQueryPool() const
{
ASSERT(valid());
return mDynamicQueryPool->getQueryPool(mQueryPoolIndex);
}
const DynamicQueryPool *mDynamicQueryPool;
size_t mQueryPoolIndex;
uint32_t mQuery;
Serial mMostRecentSerial;
};
// DynamicSemaphorePool allocates semaphores as needed. It uses a std::vector
// as a pool to allocate many semaphores at once. The pools live permanently,
// but are recycled as semaphores get freed.
// These are arbitrary default sizes for semaphore pools.
constexpr uint32_t kDefaultSemaphorePoolSize = 64;
class SemaphoreHelper;
class DynamicSemaphorePool final : public DynamicallyGrowingPool<std::vector<Semaphore>>
{
public:
DynamicSemaphorePool();
~DynamicSemaphorePool() override;
angle::Result init(ContextVk *contextVk, uint32_t poolSize);
void destroy(VkDevice device);
bool isValid() { return mPoolSize > 0; }
// autoFree can be used to allocate a semaphore that's expected to be freed at the end of the
// frame. This renders freeSemaphore unnecessary and saves an eventual search.
angle::Result allocateSemaphore(ContextVk *contextVk, SemaphoreHelper *semaphoreOut);
void freeSemaphore(ContextVk *contextVk, SemaphoreHelper *semaphore);
private:
angle::Result allocateNewPool(ContextVk *contextVk);
};
// Semaphores that are allocated from the semaphore pool are encapsulated in a helper object,
// keeping track of where in the pool they are allocated from.
class SemaphoreHelper final : angle::NonCopyable
{
public:
SemaphoreHelper();
~SemaphoreHelper();
SemaphoreHelper(SemaphoreHelper &&other);
SemaphoreHelper &operator=(SemaphoreHelper &&other);
void init(const size_t semaphorePoolIndex, const Semaphore *semaphore);
void deinit();
const Semaphore *getSemaphore() const { return mSemaphore; }
// Used only by DynamicSemaphorePool.
size_t getSemaphorePoolIndex() const { return mSemaphorePoolIndex; }
private:
size_t mSemaphorePoolIndex;
const Semaphore *mSemaphore;
};
// This class' responsibility is to create index buffers needed to support line loops in Vulkan.
// In the setup phase of drawing, the createIndexBuffer method should be called with the
// current draw call parameters. If an element array buffer is bound for an indexed draw, use
// createIndexBufferFromElementArrayBuffer.
//
// If the user wants to draw a loop between [v1, v2, v3], we will create an indexed buffer with
// these indexes: [0, 1, 2, 3, 0] to emulate the loop.
class LineLoopHelper final : angle::NonCopyable
{
public:
LineLoopHelper(RendererVk *renderer);
~LineLoopHelper();
angle::Result getIndexBufferForDrawArrays(ContextVk *contextVk,
uint32_t clampedVertexCount,
GLint firstVertex,
BufferHelper **bufferOut,
VkDeviceSize *offsetOut);
angle::Result getIndexBufferForElementArrayBuffer(ContextVk *contextVk,
BufferVk *elementArrayBufferVk,
gl::DrawElementsType glIndexType,
int indexCount,
intptr_t elementArrayOffset,
BufferHelper **bufferOut,
VkDeviceSize *bufferOffsetOut,
uint32_t *indexCountOut);
angle::Result streamIndices(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
GLsizei indexCount,
const uint8_t *srcPtr,
BufferHelper **bufferOut,
VkDeviceSize *bufferOffsetOut,
uint32_t *indexCountOut);
angle::Result streamIndicesIndirect(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
BufferHelper *indexBuffer,
BufferHelper *indirectBuffer,
VkDeviceSize indirectBufferOffset,
BufferHelper **indexBufferOut,
VkDeviceSize *indexBufferOffsetOut,
BufferHelper **indirectBufferOut,
VkDeviceSize *indirectBufferOffsetOut);
angle::Result streamArrayIndirect(ContextVk *contextVk,
size_t vertexCount,
BufferHelper *arrayIndirectBuffer,
VkDeviceSize arrayIndirectBufferOffset,
BufferHelper **indexBufferOut,
VkDeviceSize *indexBufferOffsetOut,
BufferHelper **indexIndirectBufferOut,
VkDeviceSize *indexIndirectBufferOffsetOut);
void release(ContextVk *contextVk);
void destroy(RendererVk *renderer);
static void Draw(uint32_t count, uint32_t baseVertex, CommandBuffer *commandBuffer);
private:
DynamicBuffer mDynamicIndexBuffer;
DynamicBuffer mDynamicIndirectBuffer;
};
// This defines enum for VkPipelineStageFlagBits so that we can use it to compare and index into
// array.
enum class PipelineStage : uint16_t
{
// Bellow are ordered based on Graphics Pipeline Stages
TopOfPipe = 0,
DrawIndirect = 1,
VertexInput = 2,
VertexShader = 3,
GeometryShader = 4,
TransformFeedback = 5,
EarlyFragmentTest = 6,
FragmentShader = 7,
LateFragmentTest = 8,
ColorAttachmentOutput = 9,
// Compute specific pipeline Stage
ComputeShader = 10,
// Transfer specific pipeline Stage
Transfer = 11,
BottomOfPipe = 12,
// Host specific pipeline stage
Host = 13,
InvalidEnum = 14,
EnumCount = InvalidEnum,
};
using PipelineStagesMask = angle::PackedEnumBitSet<PipelineStage, uint16_t>;
// This wraps data and API for vkCmdPipelineBarrier call
class PipelineBarrier : angle::NonCopyable
{
public:
PipelineBarrier()
: mSrcStageMask(0),
mDstStageMask(0),
mMemoryBarrierSrcAccess(0),
mMemoryBarrierDstAccess(0),
mImageMemoryBarriers()
{}
~PipelineBarrier() = default;
bool isEmpty() const { return mImageMemoryBarriers.empty() && mMemoryBarrierSrcAccess == 0; }
void execute(PrimaryCommandBuffer *primary)
{
if (isEmpty())
{
return;
}
// Issue vkCmdPipelineBarrier call
VkMemoryBarrier memoryBarrier = {};
uint32_t memoryBarrierCount = 0;
if (mMemoryBarrierSrcAccess != 0)
{
memoryBarrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memoryBarrier.srcAccessMask = mMemoryBarrierSrcAccess;
memoryBarrier.dstAccessMask = mMemoryBarrierDstAccess;
memoryBarrierCount++;
}
primary->pipelineBarrier(
mSrcStageMask, mDstStageMask, 0, memoryBarrierCount, &memoryBarrier, 0, nullptr,
static_cast<uint32_t>(mImageMemoryBarriers.size()), mImageMemoryBarriers.data());
reset();
}
// merge two barriers into one
void merge(PipelineBarrier *other)
{
mSrcStageMask |= other->mSrcStageMask;
mDstStageMask |= other->mDstStageMask;
mMemoryBarrierSrcAccess |= other->mMemoryBarrierSrcAccess;
mMemoryBarrierDstAccess |= other->mMemoryBarrierDstAccess;
mImageMemoryBarriers.insert(mImageMemoryBarriers.end(), other->mImageMemoryBarriers.begin(),
other->mImageMemoryBarriers.end());
other->reset();
}
void mergeMemoryBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
VkFlags srcAccess,
VkFlags dstAccess)
{
mSrcStageMask |= srcStageMask;
mDstStageMask |= dstStageMask;
mMemoryBarrierSrcAccess |= srcAccess;
mMemoryBarrierDstAccess |= dstAccess;
}
void mergeImageBarrier(VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
const VkImageMemoryBarrier &imageMemoryBarrier)
{
ASSERT(imageMemoryBarrier.pNext == nullptr);
mSrcStageMask |= srcStageMask;
mDstStageMask |= dstStageMask;
mImageMemoryBarriers.push_back(imageMemoryBarrier);
}
void reset()
{
mSrcStageMask = 0;
mDstStageMask = 0;
mMemoryBarrierSrcAccess = 0;
mMemoryBarrierDstAccess = 0;
mImageMemoryBarriers.clear();
}
void addDiagnosticsString(std::ostringstream &out) const;
private:
VkPipelineStageFlags mSrcStageMask;
VkPipelineStageFlags mDstStageMask;
VkFlags mMemoryBarrierSrcAccess;
VkFlags mMemoryBarrierDstAccess;
std::vector<VkImageMemoryBarrier> mImageMemoryBarriers;
};
using PipelineBarrierArray = angle::PackedEnumMap<PipelineStage, PipelineBarrier>;
class FramebufferHelper;
class BufferHelper final : public Resource
{
public:
BufferHelper();
~BufferHelper() override;
angle::Result init(Context *context,
const VkBufferCreateInfo &createInfo,
VkMemoryPropertyFlags memoryPropertyFlags);
void destroy(RendererVk *renderer);
void release(RendererVk *renderer);
bool valid() const { return mBuffer.valid(); }
const Buffer &getBuffer() const { return mBuffer; }
VkDeviceSize getSize() const { return mSize; }
bool isHostVisible() const
{
return (mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
}
bool isCoherent() const
{
return (mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
}
// Set write access mask when the buffer is modified externally, e.g. by host. There is no
// graph resource to create a dependency to.
void onExternalWrite(VkAccessFlags writeAccessType)
{
ASSERT(writeAccessType == VK_ACCESS_HOST_WRITE_BIT);
mCurrentWriteAccess |= writeAccessType;
mCurrentWriteStages |= VK_PIPELINE_STAGE_HOST_BIT;
}
// Also implicitly sets up the correct barriers.
angle::Result copyFromBuffer(ContextVk *contextVk,
BufferHelper *srcBuffer,
uint32_t regionCount,
const VkBufferCopy *copyRegions);
// Note: currently only one view is allowed. If needs be, multiple views can be created
// based on format.
angle::Result initBufferView(ContextVk *contextVk, const Format &format);
const BufferView &getBufferView() const
{
ASSERT(mBufferView.valid());
return mBufferView;
}
const Format &getViewFormat() const
{
ASSERT(mViewFormat);
return *mViewFormat;
}
angle::Result map(ContextVk *contextVk, uint8_t **ptrOut)
{
if (!mMappedMemory)
{
ANGLE_TRY(mapImpl(contextVk));
}
*ptrOut = mMappedMemory;
return angle::Result::Continue;
}
angle::Result mapWithOffset(ContextVk *contextVk, uint8_t **ptrOut, size_t offset)
{
uint8_t *mapBufPointer;
ANGLE_TRY(map(contextVk, &mapBufPointer));
*ptrOut = mapBufPointer + offset;
return angle::Result::Continue;
}
void unmap(RendererVk *renderer);
// After a sequence of writes, call flush to ensure the data is visible to the device.
angle::Result flush(RendererVk *renderer, VkDeviceSize offset, VkDeviceSize size);
// After a sequence of writes, call invalidate to ensure the data is visible to the host.
angle::Result invalidate(RendererVk *renderer, VkDeviceSize offset, VkDeviceSize size);
void changeQueue(uint32_t newQueueFamilyIndex, CommandBuffer *commandBuffer);
// Performs an ownership transfer from an external instance or API.
void acquireFromExternal(ContextVk *contextVk,
uint32_t externalQueueFamilyIndex,
uint32_t rendererQueueFamilyIndex,
CommandBuffer *commandBuffer);
// Performs an ownership transfer to an external instance or API.
void releaseToExternal(ContextVk *contextVk,
uint32_t rendererQueueFamilyIndex,
uint32_t externalQueueFamilyIndex,
CommandBuffer *commandBuffer);
// Returns true if the image is owned by an external API or instance.
bool isReleasedToExternal() const;
// Currently always returns false. Should be smarter about accumulation.
bool canAccumulateRead(ContextVk *contextVk, VkAccessFlags readAccessType);
bool canAccumulateWrite(ContextVk *contextVk, VkAccessFlags writeAccessType);
bool updateReadBarrier(VkAccessFlags readAccessType,
VkPipelineStageFlags readStage,
PipelineBarrier *barrier);
bool updateWriteBarrier(VkAccessFlags writeAccessType,
VkPipelineStageFlags writeStage,
PipelineBarrier *barrier);
private:
angle::Result mapImpl(ContextVk *contextVk);
angle::Result initializeNonZeroMemory(Context *context, VkDeviceSize size);
// Vulkan objects.
Buffer mBuffer;
BufferView mBufferView;
Allocation mAllocation;
// Cached properties.
VkMemoryPropertyFlags mMemoryPropertyFlags;
VkDeviceSize mSize;
uint8_t *mMappedMemory;
const Format *mViewFormat;
uint32_t mCurrentQueueFamilyIndex;
// For memory barriers.
VkFlags mCurrentWriteAccess;
VkFlags mCurrentReadAccess;
VkPipelineStageFlags mCurrentWriteStages;
VkPipelineStageFlags mCurrentReadStages;
};
// CommandBufferHelper (CBH) class wraps ANGLE's custom command buffer
// class, SecondaryCommandBuffer. This provides a way to temporarily
// store Vulkan commands that be can submitted in-line to a primary
// command buffer at a later time.
// The current plan is for the main ANGLE thread to record commands
// into the CBH and then pass the CBH off to a worker thread that will
// process the commands into a primary command buffer and then submit
// those commands to the queue.
struct CommandBufferHelper : angle::NonCopyable
{
public:
CommandBufferHelper();
~CommandBufferHelper();
// General Functions (non-renderPass specific)
void initialize(bool isRenderPassCommandBuffer, bool mergeBarriers);
void bufferRead(vk::ResourceUseList *resourceUseList,
VkAccessFlags readAccessType,
vk::PipelineStage readStage,
vk::BufferHelper *buffer);
void bufferWrite(vk::ResourceUseList *resourceUseList,
VkAccessFlags writeAccessType,
vk::PipelineStage writeStage,
vk::BufferHelper *buffer);
void imageRead(vk::ResourceUseList *resourceUseList,
VkImageAspectFlags aspectFlags,
vk::ImageLayout imageLayout,
vk::ImageHelper *image);
void imageWrite(vk::ResourceUseList *resourceUseList,
VkImageAspectFlags aspectFlags,
vk::ImageLayout imageLayout,
vk::ImageHelper *image);
vk::CommandBuffer &getCommandBuffer() { return mCommandBuffer; }
angle::Result flushToPrimary(ContextVk *contextVk, vk::PrimaryCommandBuffer *primary);
void executeBarriers(vk::PrimaryCommandBuffer *primary);
bool empty() const { return (!mCommandBuffer.empty() || mRenderPassStarted) ? false : true; }
void setHasRenderPass(bool hasRenderPass) { mIsRenderPassCommandBuffer = hasRenderPass; }
void reset();
void releaseToContextQueue(ContextVk *contextVk);
// RenderPass related functions
bool started() const
{
ASSERT(mIsRenderPassCommandBuffer);
return mRenderPassStarted;
}
void beginRenderPass(const vk::Framebuffer &framebuffer,
const gl::Rectangle &renderArea,
const vk::RenderPassDesc &renderPassDesc,
const vk::AttachmentOpsArray &renderPassAttachmentOps,
const vk::ClearValuesArray &clearValues,
vk::CommandBuffer **commandBufferOut);
void beginTransformFeedback(size_t validBufferCount,
const VkBuffer *counterBuffers,
bool rebindBuffers);
void invalidateRenderPassColorAttachment(size_t attachmentIndex)
{
ASSERT(mIsRenderPassCommandBuffer);
SetBitField(mAttachmentOps[attachmentIndex].storeOp, VK_ATTACHMENT_STORE_OP_DONT_CARE);
}
void invalidateRenderPassDepthAttachment(size_t attachmentIndex)
{
ASSERT(mIsRenderPassCommandBuffer);
SetBitField(mAttachmentOps[attachmentIndex].storeOp, VK_ATTACHMENT_STORE_OP_DONT_CARE);
}
void invalidateRenderPassStencilAttachment(size_t attachmentIndex)
{
ASSERT(mIsRenderPassCommandBuffer);
SetBitField(mAttachmentOps[attachmentIndex].stencilStoreOp,
VK_ATTACHMENT_STORE_OP_DONT_CARE);
}
void updateRenderPassAttachmentFinalLayout(size_t attachmentIndex, vk::ImageLayout finalLayout)
{
ASSERT(mIsRenderPassCommandBuffer);
SetBitField(mAttachmentOps[attachmentIndex].finalLayout, finalLayout);
}
const gl::Rectangle &getRenderArea() const
{
ASSERT(mIsRenderPassCommandBuffer);
return mRenderArea;
}
void resumeTransformFeedbackIfStarted();
void pauseTransformFeedbackIfStarted();
uint32_t getAndResetCounter()
{
ASSERT(mIsRenderPassCommandBuffer);
uint32_t count = mCounter;
mCounter = 0;
return count;
}
VkFramebuffer getFramebufferHandle() const
{
ASSERT(mIsRenderPassCommandBuffer);
return mFramebuffer.getHandle();
}
// Dumping the command stream is disabled by default.
static constexpr bool kEnableCommandStreamDiagnostics = false;
private:
void addCommandDiagnostics(ContextVk *contextVk);
// Allocator used by this class. Using a pool allocator per CBH to avoid threading issues
// that occur w/ shared allocator between multiple CBHs.
angle::PoolAllocator mAllocator;
// General state (non-renderPass related)
PipelineBarrierArray mPipelineBarriers;
PipelineStagesMask mPipelineBarrierMask;
vk::CommandBuffer mCommandBuffer;
// RenderPass state
uint32_t mCounter;
vk::RenderPassDesc mRenderPassDesc;
vk::AttachmentOpsArray mAttachmentOps;
vk::Framebuffer mFramebuffer;
gl::Rectangle mRenderArea;
vk::ClearValuesArray mClearValues;
bool mRenderPassStarted;
// Transform feedback state
gl::TransformFeedbackBuffersArray<VkBuffer> mTransformFeedbackCounterBuffers;
uint32_t mValidTransformFeedbackBufferCount;
bool mRebindTransformFeedbackBuffers;
bool mIsRenderPassCommandBuffer;
bool mMergeBarriers;
};
// Imagine an image going through a few layout transitions:
//
// srcStage 1 dstStage 2 srcStage 2 dstStage 3
// Layout 1 ------Transition 1-----> Layout 2 ------Transition 2------> Layout 3
// srcAccess 1 dstAccess 2 srcAccess 2 dstAccess 3
// \_________________ ___________________/
// \/
// A transition
//
// Every transition requires 6 pieces of information: from/to layouts, src/dst stage masks and
// src/dst access masks. At the moment we decide to transition the image to Layout 2 (i.e.
// Transition 1), we need to have Layout 1, srcStage 1 and srcAccess 1 stored as history of the
// image. To perform the transition, we need to know Layout 2, dstStage 2 and dstAccess 2.
// Additionally, we need to know srcStage 2 and srcAccess 2 to retain them for the next transition.
//
// That is, with the history kept, on every new transition we need 5 pieces of new information:
// layout/dstStage/dstAccess to transition into the layout, and srcStage/srcAccess for the future
// transition out from it. Given the small number of possible combinations of these values, an
// enum is used were each value encapsulates these 5 pieces of information:
//
// +--------------------------------+
// srcStage 1 | dstStage 2 srcStage 2 | dstStage 3
// Layout 1 ------Transition 1-----> Layout 2 ------Transition 2------> Layout 3
// srcAccess 1 |dstAccess 2 srcAccess 2| dstAccess 3
// +--------------- ---------------+
// \/
// One enum value
//
// Note that, while generally dstStage for the to-transition and srcStage for the from-transition
// are the same, they may occasionally be BOTTOM_OF_PIPE and TOP_OF_PIPE respectively.
enum class ImageLayout
{
Undefined = 0,
ExternalPreInitialized = 1,
ExternalShadersReadOnly = 2,
ExternalShadersWrite = 3,
TransferSrc = 4,
TransferDst = 5,
VertexShaderReadOnly = 6,
VertexShaderWrite = 7,
GeometryShaderReadOnly = 8,
GeometryShaderWrite = 9,
FragmentShaderReadOnly = 10,
FragmentShaderWrite = 11,
ComputeShaderReadOnly = 12,
ComputeShaderWrite = 13,
AllGraphicsShadersReadOnly = 14,
AllGraphicsShadersReadWrite = 15,
ColorAttachment = 16,
DepthStencilAttachment = 17,
Present = 18,
InvalidEnum = 19,
EnumCount = 19,
};
VkImageLayout ConvertImageLayoutToVkImageLayout(ImageLayout imageLayout);
class ImageHelper final : public Resource, public angle::Subject
{
public:
ImageHelper();
ImageHelper(ImageHelper &&other);
~ImageHelper() override;
void initStagingBuffer(RendererVk *renderer,
const Format &format,
VkBufferUsageFlags usageFlags,
size_t initialSize);
angle::Result init(Context *context,
gl::TextureType textureType,
const VkExtent3D &extents,
const Format &format,
GLint samples,
VkImageUsageFlags usage,
uint32_t baseLevel,
uint32_t maxLevel,
uint32_t mipLevels,
uint32_t layerCount);
angle::Result initExternal(Context *context,
gl::TextureType textureType,
const VkExtent3D &extents,
const Format &format,
GLint samples,
VkImageUsageFlags usage,
VkImageCreateFlags additionalCreateFlags,
ImageLayout initialLayout,
const void *externalImageCreateInfo,
uint32_t baseLevel,
uint32_t maxLevel,
uint32_t mipLevels,
uint32_t layerCount);
angle::Result initMemory(Context *context,
const MemoryProperties &memoryProperties,
VkMemoryPropertyFlags flags);
angle::Result initExternalMemory(Context *context,
const MemoryProperties &memoryProperties,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
uint32_t currentQueueFamilyIndex,
VkMemoryPropertyFlags flags);
angle::Result initLayerImageView(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount) const;
angle::Result initLayerImageViewImpl(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
VkFormat imageFormat) const;
angle::Result initImageView(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount);
// Create a 2D[Array] for staging purposes. Used by:
//
// - TextureVk::copySubImageImplWithDraw
// - FramebufferVk::readPixelsImpl
//
angle::Result init2DStaging(Context *context,
const MemoryProperties &memoryProperties,
const gl::Extents &glExtents,
const Format &format,
VkImageUsageFlags usage,
uint32_t layerCount);
void releaseImage(RendererVk *rendererVk);
void releaseStagingBuffer(RendererVk *renderer);
bool valid() const { return mImage.valid(); }
VkImageAspectFlags getAspectFlags() const;
// True if image contains both depth & stencil aspects
bool isCombinedDepthStencilFormat() const;
void destroy(RendererVk *renderer);
void release(RendererVk *renderer) { destroy(renderer); }
void init2DWeakReference(Context *context,
VkImage handle,
const gl::Extents &glExtents,
const Format &format,
GLint samples);
void resetImageWeakReference();
const Image &getImage() const { return mImage; }
const DeviceMemory &getDeviceMemory() const { return mDeviceMemory; }
VkImageType getType() const { return mImageType; }
const VkExtent3D &getExtents() const { return mExtents; }
uint32_t getLayerCount() const { return mLayerCount; }
uint32_t getLevelCount() const { return mLevelCount; }
const Format &getFormat() const { return *mFormat; }
GLint getSamples() const { return mSamples; }
void setCurrentImageLayout(ImageLayout newLayout) { mCurrentLayout = newLayout; }
ImageLayout getCurrentImageLayout() const { return mCurrentLayout; }
VkImageLayout getCurrentLayout() const;
// Helper function to calculate the extents of a render target created for a certain mip of the
// image.
gl::Extents getLevelExtents2D(uint32_t level) const;
// Clear either color or depth/stencil based on image format.
void clear(VkImageAspectFlags aspectFlags,
const VkClearValue &value,
uint32_t mipLevel,
uint32_t baseArrayLayer,
uint32_t layerCount,
CommandBuffer *commandBuffer);
gl::Extents getSize(const gl::ImageIndex &index) const;
// Return unique Serial for underlying image, first assigning it if it hasn't been set yet
Serial getAssignSerial(ContextVk *contextVk);
void resetSerial() { mSerial = rx::kZeroSerial; }
static void Copy(ImageHelper *srcImage,
ImageHelper *dstImage,
const gl::Offset &srcOffset,
const gl::Offset &dstOffset,
const gl::Extents ©Size,
const VkImageSubresourceLayers &srcSubresources,
const VkImageSubresourceLayers &dstSubresources,
CommandBuffer *commandBuffer);
angle::Result generateMipmapsWithBlit(ContextVk *contextVk, GLuint maxLevel);
// Resolve this image into a destination image. This image should be in the TransferSrc layout.
// The destination image is automatically transitioned into TransferDst.
void resolve(ImageHelper *dest, const VkImageResolve ®ion, CommandBuffer *commandBuffer);
// Data staging
void removeStagedUpdates(ContextVk *contextVk, uint32_t levelIndexGL, uint32_t layerIndex);
angle::Result stageSubresourceUpdateImpl(ContextVk *contextVk,
const gl::ImageIndex &index,
const gl::Extents &glExtents,
const gl::Offset &offset,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
const uint8_t *pixels,
const Format &vkFormat,
const GLuint inputRowPitch,
const GLuint inputDepthPitch,
const GLuint inputSkipBytes);
angle::Result stageSubresourceUpdate(ContextVk *contextVk,
const gl::ImageIndex &index,
const gl::Extents &glExtents,
const gl::Offset &offset,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
const uint8_t *pixels,
const Format &vkFormat);
angle::Result stageSubresourceUpdateAndGetData(ContextVk *contextVk,
size_t allocationSize,
const gl::ImageIndex &imageIndex,
const gl::Extents &glExtents,
const gl::Offset &offset,
uint8_t **destData);
angle::Result stageSubresourceUpdateFromBuffer(ContextVk *contextVk,
size_t allocationSize,
uint32_t mipLevelGL,
uint32_t baseArrayLayer,
uint32_t layerCount,
uint32_t bufferRowLength,
uint32_t bufferImageHeight,
const VkExtent3D &extent,
const VkOffset3D &offset,
BufferHelper *stagingBuffer,
StagingBufferOffsetArray stagingOffsets);
angle::Result stageSubresourceUpdateFromFramebuffer(const gl::Context *context,
const gl::ImageIndex &index,
const gl::Rectangle &sourceArea,
const gl::Offset &dstOffset,
const gl::Extents &dstExtent,
const gl::InternalFormat &formatInfo,
FramebufferVk *framebufferVk);
void stageSubresourceUpdateFromImage(ImageHelper *image,
const gl::ImageIndex &index,
const gl::Offset &destOffset,
const gl::Extents &glExtents,
const VkImageType imageType);
// Stage a clear to an arbitrary value.
void stageClear(const gl::ImageIndex &index,
VkImageAspectFlags aspectFlags,
const VkClearValue &clearValue);
// Stage a clear based on robust resource init.
angle::Result stageRobustResourceClearWithFormat(ContextVk *contextVk,
const gl::ImageIndex &index,
const gl::Extents &glExtents,
const vk::Format &format);
void stageRobustResourceClear(const gl::ImageIndex &index);
// This will use the underlying dynamic buffer to allocate some memory to be used as a src or
// dst.
angle::Result allocateStagingMemory(ContextVk *contextVk,
size_t sizeInBytes,
uint8_t **ptrOut,
BufferHelper **bufferOut,
StagingBufferOffsetArray *offsetOut,
bool *newBufferAllocatedOut);
// Flush staged updates for a single subresource. Can optionally take a parameter to defer
// clears to a subsequent RenderPass load op.
angle::Result flushSingleSubresourceStagedUpdates(ContextVk *contextVk,
uint32_t levelGL,
uint32_t layer,
CommandBuffer *commandBuffer,
ClearValuesArray *deferredClears,
uint32_t deferredClearIndex);
// Flushes staged updates to a range of levels and layers from start to (but not including) end.
// Due to the nature of updates (done wholly to a VkImageSubresourceLayers), some unsolicited
// layers may also be updated.
angle::Result flushStagedUpdates(ContextVk *contextVk,
uint32_t levelStart,
uint32_t levelEnd,
uint32_t layerStart,
uint32_t layerEnd,
CommandBuffer *commandBuffer);
// Creates a command buffer and flushes all staged updates. This is used for one-time
// initialization of resources that we don't expect to accumulate further staged updates, such
// as with renderbuffers or surface images.
angle::Result flushAllStagedUpdates(ContextVk *contextVk);
bool isUpdateStaged(uint32_t levelGL, uint32_t layer);
bool hasStagedUpdates() const { return !mSubresourceUpdates.empty(); }
// changeLayout automatically skips the layout change if it's unnecessary. This function can be
// used to prevent creating a command graph node and subsequently a command buffer for the sole
// purpose of performing a transition (which may then not be issued).
bool isLayoutChangeNecessary(ImageLayout newLayout) const;
template <typename CommandBufferT>
void changeLayout(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
CommandBufferT *commandBuffer)
{
if (!isLayoutChangeNecessary(newLayout))
{
return;
}
forceChangeLayoutAndQueue(aspectMask, newLayout, mCurrentQueueFamilyIndex, commandBuffer);
}
bool isQueueChangeNeccesary(uint32_t newQueueFamilyIndex) const
{
return mCurrentQueueFamilyIndex != newQueueFamilyIndex;
}
void changeLayoutAndQueue(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
CommandBuffer *commandBuffer);
// Returns true if barrier has been generated
bool updateLayoutAndBarrier(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
PipelineBarrier *barrier);
// Performs an ownership transfer from an external instance or API.
void acquireFromExternal(ContextVk *contextVk,
uint32_t externalQueueFamilyIndex,
uint32_t rendererQueueFamilyIndex,
ImageLayout currentLayout,
CommandBuffer *commandBuffer);
// Performs an ownership transfer to an external instance or API.
void releaseToExternal(ContextVk *contextVk,
uint32_t rendererQueueFamilyIndex,
uint32_t externalQueueFamilyIndex,
ImageLayout desiredLayout,
CommandBuffer *commandBuffer);
// Returns true if the image is owned by an external API or instance.
bool isReleasedToExternal() const;
uint32_t getBaseLevel();
void setBaseAndMaxLevels(uint32_t baseLevel, uint32_t maxLevel);
angle::Result copyImageDataToBuffer(ContextVk *contextVk,
size_t sourceLevel,
uint32_t layerCount,
uint32_t baseLayer,
const gl::Box &sourceArea,
BufferHelper **bufferOut,
size_t *bufferSize,
StagingBufferOffsetArray *bufferOffsetsOut,
uint8_t **outDataPtr);
static angle::Result GetReadPixelsParams(ContextVk *contextVk,
const gl::PixelPackState &packState,
gl::Buffer *packBuffer,
GLenum format,
GLenum type,
const gl::Rectangle &area,
const gl::Rectangle &clippedArea,
PackPixelsParams *paramsOut,
GLuint *skipBytesOut);
angle::Result readPixelsForGetImage(ContextVk *contextVk,
const gl::PixelPackState &packState,
gl::Buffer *packBuffer,
uint32_t levelGL,
uint32_t layer,
GLenum format,
GLenum type,
void *pixels);
angle::Result readPixels(ContextVk *contextVk,
const gl::Rectangle &area,
const PackPixelsParams &packPixelsParams,
VkImageAspectFlagBits copyAspectFlags,
uint32_t levelGL,
uint32_t layer,
void *pixels,
DynamicBuffer *stagingBuffer);
angle::Result CalculateBufferInfo(ContextVk *contextVk,
const gl::Extents &glExtents,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
bool is3D,
GLuint *inputRowPitch,
GLuint *inputDepthPitch,
GLuint *inputSkipBytes);
private:
enum class UpdateSource
{
Clear,
Buffer,
Image,
};
struct ClearUpdate
{
VkImageAspectFlags aspectFlags;
VkClearValue value;
uint32_t levelIndex;
uint32_t layerIndex;
uint32_t layerCount;
};
struct BufferUpdate
{
BufferHelper *bufferHelper;
VkBufferImageCopy copyRegion;
};
struct ImageUpdate
{
ImageHelper *image;
VkImageCopy copyRegion;
};
struct SubresourceUpdate
{
SubresourceUpdate();
SubresourceUpdate(BufferHelper *bufferHelperIn, const VkBufferImageCopy ©Region);
SubresourceUpdate(ImageHelper *image, const VkImageCopy ©Region);
SubresourceUpdate(VkImageAspectFlags aspectFlags,
const VkClearValue &clearValue,
const gl::ImageIndex &imageIndex);
SubresourceUpdate(const SubresourceUpdate &other);
void release(RendererVk *renderer);
const VkImageSubresourceLayers &dstSubresource() const
{
// Note: destination mip level includes base level.
ASSERT(updateSource == UpdateSource::Buffer || updateSource == UpdateSource::Image);
return updateSource == UpdateSource::Buffer ? buffer.copyRegion.imageSubresource
: image.copyRegion.dstSubresource;
}
bool isUpdateToLayerLevel(uint32_t layerIndex, uint32_t levelIndexGL) const;
UpdateSource updateSource;
union
{
ClearUpdate clear;
BufferUpdate buffer;
ImageUpdate image;
};
};
void initImageMemoryBarrierStruct(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
VkImageMemoryBarrier *imageMemoryBarrier) const;
// Generalized to accept both "primary" and "secondary" command buffers.
template <typename CommandBufferT>
void forceChangeLayoutAndQueue(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
CommandBufferT *commandBuffer);
// If the image has emulated channels, we clear them once so as not to leave garbage on those
// channels.
void stageClearIfEmulatedFormat(Context *context);
void clearColor(const VkClearColorValue &color,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
CommandBuffer *commandBuffer);
void clearDepthStencil(VkImageAspectFlags clearAspectFlags,
const VkClearDepthStencilValue &depthStencil,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
CommandBuffer *commandBuffer);
angle::Result initializeNonZeroMemory(Context *context, VkDeviceSize size);
void appendSubresourceUpdate(SubresourceUpdate &&update);
void prependSubresourceUpdate(SubresourceUpdate &&update);
void resetCachedProperties();
// Vulkan objects.
Image mImage;
DeviceMemory mDeviceMemory;
// Image properties.
VkImageType mImageType;
VkExtent3D mExtents;
const Format *mFormat;
GLint mSamples;
Serial mSerial;
// Current state.
ImageLayout mCurrentLayout;
uint32_t mCurrentQueueFamilyIndex;
// For optimizing transition between different shader readonly layouts
ImageLayout mLastNonShaderReadOnlyLayout;
VkPipelineStageFlags mCurrentShaderReadStageMask;
// Cached properties.
uint32_t mBaseLevel;
uint32_t mMaxLevel;
uint32_t mLayerCount;
uint32_t mLevelCount;
// Staging buffer
DynamicBuffer mStagingBuffer;
std::vector<SubresourceUpdate> mSubresourceUpdates;
};
// A vector of image views, such as one per level or one per layer.
using ImageViewVector = std::vector<ImageView>;
// A vector of vector of image views. Primary index is layer, secondary index is level.
using LayerLevelImageViewVector = std::vector<ImageViewVector>;
class ImageViewHelper : angle::NonCopyable
{
public:
ImageViewHelper();
ImageViewHelper(ImageViewHelper &&other);
~ImageViewHelper();
void release(RendererVk *renderer);
void destroy(VkDevice device);
const ImageView &getLinearReadImageView() const { return mLinearReadImageView; }
const ImageView &getNonLinearReadImageView() const { return mNonLinearReadImageView; }
const ImageView &getLinearFetchImageView() const { return mLinearFetchImageView; }
const ImageView &getNonLinearFetchImageView() const { return mNonLinearFetchImageView; }
const ImageView &getStencilReadImageView() const { return mStencilReadImageView; }
const ImageView &getReadImageView() const
{
return mLinearColorspace ? mLinearReadImageView : mNonLinearReadImageView;
}
const ImageView &getFetchImageView() const
{
return mLinearColorspace ? mLinearFetchImageView : mNonLinearFetchImageView;
}
// Used when initialized RenderTargets.
bool hasStencilReadImageView() const { return mStencilReadImageView.valid(); }
bool hasFetchImageView() const { return getFetchImageView().valid(); }
// Store reference to usage in graph.
void retain(ResourceUseList *resourceUseList) const { resourceUseList->add(mUse); }
// Creates views with multiple layers and levels.
angle::Result initReadViews(ContextVk *contextVk,
gl::TextureType viewType,
const ImageHelper &image,
const Format &format,
const gl::SwizzleState &swizzleState,
uint32_t baseLevel,
uint32_t levelCount,
uint32_t baseLayer,
uint32_t layerCount);
// Create SRGB-reinterpreted read views
angle::Result initSRGBReadViews(ContextVk *contextVk,
gl::TextureType viewType,
const ImageHelper &image,
const Format &format,
const gl::SwizzleState &swizzleState,
uint32_t baseLevel,
uint32_t levelCount,
uint32_t baseLayer,
uint32_t layerCount);
// Creates a view with all layers of the level.
angle::Result getLevelDrawImageView(ContextVk *contextVk,
gl::TextureType viewType,
const ImageHelper &image,
uint32_t level,
uint32_t layer,
const ImageView **imageViewOut);
// Creates a view with a single layer of the level.
angle::Result getLevelLayerDrawImageView(ContextVk *contextVk,
const ImageHelper &image,
uint32_t level,
uint32_t layer,
const ImageView **imageViewOut);
private:
ImageView &getReadImageView()
{
return mLinearColorspace ? mLinearReadImageView : mNonLinearReadImageView;
}
ImageView &getFetchImageView()
{
return mLinearColorspace ? mLinearFetchImageView : mNonLinearFetchImageView;
}
// Lifetime.
SharedResourceUse mUse;
// Read views
ImageView mLinearReadImageView;
ImageView mNonLinearReadImageView;
ImageView mLinearFetchImageView;
ImageView mNonLinearFetchImageView;
ImageView mStencilReadImageView;
bool mLinearColorspace;
// Draw views.
ImageViewVector mLevelDrawImageViews;
LayerLevelImageViewVector mLayerLevelDrawImageViews;
};
// The SamplerHelper allows a Sampler to be coupled with a resource lifetime.
class SamplerHelper final : angle::NonCopyable
{
public:
SamplerHelper();
~SamplerHelper();
angle::Result init(Context *context, const VkSamplerCreateInfo &createInfo);
void release(RendererVk *renderer);
bool valid() const { return mSampler.valid(); }
const Sampler &get() const { return mSampler; }
void retain(ResourceUseList *resourceUseList) { resourceUseList->add(mUse); }
private:
SharedResourceUse mUse;
Sampler mSampler;
};
class FramebufferHelper : public Resource
{
public:
FramebufferHelper();
~FramebufferHelper() override;
FramebufferHelper(FramebufferHelper &&other);
FramebufferHelper &operator=(FramebufferHelper &&other);
angle::Result init(ContextVk *contextVk, const VkFramebufferCreateInfo &createInfo);
void release(ContextVk *contextVk);
bool valid() { return mFramebuffer.valid(); }
const Framebuffer &getFramebuffer() const
{
ASSERT(mFramebuffer.valid());
return mFramebuffer;
}
Framebuffer &getFramebuffer()
{
ASSERT(mFramebuffer.valid());
return mFramebuffer;
}
private:
// Vulkan object.
Framebuffer mFramebuffer;
};
// A special command graph resource to hold resource dependencies for dispatch calls. It's the
// equivalent of FramebufferHelper, though it doesn't contain a Vulkan object.
class DispatchHelper : public Resource
{
public:
DispatchHelper();
~DispatchHelper() override;
};
class ShaderProgramHelper : angle::NonCopyable
{
public:
ShaderProgramHelper();
~ShaderProgramHelper();
bool valid(const gl::ShaderType shaderType) const;
void destroy(VkDevice device);
void release(ContextVk *contextVk);
ShaderAndSerial &getShader(gl::ShaderType shaderType) { return mShaders[shaderType].get(); }
void setShader(gl::ShaderType shaderType, RefCounted<ShaderAndSerial> *shader);
void enableSpecializationConstant(sh::vk::SpecializationConstantId id);
// For getting a Pipeline and from the pipeline cache.
ANGLE_INLINE angle::Result getGraphicsPipeline(
ContextVk *contextVk,
RenderPassCache *renderPassCache,
const PipelineCache &pipelineCache,
Serial currentQueueSerial,
const PipelineLayout &pipelineLayout,
const GraphicsPipelineDesc &pipelineDesc,
const gl::AttributesMask &activeAttribLocationsMask,
const gl::ComponentTypeMask &programAttribsTypeMask,
const GraphicsPipelineDesc **descPtrOut,
PipelineHelper **pipelineOut)
{
// Pull in a compatible RenderPass.
RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(renderPassCache->getCompatibleRenderPass(contextVk, currentQueueSerial,
pipelineDesc.getRenderPassDesc(),
&compatibleRenderPass));
ShaderModule *vertexShader = &mShaders[gl::ShaderType::Vertex].get().get();
ShaderModule *fragmentShader = mShaders[gl::ShaderType::Fragment].valid()
? &mShaders[gl::ShaderType::Fragment].get().get()
: nullptr;
ShaderModule *geometryShader = mShaders[gl::ShaderType::Geometry].valid()
? &mShaders[gl::ShaderType::Geometry].get().get()
: nullptr;
return mGraphicsPipelines.getPipeline(
contextVk, pipelineCache, *compatibleRenderPass, pipelineLayout,
activeAttribLocationsMask, programAttribsTypeMask, vertexShader, fragmentShader,
geometryShader, mSpecializationConstants, pipelineDesc, descPtrOut, pipelineOut);
}
angle::Result getComputePipeline(Context *context,
const PipelineLayout &pipelineLayout,
PipelineAndSerial **pipelineOut);
private:
gl::ShaderMap<BindingPointer<ShaderAndSerial>> mShaders;
GraphicsPipelineCache mGraphicsPipelines;
// We should probably use PipelineHelper here so we can remove PipelineAndSerial.
PipelineAndSerial mComputePipeline;
// Specialization constants, currently only used by the graphics queue.
vk::SpecializationConstantBitSet mSpecializationConstants;
};
// Tracks current handle allocation counts in the back-end. Useful for debugging and profiling.
// Note: not all handle types are currently implemented.
class ActiveHandleCounter final : angle::NonCopyable
{
public:
ActiveHandleCounter();
~ActiveHandleCounter();
void onAllocate(HandleType handleType)
{
mActiveCounts[handleType]++;
mAllocatedCounts[handleType]++;
}
void onDeallocate(HandleType handleType) { mActiveCounts[handleType]--; }
uint32_t getActive(HandleType handleType) const { return mActiveCounts[handleType]; }
uint32_t getAllocated(HandleType handleType) const { return mAllocatedCounts[handleType]; }
private:
angle::PackedEnumMap<HandleType, uint32_t> mActiveCounts;
angle::PackedEnumMap<HandleType, uint32_t> mAllocatedCounts;
};
} // namespace vk
} // namespace rx
#endif // LIBANGLE_RENDERER_VULKAN_VK_HELPERS_H_